]> git.sur5r.net Git - freertos/blob - FreeRTOS/Demo/MicroBlaze_Spartan-6_EthernetLite/SDKProjects/RTOSDemo/main-blinky.c
Update version number in preparation for official V8.2.0 release.
[freertos] / FreeRTOS / Demo / MicroBlaze_Spartan-6_EthernetLite / SDKProjects / RTOSDemo / main-blinky.c
1 /*\r
2     FreeRTOS V8.2.0 - Copyright (C) 2015 Real Time Engineers Ltd.\r
3     All rights reserved\r
4 \r
5     VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.\r
6 \r
7     This file is part of the FreeRTOS distribution.\r
8 \r
9     FreeRTOS is free software; you can redistribute it and/or modify it under\r
10     the terms of the GNU General Public License (version 2) as published by the\r
11     Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.\r
12 \r
13         ***************************************************************************\r
14     >>!   NOTE: The modification to the GPL is included to allow you to     !<<\r
15     >>!   distribute a combined work that includes FreeRTOS without being   !<<\r
16     >>!   obliged to provide the source code for proprietary components     !<<\r
17     >>!   outside of the FreeRTOS kernel.                                   !<<\r
18         ***************************************************************************\r
19 \r
20     FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY\r
21     WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\r
22     FOR A PARTICULAR PURPOSE.  Full license text is available on the following\r
23     link: http://www.freertos.org/a00114.html\r
24 \r
25     ***************************************************************************\r
26      *                                                                       *\r
27      *    FreeRTOS provides completely free yet professionally developed,    *\r
28      *    robust, strictly quality controlled, supported, and cross          *\r
29      *    platform software that is more than just the market leader, it     *\r
30      *    is the industry's de facto standard.                               *\r
31      *                                                                       *\r
32      *    Help yourself get started quickly while simultaneously helping     *\r
33      *    to support the FreeRTOS project by purchasing a FreeRTOS           *\r
34      *    tutorial book, reference manual, or both:                          *\r
35      *    http://www.FreeRTOS.org/Documentation                              *\r
36      *                                                                       *\r
37     ***************************************************************************\r
38 \r
39     http://www.FreeRTOS.org/FAQHelp.html - Having a problem?  Start by reading\r
40         the FAQ page "My application does not run, what could be wrong?".  Have you\r
41         defined configASSERT()?\r
42 \r
43         http://www.FreeRTOS.org/support - In return for receiving this top quality\r
44         embedded software for free we request you assist our global community by\r
45         participating in the support forum.\r
46 \r
47         http://www.FreeRTOS.org/training - Investing in training allows your team to\r
48         be as productive as possible as early as possible.  Now you can receive\r
49         FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers\r
50         Ltd, and the world's leading authority on the world's leading RTOS.\r
51 \r
52     http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,\r
53     including FreeRTOS+Trace - an indispensable productivity tool, a DOS\r
54     compatible FAT file system, and our tiny thread aware UDP/IP stack.\r
55 \r
56     http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.\r
57     Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.\r
58 \r
59     http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High\r
60     Integrity Systems ltd. to sell under the OpenRTOS brand.  Low cost OpenRTOS\r
61     licenses offer ticketed support, indemnification and commercial middleware.\r
62 \r
63     http://www.SafeRTOS.com - High Integrity Systems also provide a safety\r
64     engineered and independently SIL3 certified version for use in safety and\r
65     mission critical applications that require provable dependability.\r
66 \r
67     1 tab == 4 spaces!\r
68 */\r
69 \r
70 /*\r
71  * main-blinky.c is included when the "Blinky" build configuration is used.\r
72  * main-full.c is included when the "Full" build configuration is used.\r
73  *\r
74  * main-blinky.c (this file) defines a very simple demo that creates two tasks,\r
75  * one queue, and one timer.  It also demonstrates how MicroBlaze interrupts\r
76  * can interact with FreeRTOS tasks/timers.\r
77  *\r
78  * This simple demo project was developed and tested on the Spartan-6 SP605\r
79  * development board, using the hardware configuration found in the hardware\r
80  * project that is already included in the Eclipse project.\r
81  *\r
82  * The idle hook function:\r
83  * The idle hook function demonstrates how to query the amount of FreeRTOS heap\r
84  * space that is remaining (see vApplicationIdleHook() defined in this file).\r
85  *\r
86  * The main() Function:\r
87  * main() creates one software timer, one queue, and two tasks.  It then starts\r
88  * the scheduler.\r
89  *\r
90  * The Queue Send Task:\r
91  * The queue send task is implemented by the prvQueueSendTask() function in\r
92  * this file.  prvQueueSendTask() sits in a loop that causes it to repeatedly\r
93  * block for 200 milliseconds, before sending the value 100 to the queue that\r
94  * was created within main().  Once the value is sent, the task loops back\r
95  * around to block for another 200 milliseconds.\r
96  *\r
97  * The Queue Receive Task:\r
98  * The queue receive task is implemented by the prvQueueReceiveTask() function\r
99  * in this file.  prvQueueReceiveTask() sits in a loop that causes it to\r
100  * repeatedly attempt to read data from the queue that was created within\r
101  * main().  When data is received, the task checks the value of the data, and\r
102  * if the value equals the expected 100, toggles an LED.  The 'block time'\r
103  * parameter passed to the queue receive function specifies that the task\r
104  * should be held in the Blocked state indefinitely to wait for data to be\r
105  * available on the queue.  The queue receive task will only leave the Blocked\r
106  * state when the queue send task writes to the queue.  As the queue send task\r
107  * writes to the queue every 200 milliseconds, the queue receive task leaves\r
108  * the Blocked state every 200 milliseconds, and therefore toggles the LED\r
109  * every 200 milliseconds.\r
110  *\r
111  * The LED Software Timer and the Button Interrupt:\r
112  * The user buttons are configured to generate an interrupt each time one is\r
113  * pressed.  The interrupt service routine switches an LED on, and resets the\r
114  * LED software timer.  The LED timer has a 5000 millisecond (5 second) period,\r
115  * and uses a callback function that is defined to just turn the LED off again.\r
116  * Therefore, pressing the user button will turn the LED on, and the LED will\r
117  * remain on until a full five seconds pass without the button being pressed.\r
118  */\r
119 \r
120 /* Kernel includes. */\r
121 #include "FreeRTOS.h"\r
122 #include "task.h"\r
123 #include "queue.h"\r
124 #include "timers.h"\r
125 \r
126 /* BSP includes. */\r
127 #include "xtmrctr.h"\r
128 #include "xgpio.h"\r
129 \r
130 /* Priorities at which the tasks are created. */\r
131 #define mainQUEUE_RECEIVE_TASK_PRIORITY         ( tskIDLE_PRIORITY + 2 )\r
132 #define mainQUEUE_SEND_TASK_PRIORITY            ( tskIDLE_PRIORITY + 1 )\r
133 \r
134 /* The rate at which data is sent to the queue, specified in milliseconds, and\r
135 converted to ticks using the portTICK_PERIOD_MS constant. */\r
136 #define mainQUEUE_SEND_FREQUENCY_MS                     ( 200 / portTICK_PERIOD_MS )\r
137 \r
138 /* The number of items the queue can hold.  This is 1 as the receive task\r
139 will remove items as they are added because it has the higher priority, meaning\r
140 the send task should always find the queue empty. */\r
141 #define mainQUEUE_LENGTH                                        ( 1 )\r
142 \r
143 /* The LED toggled by the queue receive task. */\r
144 #define mainTASK_CONTROLLED_LED                         0x01UL\r
145 \r
146 /* The LED turned on by the button interrupt, and turned off by the LED timer. */\r
147 #define mainTIMER_CONTROLLED_LED                        0x02UL\r
148 \r
149 /* A block time of 0 simply means, "don't block". */\r
150 #define mainDONT_BLOCK                                          ( TickType_t ) 0\r
151 \r
152 /*-----------------------------------------------------------*/\r
153 \r
154 /*\r
155  * Setup the NVIC, LED outputs, and button inputs.\r
156  */\r
157 static void prvSetupHardware( void );\r
158 \r
159 /*\r
160  * The tasks as described in the comments at the top of this file.\r
161  */\r
162 static void prvQueueReceiveTask( void *pvParameters );\r
163 static void prvQueueSendTask( void *pvParameters );\r
164 \r
165 /*\r
166  * The LED timer callback function.  This does nothing but switch off the\r
167  * LED defined by the mainTIMER_CONTROLLED_LED constant.\r
168  */\r
169 static void vLEDTimerCallback( TimerHandle_t xTimer );\r
170 \r
171 /*\r
172  * The handler executed each time a button interrupt is generated.  This ensures\r
173  * the LED defined by mainTIMER_CONTROLLED_LED is on, and resets the timer so\r
174  * the timer will not turn the LED off for a full 5 seconds after the button\r
175  * interrupt occurred.\r
176  */\r
177 static void prvButtonInputInterruptHandler( void *pvUnused );\r
178 \r
179 /*-----------------------------------------------------------*/\r
180 \r
181 /* The queue used by the queue send and queue receive tasks. */\r
182 static QueueHandle_t xQueue = NULL;\r
183 \r
184 /* The LED software timer.  This uses vLEDTimerCallback() as its callback\r
185 function. */\r
186 static TimerHandle_t xLEDTimer = NULL;\r
187 \r
188 /* Maintains the current LED output state. */\r
189 static volatile unsigned char ucGPIOState = 0U;\r
190 \r
191 /*-----------------------------------------------------------*/\r
192 \r
193 /* Structures that hold the state of the various peripherals used by this demo.\r
194 These are used by the Xilinx peripheral driver API functions. */\r
195 static XTmrCtr xTimer0Instance;\r
196 static XGpio xOutputGPIOInstance, xInputGPIOInstance;\r
197 \r
198 /* Constants required by the Xilinx peripheral driver API functions that are\r
199 relevant to the particular hardware set up. */\r
200 static const unsigned long ulGPIOOutputChannel = 1UL, ulGPIOInputChannel = 1UL;\r
201 \r
202 /*-----------------------------------------------------------*/\r
203 \r
204 int main( void )\r
205 {\r
206         /* *************************************************************************\r
207         This is a very simple project suitable for getting started with FreeRTOS.\r
208         If you would prefer a more complex project that demonstrates a lot more\r
209         features and tests, then select the 'Full' build configuration within the\r
210         SDK Eclipse IDE.\r
211         ***************************************************************************/\r
212 \r
213         /* Configure the interrupt controller, LED outputs and button inputs. */\r
214         prvSetupHardware();\r
215 \r
216         /* Create the queue used by the queue send and queue receive tasks as\r
217         described in the comments at the top of this file. */\r
218         xQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( unsigned long ) );\r
219 \r
220         /* Sanity check that the queue was created. */\r
221         configASSERT( xQueue );\r
222 \r
223         /* Start the two tasks as described in the comments at the top of this\r
224         file. */\r
225         xTaskCreate( prvQueueReceiveTask, "Rx", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_RECEIVE_TASK_PRIORITY, NULL );\r
226         xTaskCreate( prvQueueSendTask, "TX", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_SEND_TASK_PRIORITY, NULL );\r
227 \r
228         /* Create the software timer that is responsible for turning off the LED\r
229         if the button is not pushed within 5000ms, as described at the top of\r
230         this file.  The timer is not actually started until a button interrupt is\r
231         pushed, as it is not until that point that the LED is turned on. */\r
232         xLEDTimer = xTimerCreate(       "LEDTimer",                             /* A text name, purely to help debugging. */\r
233                                                                 ( 5000 / portTICK_PERIOD_MS ),/* The timer period, in this case 5000ms (5s). */\r
234                                                                 pdFALSE,                                        /* This is a one shot timer, so xAutoReload is set to pdFALSE. */\r
235                                                                 ( void * ) 0,                           /* The ID is not used, so can be set to anything. */\r
236                                                                 vLEDTimerCallback                       /* The callback function that switches the LED off. */\r
237                                                         );\r
238 \r
239         /* Start the tasks and timer running. */\r
240         vTaskStartScheduler();\r
241 \r
242         /* If all is well, the scheduler will now be running, and the following line\r
243         will never be reached.  If the following line does execute, then there was\r
244         insufficient FreeRTOS heap memory available for the idle and/or timer tasks\r
245         to be created.  See the memory management section on the FreeRTOS web site\r
246         for more details. */\r
247         for( ;; );\r
248 }\r
249 /*-----------------------------------------------------------*/\r
250 \r
251 /* The callback is executed when the LED timer expires. */\r
252 static void vLEDTimerCallback( TimerHandle_t xTimer )\r
253 {\r
254         /* The timer has expired - so no button pushes have occurred in the last\r
255         five seconds - turn the LED off.  NOTE - accessing the LED port should use\r
256         a critical section because it is accessed from multiple tasks, and the\r
257         button interrupt - in this trivial case, for simplicity, the critical\r
258         section is omitted. */\r
259         ucGPIOState &= ~mainTIMER_CONTROLLED_LED;\r
260         XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
261 }\r
262 /*-----------------------------------------------------------*/\r
263 \r
264 /* The ISR is executed when the user button is pushed. */\r
265 static void prvButtonInputInterruptHandler( void *pvUnused )\r
266 {\r
267 long lHigherPriorityTaskWoken = pdFALSE;\r
268 \r
269         /* The button was pushed, so ensure the LED is on before resetting the\r
270         LED timer.  The LED timer will turn the LED off if the button is not\r
271         pushed within 5000ms. */\r
272         ucGPIOState |= mainTIMER_CONTROLLED_LED;\r
273         XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
274 \r
275         /* Ensure only the ISR safe reset API function is used, as this is executed\r
276         in an interrupt context. */\r
277         xTimerResetFromISR( xLEDTimer, &lHigherPriorityTaskWoken );\r
278 \r
279         /* Clear the interrupt before leaving. */\r
280         XGpio_InterruptClear( &xInputGPIOInstance, ulGPIOInputChannel );\r
281 \r
282         /* If calling xTimerResetFromISR() caused a task (in this case the timer\r
283         service/daemon task) to unblock, and the unblocked task has a priority\r
284         higher than or equal to the task that was interrupted, then\r
285         lHigherPriorityTaskWoken will now be set to pdTRUE, and calling\r
286         portEND_SWITCHING_ISR() will ensure the unblocked task runs next. */\r
287         portYIELD_FROM_ISR( lHigherPriorityTaskWoken );\r
288 }\r
289 /*-----------------------------------------------------------*/\r
290 \r
291 static void prvQueueSendTask( void *pvParameters )\r
292 {\r
293 TickType_t xNextWakeTime;\r
294 const unsigned long ulValueToSend = 100UL;\r
295 \r
296         /* Initialise xNextWakeTime - this only needs to be done once. */\r
297         xNextWakeTime = xTaskGetTickCount();\r
298 \r
299         for( ;; )\r
300         {\r
301                 /* Place this task in the blocked state until it is time to run again.\r
302                 The block time is specified in ticks, the constant used converts ticks\r
303                 to ms.  While in the Blocked state this task will not consume any CPU\r
304                 time. */\r
305                 vTaskDelayUntil( &xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS );\r
306 \r
307                 /* Send to the queue - causing the queue receive task to unblock and\r
308                 toggle an LED.  0 is used as the block time so the sending operation\r
309                 will not block - it shouldn't need to block as the queue should always\r
310                 be empty at this point in the code. */\r
311                 xQueueSend( xQueue, &ulValueToSend, mainDONT_BLOCK );\r
312         }\r
313 }\r
314 /*-----------------------------------------------------------*/\r
315 \r
316 static void prvQueueReceiveTask( void *pvParameters )\r
317 {\r
318 unsigned long ulReceivedValue;\r
319 \r
320         for( ;; )\r
321         {\r
322                 /* Wait until something arrives in the queue - this task will block\r
323                 indefinitely provided INCLUDE_vTaskSuspend is set to 1 in\r
324                 FreeRTOSConfig.h. */\r
325                 xQueueReceive( xQueue, &ulReceivedValue, portMAX_DELAY );\r
326 \r
327                 /*  To get here something must have been received from the queue, but\r
328                 is it the expected value?  If it is, toggle the green LED. */\r
329                 if( ulReceivedValue == 100UL )\r
330                 {\r
331                         /* NOTE - accessing the LED port should use a critical section\r
332                         because it is accessed from multiple tasks, and the button interrupt\r
333                         - in this trivial case, for simplicity, the critical section is\r
334                         omitted. */\r
335                         if( ( ucGPIOState & mainTASK_CONTROLLED_LED ) != 0 )\r
336                         {\r
337                                 ucGPIOState &= ~mainTASK_CONTROLLED_LED;\r
338                         }\r
339                         else\r
340                         {\r
341                                 ucGPIOState |= mainTASK_CONTROLLED_LED;\r
342                         }\r
343 \r
344                         XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
345                 }\r
346         }\r
347 }\r
348 /*-----------------------------------------------------------*/\r
349 \r
350 static void prvSetupHardware( void )\r
351 {\r
352 portBASE_TYPE xStatus;\r
353 const unsigned char ucSetToOutput = 0U;\r
354 \r
355         /* Initialize the GPIO for the LEDs. */\r
356         xStatus = XGpio_Initialize( &xOutputGPIOInstance, XPAR_LEDS_4BITS_DEVICE_ID );\r
357         if( xStatus == XST_SUCCESS )\r
358         {\r
359                 /* All bits on this channel are going to be outputs (LEDs). */\r
360                 XGpio_SetDataDirection( &xOutputGPIOInstance, ulGPIOOutputChannel, ucSetToOutput );\r
361 \r
362                 /* Start with all LEDs off. */\r
363                 ucGPIOState = 0U;\r
364                 XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
365         }\r
366 \r
367         /* Initialise the GPIO for the button inputs. */\r
368         if( xStatus == XST_SUCCESS )\r
369         {\r
370                 xStatus = XGpio_Initialize( &xInputGPIOInstance, XPAR_PUSH_BUTTONS_4BITS_DEVICE_ID );\r
371         }\r
372 \r
373         if( xStatus == XST_SUCCESS )\r
374         {\r
375                 /* Install the handler defined in this task for the button input.\r
376                 *NOTE* The FreeRTOS defined xPortInstallInterruptHandler() API function\r
377                 must be used for this purpose. */\r
378                 xStatus = xPortInstallInterruptHandler( XPAR_MICROBLAZE_0_INTC_PUSH_BUTTONS_4BITS_IP2INTC_IRPT_INTR, prvButtonInputInterruptHandler, NULL );\r
379 \r
380                 if( xStatus == pdPASS )\r
381                 {\r
382                         /* Set buttons to input. */\r
383                         XGpio_SetDataDirection( &xInputGPIOInstance, ulGPIOInputChannel, ~( ucSetToOutput ) );\r
384 \r
385                         /* Enable the button input interrupts in the interrupt controller.\r
386                         *NOTE* The vPortEnableInterrupt() API function must be used for this\r
387                         purpose. */\r
388                         vPortEnableInterrupt( XPAR_MICROBLAZE_0_INTC_PUSH_BUTTONS_4BITS_IP2INTC_IRPT_INTR );\r
389 \r
390                         /* Enable GPIO channel interrupts. */\r
391                         XGpio_InterruptEnable( &xInputGPIOInstance, ulGPIOInputChannel );\r
392                         XGpio_InterruptGlobalEnable( &xInputGPIOInstance );\r
393                 }\r
394         }\r
395 \r
396         configASSERT( ( xStatus == pdPASS ) );\r
397 }\r
398 /*-----------------------------------------------------------*/\r
399 \r
400 void vApplicationMallocFailedHook( void )\r
401 {\r
402         /* vApplicationMallocFailedHook() will only be called if\r
403         configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook\r
404         function that will get called if a call to pvPortMalloc() fails.\r
405         pvPortMalloc() is called internally by the kernel whenever a task, queue or\r
406         semaphore is created.  It is also called by various parts of the demo\r
407         application.  If heap_1.c or heap_2.c are used, then the size of the heap\r
408         available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in\r
409         FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used\r
410         to query the size of free heap space that remains (although it does not\r
411         provide information on how the remaining heap might be fragmented). */\r
412         taskDISABLE_INTERRUPTS();\r
413         for( ;; );\r
414 }\r
415 /*-----------------------------------------------------------*/\r
416 \r
417 void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )\r
418 {\r
419         ( void ) pcTaskName;\r
420         ( void ) pxTask;\r
421 \r
422         /* vApplicationStackOverflowHook() will only be called if\r
423         configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2.  The handle and name\r
424         of the offending task will be passed into the hook function via its\r
425         parameters.  However, when a stack has overflowed, it is possible that the\r
426         parameters will have been corrupted, in which case the pxCurrentTCB variable\r
427         can be inspected directly. */\r
428         taskDISABLE_INTERRUPTS();\r
429         for( ;; );\r
430 }\r
431 /*-----------------------------------------------------------*/\r
432 \r
433 void vApplicationIdleHook( void )\r
434 {\r
435 #ifdef EXAMPLE_CODE_ONLY\r
436 \r
437         The following code can only be included if heap_1.c or heap_2.c is used in\r
438         the project.  By default, heap_3.c is used, so the example code is\r
439         excluded.  See http://www.freertos.org/a00111.html for more information on\r
440         memory management options.\r
441 \r
442         volatile size_t xFreeHeapSpace;\r
443 \r
444                 /* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set\r
445                 to 1 in FreeRTOSConfig.h.  It will be called on each iteration of the idle\r
446                 task.  It is essential that code added to this hook function never attempts\r
447                 to block in any way (for example, call xQueueReceive() with a block time\r
448                 specified, or call vTaskDelay()).  If the application makes use of the\r
449                 vTaskDelete() API function (as this demo application does) then it is also\r
450                 important that vApplicationIdleHook() is permitted to return to its calling\r
451                 function, because it is the responsibility of the idle task to clean up\r
452                 memory allocated by the kernel to any task that has since been deleted. */\r
453 \r
454                 /* This implementation of vApplicationIdleHook() simply demonstrates how\r
455                 the xPortGetFreeHeapSize() function can be used. */\r
456                 xFreeHeapSpace = xPortGetFreeHeapSize();\r
457 \r
458                 if( xFreeHeapSpace > 100 )\r
459                 {\r
460                         /* By now, the kernel has allocated everything it is going to, so\r
461                         if there is a lot of heap remaining unallocated then\r
462                         the value of configTOTAL_HEAP_SIZE in FreeRTOSConfig.h can be\r
463                         reduced accordingly. */\r
464                 }\r
465 #endif\r
466 }\r
467 /*-----------------------------------------------------------*/\r
468 \r
469 /* This is an application defined callback function used to install the tick\r
470 interrupt handler.  It is provided as an application callback because the kernel\r
471 will run on lots of different MicroBlaze and FPGA configurations - not all of\r
472 which will have the same timer peripherals defined or available.  This example\r
473 uses the AXI Timer 0.  If that is available on your hardware platform then this\r
474 example callback implementation should not require modification.   The name of\r
475 the interrupt handler that should be installed is vPortTickISR(), which the\r
476 function below declares as an extern. */\r
477 void vApplicationSetupTimerInterrupt( void )\r
478 {\r
479 portBASE_TYPE xStatus;\r
480 const unsigned char ucTimerCounterNumber = ( unsigned char ) 0U;\r
481 const unsigned long ulCounterValue = ( ( XPAR_AXI_TIMER_0_CLOCK_FREQ_HZ / configTICK_RATE_HZ ) - 1UL );\r
482 extern void vPortTickISR( void *pvUnused );\r
483 \r
484         /* Initialise the timer/counter. */\r
485         xStatus = XTmrCtr_Initialize( &xTimer0Instance, XPAR_AXI_TIMER_0_DEVICE_ID );\r
486 \r
487         if( xStatus == XST_SUCCESS )\r
488         {\r
489                 /* Install the tick interrupt handler as the timer ISR.\r
490                 *NOTE* The xPortInstallInterruptHandler() API function must be used for\r
491                 this purpose. */\r
492                 xStatus = xPortInstallInterruptHandler( XPAR_INTC_0_TMRCTR_0_VEC_ID, vPortTickISR, NULL );\r
493         }\r
494 \r
495         if( xStatus == pdPASS )\r
496         {\r
497                 /* Enable the timer interrupt in the interrupt controller.\r
498                 *NOTE* The vPortEnableInterrupt() API function must be used for this\r
499                 purpose. */\r
500                 vPortEnableInterrupt( XPAR_INTC_0_TMRCTR_0_VEC_ID );\r
501 \r
502                 /* Configure the timer interrupt handler. */\r
503                 XTmrCtr_SetHandler( &xTimer0Instance, ( void * ) vPortTickISR, NULL );\r
504 \r
505                 /* Set the correct period for the timer. */\r
506                 XTmrCtr_SetResetValue( &xTimer0Instance, ucTimerCounterNumber, ulCounterValue );\r
507 \r
508                 /* Enable the interrupts.  Auto-reload mode is used to generate a\r
509                 periodic tick.  Note that interrupts are disabled when this function is\r
510                 called, so interrupts will not start to be processed until the first\r
511                 task has started to run. */\r
512                 XTmrCtr_SetOptions( &xTimer0Instance, ucTimerCounterNumber, ( XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION | XTC_DOWN_COUNT_OPTION ) );\r
513 \r
514                 /* Start the timer. */\r
515                 XTmrCtr_Start( &xTimer0Instance, ucTimerCounterNumber );\r
516         }\r
517 \r
518         /* Sanity check that the function executed as expected. */\r
519         configASSERT( ( xStatus == pdPASS ) );\r
520 }\r
521 /*-----------------------------------------------------------*/\r
522 \r
523 /* This is an application defined callback function used to clear whichever\r
524 interrupt was installed by the the vApplicationSetupTimerInterrupt() callback\r
525 function - in this case the interrupt generated by the AXI timer.  It is\r
526 provided as an application callback because the kernel will run on lots of\r
527 different MicroBlaze and FPGA configurations - not all of which will have the\r
528 same timer peripherals defined or available.  This example uses the AXI Timer 0.\r
529 If that is available on your hardware platform then this example callback\r
530 implementation should not require modification provided the example definition\r
531 of vApplicationSetupTimerInterrupt() is also not modified. */\r
532 void vApplicationClearTimerInterrupt( void )\r
533 {\r
534 unsigned long ulCSR;\r
535 \r
536         /* Clear the timer interrupt */\r
537         ulCSR = XTmrCtr_GetControlStatusReg( XPAR_AXI_TIMER_0_BASEADDR, 0 );\r
538         XTmrCtr_SetControlStatusReg( XPAR_AXI_TIMER_0_BASEADDR, 0, ulCSR );\r
539 }\r
540 /*-----------------------------------------------------------*/\r
541 \r
542 /* These functions are not used by the Blinky build configuration.  However,\r
543 they need to be defined because the Blinky and Full build configurations share\r
544 a FreeRTOSConifg.h configuration file. */\r
545 void vMainConfigureTimerForRunTimeStats( void ) {}\r
546 unsigned long ulMainGetRunTimeCounterValue( void ) { return 1; }\r