]> git.sur5r.net Git - freertos/blob - FreeRTOS/Demo/MicroBlaze_Spartan-6_EthernetLite/SDKProjects/RTOSDemo/main-blinky.c
Minor updates and change version number for V7.5.0 release.
[freertos] / FreeRTOS / Demo / MicroBlaze_Spartan-6_EthernetLite / SDKProjects / RTOSDemo / main-blinky.c
1 /*\r
2     FreeRTOS V7.5.0 - Copyright (C) 2013 Real Time Engineers Ltd.\r
3 \r
4     VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.\r
5 \r
6     ***************************************************************************\r
7      *                                                                       *\r
8      *    FreeRTOS provides completely free yet professionally developed,    *\r
9      *    robust, strictly quality controlled, supported, and cross          *\r
10      *    platform software that has become a de facto standard.             *\r
11      *                                                                       *\r
12      *    Help yourself get started quickly and support the FreeRTOS         *\r
13      *    project by purchasing a FreeRTOS tutorial book, reference          *\r
14      *    manual, or both from: http://www.FreeRTOS.org/Documentation        *\r
15      *                                                                       *\r
16      *    Thank you!                                                         *\r
17      *                                                                       *\r
18     ***************************************************************************\r
19 \r
20     This file is part of the FreeRTOS distribution.\r
21 \r
22     FreeRTOS is free software; you can redistribute it and/or modify it under\r
23     the terms of the GNU General Public License (version 2) as published by the\r
24     Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.\r
25 \r
26     >>! NOTE: The modification to the GPL is included to allow you to distribute\r
27     >>! a combined work that includes FreeRTOS without being obliged to provide\r
28     >>! the source code for proprietary components outside of the FreeRTOS\r
29     >>! kernel.\r
30 \r
31     FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY\r
32     WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\r
33     FOR A PARTICULAR PURPOSE.  Full license text is available from the following\r
34     link: http://www.freertos.org/a00114.html\r
35 \r
36     1 tab == 4 spaces!\r
37 \r
38     ***************************************************************************\r
39      *                                                                       *\r
40      *    Having a problem?  Start by reading the FAQ "My application does   *\r
41      *    not run, what could be wrong?"                                     *\r
42      *                                                                       *\r
43      *    http://www.FreeRTOS.org/FAQHelp.html                               *\r
44      *                                                                       *\r
45     ***************************************************************************\r
46 \r
47     http://www.FreeRTOS.org - Documentation, books, training, latest versions,\r
48     license and Real Time Engineers Ltd. contact details.\r
49 \r
50     http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,\r
51     including FreeRTOS+Trace - an indispensable productivity tool, a DOS\r
52     compatible FAT file system, and our tiny thread aware UDP/IP stack.\r
53 \r
54     http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High\r
55     Integrity Systems to sell under the OpenRTOS brand.  Low cost OpenRTOS\r
56     licenses offer ticketed support, indemnification and middleware.\r
57 \r
58     http://www.SafeRTOS.com - High Integrity Systems also provide a safety\r
59     engineered and independently SIL3 certified version for use in safety and\r
60     mission critical applications that require provable dependability.\r
61 \r
62     1 tab == 4 spaces!\r
63 */\r
64 \r
65 /*\r
66  * main-blinky.c is included when the "Blinky" build configuration is used.\r
67  * main-full.c is included when the "Full" build configuration is used.\r
68  *\r
69  * main-blinky.c (this file) defines a very simple demo that creates two tasks,\r
70  * one queue, and one timer.  It also demonstrates how MicroBlaze interrupts\r
71  * can interact with FreeRTOS tasks/timers.\r
72  *\r
73  * This simple demo project was developed and tested on the Spartan-6 SP605 \r
74  * development board, using the hardware configuration found in the hardware\r
75  * project that is already included in the Eclipse project.\r
76  *\r
77  * The idle hook function:\r
78  * The idle hook function demonstrates how to query the amount of FreeRTOS heap\r
79  * space that is remaining (see vApplicationIdleHook() defined in this file).\r
80  *\r
81  * The main() Function:\r
82  * main() creates one software timer, one queue, and two tasks.  It then starts\r
83  * the scheduler.\r
84  *\r
85  * The Queue Send Task:\r
86  * The queue send task is implemented by the prvQueueSendTask() function in\r
87  * this file.  prvQueueSendTask() sits in a loop that causes it to repeatedly\r
88  * block for 200 milliseconds, before sending the value 100 to the queue that\r
89  * was created within main().  Once the value is sent, the task loops back\r
90  * around to block for another 200 milliseconds.\r
91  *\r
92  * The Queue Receive Task:\r
93  * The queue receive task is implemented by the prvQueueReceiveTask() function\r
94  * in this file.  prvQueueReceiveTask() sits in a loop that causes it to\r
95  * repeatedly attempt to read data from the queue that was created within\r
96  * main().  When data is received, the task checks the value of the data, and\r
97  * if the value equals the expected 100, toggles an LED.  The 'block time' \r
98  * parameter passed to the queue receive function specifies that the task\r
99  * should be held in the Blocked state indefinitely to wait for data to be\r
100  * available on the queue.  The queue receive task will only leave the Blocked\r
101  * state when the queue send task writes to the queue.  As the queue send task\r
102  * writes to the queue every 200 milliseconds, the queue receive task leaves\r
103  * the Blocked state every 200 milliseconds, and therefore toggles the LED\r
104  * every 200 milliseconds.\r
105  *\r
106  * The LED Software Timer and the Button Interrupt:\r
107  * The user buttons are configured to generate an interrupt each time one is\r
108  * pressed.  The interrupt service routine switches an LED on, and resets the\r
109  * LED software timer.  The LED timer has a 5000 millisecond (5 second) period,\r
110  * and uses a callback function that is defined to just turn the LED off again.\r
111  * Therefore, pressing the user button will turn the LED on, and the LED will\r
112  * remain on until a full five seconds pass without the button being pressed.\r
113  */\r
114 \r
115 /* Kernel includes. */\r
116 #include "FreeRTOS.h"\r
117 #include "task.h"\r
118 #include "queue.h"\r
119 #include "timers.h"\r
120 \r
121 /* BSP includes. */\r
122 #include "xtmrctr.h"\r
123 #include "xgpio.h"\r
124 \r
125 /* Priorities at which the tasks are created. */\r
126 #define mainQUEUE_RECEIVE_TASK_PRIORITY         ( tskIDLE_PRIORITY + 2 )\r
127 #define mainQUEUE_SEND_TASK_PRIORITY            ( tskIDLE_PRIORITY + 1 )\r
128 \r
129 /* The rate at which data is sent to the queue, specified in milliseconds, and\r
130 converted to ticks using the portTICK_RATE_MS constant. */\r
131 #define mainQUEUE_SEND_FREQUENCY_MS                     ( 200 / portTICK_RATE_MS )\r
132 \r
133 /* The number of items the queue can hold.  This is 1 as the receive task\r
134 will remove items as they are added because it has the higher priority, meaning \r
135 the send task should always find the queue empty. */\r
136 #define mainQUEUE_LENGTH                                        ( 1 )\r
137 \r
138 /* The LED toggled by the queue receive task. */\r
139 #define mainTASK_CONTROLLED_LED                         0x01UL\r
140 \r
141 /* The LED turned on by the button interrupt, and turned off by the LED timer. */\r
142 #define mainTIMER_CONTROLLED_LED                        0x02UL\r
143 \r
144 /* A block time of 0 simply means, "don't block". */\r
145 #define mainDONT_BLOCK                                          ( portTickType ) 0\r
146 \r
147 /*-----------------------------------------------------------*/\r
148 \r
149 /*\r
150  * Setup the NVIC, LED outputs, and button inputs.\r
151  */\r
152 static void prvSetupHardware( void );\r
153 \r
154 /*\r
155  * The tasks as described in the comments at the top of this file.\r
156  */\r
157 static void prvQueueReceiveTask( void *pvParameters );\r
158 static void prvQueueSendTask( void *pvParameters );\r
159 \r
160 /*\r
161  * The LED timer callback function.  This does nothing but switch off the\r
162  * LED defined by the mainTIMER_CONTROLLED_LED constant.\r
163  */\r
164 static void vLEDTimerCallback( xTimerHandle xTimer );\r
165 \r
166 /* \r
167  * The handler executed each time a button interrupt is generated.  This ensures\r
168  * the LED defined by mainTIMER_CONTROLLED_LED is on, and resets the timer so\r
169  * the timer will not turn the LED off for a full 5 seconds after the button\r
170  * interrupt occurred.\r
171  */\r
172 static void prvButtonInputInterruptHandler( void *pvUnused );\r
173 \r
174 /*-----------------------------------------------------------*/\r
175 \r
176 /* The queue used by the queue send and queue receive tasks. */\r
177 static xQueueHandle xQueue = NULL;\r
178 \r
179 /* The LED software timer.  This uses vLEDTimerCallback() as its callback\r
180 function. */\r
181 static xTimerHandle xLEDTimer = NULL;\r
182 \r
183 /* Maintains the current LED output state. */\r
184 static volatile unsigned char ucGPIOState = 0U;\r
185 \r
186 /*-----------------------------------------------------------*/\r
187 \r
188 /* Structures that hold the state of the various peripherals used by this demo.\r
189 These are used by the Xilinx peripheral driver API functions. */\r
190 static XTmrCtr xTimer0Instance;\r
191 static XGpio xOutputGPIOInstance, xInputGPIOInstance;\r
192 \r
193 /* Constants required by the Xilinx peripheral driver API functions that are\r
194 relevant to the particular hardware set up. */\r
195 static const unsigned long ulGPIOOutputChannel = 1UL, ulGPIOInputChannel = 1UL;\r
196 \r
197 /*-----------------------------------------------------------*/\r
198 \r
199 int main( void )\r
200 {\r
201         /* *************************************************************************\r
202         This is a very simple project suitable for getting started with FreeRTOS.  \r
203         If you would prefer a more complex project that demonstrates a lot more \r
204         features and tests, then select the 'Full' build configuration within the \r
205         SDK Eclipse IDE. \r
206         ***************************************************************************/\r
207 \r
208         /* Configure the interrupt controller, LED outputs and button inputs. */\r
209         prvSetupHardware();\r
210 \r
211         /* Create the queue used by the queue send and queue receive tasks as\r
212         described in the comments at the top of this file. */\r
213         xQueue = xQueueCreate( mainQUEUE_LENGTH, sizeof( unsigned long ) );\r
214 \r
215         /* Sanity check that the queue was created. */\r
216         configASSERT( xQueue );\r
217 \r
218         /* Start the two tasks as described in the comments at the top of this \r
219         file. */\r
220         xTaskCreate( prvQueueReceiveTask, ( signed char * ) "Rx", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_RECEIVE_TASK_PRIORITY, NULL );\r
221         xTaskCreate( prvQueueSendTask, ( signed char * ) "TX", configMINIMAL_STACK_SIZE, NULL, mainQUEUE_SEND_TASK_PRIORITY, NULL );\r
222 \r
223         /* Create the software timer that is responsible for turning off the LED\r
224         if the button is not pushed within 5000ms, as described at the top of\r
225         this file.  The timer is not actually started until a button interrupt is\r
226         pushed, as it is not until that point that the LED is turned on. */\r
227         xLEDTimer = xTimerCreate(       ( const signed char * ) "LEDTimer", /* A text name, purely to help debugging. */\r
228                                                                 ( 5000 / portTICK_RATE_MS ),            /* The timer period, in this case 5000ms (5s). */\r
229                                                                 pdFALSE,                                                        /* This is a one shot timer, so xAutoReload is set to pdFALSE. */\r
230                                                                 ( void * ) 0,                                           /* The ID is not used, so can be set to anything. */\r
231                                                                 vLEDTimerCallback                                       /* The callback function that switches the LED off. */\r
232                                                         );\r
233 \r
234         /* Start the tasks and timer running. */\r
235         vTaskStartScheduler();\r
236 \r
237         /* If all is well, the scheduler will now be running, and the following line\r
238         will never be reached.  If the following line does execute, then there was\r
239         insufficient FreeRTOS heap memory available for the idle and/or timer tasks\r
240         to be created.  See the memory management section on the FreeRTOS web site\r
241         for more details. */\r
242         for( ;; );\r
243 }\r
244 /*-----------------------------------------------------------*/\r
245 \r
246 /* The callback is executed when the LED timer expires. */\r
247 static void vLEDTimerCallback( xTimerHandle xTimer )\r
248 {\r
249         /* The timer has expired - so no button pushes have occurred in the last\r
250         five seconds - turn the LED off.  NOTE - accessing the LED port should use\r
251         a critical section because it is accessed from multiple tasks, and the\r
252         button interrupt - in this trivial case, for simplicity, the critical\r
253         section is omitted. */\r
254         ucGPIOState &= ~mainTIMER_CONTROLLED_LED;\r
255         XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
256 }\r
257 /*-----------------------------------------------------------*/\r
258 \r
259 /* The ISR is executed when the user button is pushed. */\r
260 static void prvButtonInputInterruptHandler( void *pvUnused )\r
261 {\r
262 long lHigherPriorityTaskWoken = pdFALSE;\r
263 \r
264         /* The button was pushed, so ensure the LED is on before resetting the\r
265         LED timer.  The LED timer will turn the LED off if the button is not\r
266         pushed within 5000ms. */\r
267         ucGPIOState |= mainTIMER_CONTROLLED_LED;\r
268         XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
269 \r
270         /* Ensure only the ISR safe reset API function is used, as this is executed\r
271         in an interrupt context. */\r
272         xTimerResetFromISR( xLEDTimer, &lHigherPriorityTaskWoken );\r
273 \r
274         /* Clear the interrupt before leaving. */\r
275         XGpio_InterruptClear( &xInputGPIOInstance, ulGPIOInputChannel );\r
276 \r
277         /* If calling xTimerResetFromISR() caused a task (in this case the timer\r
278         service/daemon task) to unblock, and the unblocked task has a priority\r
279         higher than or equal to the task that was interrupted, then\r
280         lHigherPriorityTaskWoken will now be set to pdTRUE, and calling\r
281         portEND_SWITCHING_ISR() will ensure the unblocked task runs next. */\r
282         portYIELD_FROM_ISR( lHigherPriorityTaskWoken );\r
283 }\r
284 /*-----------------------------------------------------------*/\r
285 \r
286 static void prvQueueSendTask( void *pvParameters )\r
287 {\r
288 portTickType xNextWakeTime;\r
289 const unsigned long ulValueToSend = 100UL;\r
290 \r
291         /* Initialise xNextWakeTime - this only needs to be done once. */\r
292         xNextWakeTime = xTaskGetTickCount();\r
293 \r
294         for( ;; )\r
295         {\r
296                 /* Place this task in the blocked state until it is time to run again.\r
297                 The block time is specified in ticks, the constant used converts ticks\r
298                 to ms.  While in the Blocked state this task will not consume any CPU\r
299                 time. */\r
300                 vTaskDelayUntil( &xNextWakeTime, mainQUEUE_SEND_FREQUENCY_MS );\r
301 \r
302                 /* Send to the queue - causing the queue receive task to unblock and\r
303                 toggle an LED.  0 is used as the block time so the sending operation\r
304                 will not block - it shouldn't need to block as the queue should always\r
305                 be empty at this point in the code. */\r
306                 xQueueSend( xQueue, &ulValueToSend, mainDONT_BLOCK );\r
307         }\r
308 }\r
309 /*-----------------------------------------------------------*/\r
310 \r
311 static void prvQueueReceiveTask( void *pvParameters )\r
312 {\r
313 unsigned long ulReceivedValue;\r
314 \r
315         for( ;; )\r
316         {\r
317                 /* Wait until something arrives in the queue - this task will block\r
318                 indefinitely provided INCLUDE_vTaskSuspend is set to 1 in\r
319                 FreeRTOSConfig.h. */\r
320                 xQueueReceive( xQueue, &ulReceivedValue, portMAX_DELAY );\r
321 \r
322                 /*  To get here something must have been received from the queue, but\r
323                 is it the expected value?  If it is, toggle the green LED. */\r
324                 if( ulReceivedValue == 100UL )\r
325                 {\r
326                         /* NOTE - accessing the LED port should use a critical section\r
327                         because it is accessed from multiple tasks, and the button interrupt\r
328                         - in this trivial case, for simplicity, the critical section is\r
329                         omitted. */\r
330                         if( ( ucGPIOState & mainTASK_CONTROLLED_LED ) != 0 )\r
331                         {\r
332                                 ucGPIOState &= ~mainTASK_CONTROLLED_LED;\r
333                         }\r
334                         else\r
335                         {\r
336                                 ucGPIOState |= mainTASK_CONTROLLED_LED;\r
337                         }\r
338 \r
339                         XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
340                 }\r
341         }\r
342 }\r
343 /*-----------------------------------------------------------*/\r
344 \r
345 static void prvSetupHardware( void )\r
346 {\r
347 portBASE_TYPE xStatus;\r
348 const unsigned char ucSetToOutput = 0U;\r
349 \r
350         /* Initialize the GPIO for the LEDs. */\r
351         xStatus = XGpio_Initialize( &xOutputGPIOInstance, XPAR_LEDS_4BITS_DEVICE_ID );\r
352         if( xStatus == XST_SUCCESS )\r
353         {\r
354                 /* All bits on this channel are going to be outputs (LEDs). */\r
355                 XGpio_SetDataDirection( &xOutputGPIOInstance, ulGPIOOutputChannel, ucSetToOutput );\r
356 \r
357                 /* Start with all LEDs off. */\r
358                 ucGPIOState = 0U;\r
359                 XGpio_DiscreteWrite( &xOutputGPIOInstance, ulGPIOOutputChannel, ucGPIOState );\r
360         }\r
361 \r
362         /* Initialise the GPIO for the button inputs. */\r
363         if( xStatus == XST_SUCCESS )\r
364         {\r
365                 xStatus = XGpio_Initialize( &xInputGPIOInstance, XPAR_PUSH_BUTTONS_4BITS_DEVICE_ID );\r
366         }\r
367 \r
368         if( xStatus == XST_SUCCESS )\r
369         {\r
370                 /* Install the handler defined in this task for the button input. \r
371                 *NOTE* The FreeRTOS defined xPortInstallInterruptHandler() API function\r
372                 must be used for this purpose. */\r
373                 xStatus = xPortInstallInterruptHandler( XPAR_MICROBLAZE_0_INTC_PUSH_BUTTONS_4BITS_IP2INTC_IRPT_INTR, prvButtonInputInterruptHandler, NULL );\r
374 \r
375                 if( xStatus == pdPASS )\r
376                 {\r
377                         /* Set buttons to input. */\r
378                         XGpio_SetDataDirection( &xInputGPIOInstance, ulGPIOInputChannel, ~( ucSetToOutput ) );\r
379                         \r
380                         /* Enable the button input interrupts in the interrupt controller.\r
381                         *NOTE* The vPortEnableInterrupt() API function must be used for this\r
382                         purpose. */\r
383                         vPortEnableInterrupt( XPAR_MICROBLAZE_0_INTC_PUSH_BUTTONS_4BITS_IP2INTC_IRPT_INTR );\r
384 \r
385                         /* Enable GPIO channel interrupts. */\r
386                         XGpio_InterruptEnable( &xInputGPIOInstance, ulGPIOInputChannel );\r
387                         XGpio_InterruptGlobalEnable( &xInputGPIOInstance );\r
388                 }\r
389         }\r
390 \r
391         configASSERT( ( xStatus == pdPASS ) );\r
392 }\r
393 /*-----------------------------------------------------------*/\r
394 \r
395 void vApplicationMallocFailedHook( void )\r
396 {\r
397         /* vApplicationMallocFailedHook() will only be called if\r
398         configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook\r
399         function that will get called if a call to pvPortMalloc() fails. \r
400         pvPortMalloc() is called internally by the kernel whenever a task, queue or\r
401         semaphore is created.  It is also called by various parts of the demo\r
402         application.  If heap_1.c or heap_2.c are used, then the size of the heap\r
403         available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in\r
404         FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used\r
405         to query the size of free heap space that remains (although it does not\r
406         provide information on how the remaining heap might be fragmented). */\r
407         taskDISABLE_INTERRUPTS();\r
408         for( ;; );\r
409 }\r
410 /*-----------------------------------------------------------*/\r
411 \r
412 void vApplicationStackOverflowHook( xTaskHandle pxTask, signed char *pcTaskName )\r
413 {\r
414         ( void ) pcTaskName;\r
415         ( void ) pxTask;\r
416 \r
417         /* vApplicationStackOverflowHook() will only be called if\r
418         configCHECK_FOR_STACK_OVERFLOW is set to either 1 or 2.  The handle and name\r
419         of the offending task will be passed into the hook function via its \r
420         parameters.  However, when a stack has overflowed, it is possible that the\r
421         parameters will have been corrupted, in which case the pxCurrentTCB variable\r
422         can be inspected directly. */\r
423         taskDISABLE_INTERRUPTS();\r
424         for( ;; );\r
425 }\r
426 /*-----------------------------------------------------------*/\r
427 \r
428 void vApplicationIdleHook( void )\r
429 {\r
430 #ifdef EXAMPLE_CODE_ONLY\r
431 \r
432         The following code can only be included if heap_1.c or heap_2.c is used in\r
433         the project.  By default, heap_3.c is used, so the example code is\r
434         excluded.  See http://www.freertos.org/a00111.html for more information on\r
435         memory management options.\r
436 \r
437         volatile size_t xFreeHeapSpace;\r
438 \r
439                 /* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set\r
440                 to 1 in FreeRTOSConfig.h.  It will be called on each iteration of the idle\r
441                 task.  It is essential that code added to this hook function never attempts\r
442                 to block in any way (for example, call xQueueReceive() with a block time\r
443                 specified, or call vTaskDelay()).  If the application makes use of the\r
444                 vTaskDelete() API function (as this demo application does) then it is also\r
445                 important that vApplicationIdleHook() is permitted to return to its calling\r
446                 function, because it is the responsibility of the idle task to clean up\r
447                 memory allocated by the kernel to any task that has since been deleted. */\r
448 \r
449                 /* This implementation of vApplicationIdleHook() simply demonstrates how\r
450                 the xPortGetFreeHeapSize() function can be used. */\r
451                 xFreeHeapSpace = xPortGetFreeHeapSize();\r
452 \r
453                 if( xFreeHeapSpace > 100 )\r
454                 {\r
455                         /* By now, the kernel has allocated everything it is going to, so\r
456                         if there is a lot of heap remaining unallocated then\r
457                         the value of configTOTAL_HEAP_SIZE in FreeRTOSConfig.h can be\r
458                         reduced accordingly. */\r
459                 }\r
460 #endif\r
461 }\r
462 /*-----------------------------------------------------------*/\r
463 \r
464 /* This is an application defined callback function used to install the tick\r
465 interrupt handler.  It is provided as an application callback because the kernel\r
466 will run on lots of different MicroBlaze and FPGA configurations - not all of\r
467 which will have the same timer peripherals defined or available.  This example\r
468 uses the AXI Timer 0.  If that is available on your hardware platform then this\r
469 example callback implementation should not require modification.   The name of\r
470 the interrupt handler that should be installed is vPortTickISR(), which the \r
471 function below declares as an extern. */\r
472 void vApplicationSetupTimerInterrupt( void )\r
473 {\r
474 portBASE_TYPE xStatus;\r
475 const unsigned char ucTimerCounterNumber = ( unsigned char ) 0U;\r
476 const unsigned long ulCounterValue = ( ( XPAR_AXI_TIMER_0_CLOCK_FREQ_HZ / configTICK_RATE_HZ ) - 1UL );\r
477 extern void vPortTickISR( void *pvUnused );\r
478 \r
479         /* Initialise the timer/counter. */\r
480         xStatus = XTmrCtr_Initialize( &xTimer0Instance, XPAR_AXI_TIMER_0_DEVICE_ID );\r
481 \r
482         if( xStatus == XST_SUCCESS )\r
483         {\r
484                 /* Install the tick interrupt handler as the timer ISR. \r
485                 *NOTE* The xPortInstallInterruptHandler() API function must be used for\r
486                 this purpose. */\r
487                 xStatus = xPortInstallInterruptHandler( XPAR_INTC_0_TMRCTR_0_VEC_ID, vPortTickISR, NULL );\r
488         }\r
489 \r
490         if( xStatus == pdPASS )\r
491         {\r
492                 /* Enable the timer interrupt in the interrupt controller.\r
493                 *NOTE* The vPortEnableInterrupt() API function must be used for this\r
494                 purpose. */\r
495                 vPortEnableInterrupt( XPAR_INTC_0_TMRCTR_0_VEC_ID );\r
496 \r
497                 /* Configure the timer interrupt handler. */\r
498                 XTmrCtr_SetHandler( &xTimer0Instance, ( void * ) vPortTickISR, NULL );\r
499 \r
500                 /* Set the correct period for the timer. */\r
501                 XTmrCtr_SetResetValue( &xTimer0Instance, ucTimerCounterNumber, ulCounterValue );\r
502 \r
503                 /* Enable the interrupts.  Auto-reload mode is used to generate a\r
504                 periodic tick.  Note that interrupts are disabled when this function is\r
505                 called, so interrupts will not start to be processed until the first\r
506                 task has started to run. */\r
507                 XTmrCtr_SetOptions( &xTimer0Instance, ucTimerCounterNumber, ( XTC_INT_MODE_OPTION | XTC_AUTO_RELOAD_OPTION | XTC_DOWN_COUNT_OPTION ) );\r
508 \r
509                 /* Start the timer. */\r
510                 XTmrCtr_Start( &xTimer0Instance, ucTimerCounterNumber );\r
511         }\r
512 \r
513         /* Sanity check that the function executed as expected. */\r
514         configASSERT( ( xStatus == pdPASS ) );\r
515 }\r
516 /*-----------------------------------------------------------*/\r
517 \r
518 /* This is an application defined callback function used to clear whichever\r
519 interrupt was installed by the the vApplicationSetupTimerInterrupt() callback\r
520 function - in this case the interrupt generated by the AXI timer.  It is \r
521 provided as an application callback because the kernel will run on lots of \r
522 different MicroBlaze and FPGA configurations - not all of which will have the \r
523 same timer peripherals defined or available.  This example uses the AXI Timer 0.  \r
524 If that is available on your hardware platform then this example callback \r
525 implementation should not require modification provided the example definition\r
526 of vApplicationSetupTimerInterrupt() is also not modified. */\r
527 void vApplicationClearTimerInterrupt( void )\r
528 {\r
529 unsigned long ulCSR;\r
530 \r
531         /* Clear the timer interrupt */\r
532         ulCSR = XTmrCtr_GetControlStatusReg( XPAR_AXI_TIMER_0_BASEADDR, 0 );\r
533         XTmrCtr_SetControlStatusReg( XPAR_AXI_TIMER_0_BASEADDR, 0, ulCSR );\r
534 }\r
535 /*-----------------------------------------------------------*/\r
536 \r
537 /* These functions are not used by the Blinky build configuration.  However,\r
538 they need to be defined because the Blinky and Full build configurations share\r
539 a FreeRTOSConifg.h configuration file. */\r
540 void vMainConfigureTimerForRunTimeStats( void ) {}\r
541 unsigned long ulMainGetRunTimeCounterValue( void ) { return 1; }\r