2 FreeRTOS V9.0.0 - Copyright (C) 2016 Real Time Engineers Ltd.
\r
5 VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
\r
7 This file is part of the FreeRTOS distribution.
\r
9 FreeRTOS is free software; you can redistribute it and/or modify it under
\r
10 the terms of the GNU General Public License (version 2) as published by the
\r
11 Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
\r
13 ***************************************************************************
\r
14 >>! NOTE: The modification to the GPL is included to allow you to !<<
\r
15 >>! distribute a combined work that includes FreeRTOS without being !<<
\r
16 >>! obliged to provide the source code for proprietary components !<<
\r
17 >>! outside of the FreeRTOS kernel. !<<
\r
18 ***************************************************************************
\r
20 FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
\r
21 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
\r
22 FOR A PARTICULAR PURPOSE. Full license text is available on the following
\r
23 link: http://www.freertos.org/a00114.html
\r
25 ***************************************************************************
\r
27 * FreeRTOS provides completely free yet professionally developed, *
\r
28 * robust, strictly quality controlled, supported, and cross *
\r
29 * platform software that is more than just the market leader, it *
\r
30 * is the industry's de facto standard. *
\r
32 * Help yourself get started quickly while simultaneously helping *
\r
33 * to support the FreeRTOS project by purchasing a FreeRTOS *
\r
34 * tutorial book, reference manual, or both: *
\r
35 * http://www.FreeRTOS.org/Documentation *
\r
37 ***************************************************************************
\r
39 http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
\r
40 the FAQ page "My application does not run, what could be wrong?". Have you
\r
41 defined configASSERT()?
\r
43 http://www.FreeRTOS.org/support - In return for receiving this top quality
\r
44 embedded software for free we request you assist our global community by
\r
45 participating in the support forum.
\r
47 http://www.FreeRTOS.org/training - Investing in training allows your team to
\r
48 be as productive as possible as early as possible. Now you can receive
\r
49 FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
\r
50 Ltd, and the world's leading authority on the world's leading RTOS.
\r
52 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
\r
53 including FreeRTOS+Trace - an indispensable productivity tool, a DOS
\r
54 compatible FAT file system, and our tiny thread aware UDP/IP stack.
\r
56 http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
\r
57 Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
\r
59 http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
\r
60 Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
\r
61 licenses offer ticketed support, indemnification and commercial middleware.
\r
63 http://www.SafeRTOS.com - High Integrity Systems also provide a safety
\r
64 engineered and independently SIL3 certified version for use in safety and
\r
65 mission critical applications that require provable dependability.
\r
70 /* Standard includes. */
\r
74 /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
\r
75 all the API functions to use the MPU wrappers. That should only be done when
\r
76 task.h is included from an application file. */
\r
77 #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
\r
79 /* FreeRTOS includes. */
\r
80 #include "FreeRTOS.h"
\r
83 #include "StackMacros.h"
\r
85 /* Lint e961 and e750 are suppressed as a MISRA exception justified because the
\r
86 MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
\r
87 header files above, but not in this file, in order to generate the correct
\r
88 privileged Vs unprivileged linkage and placement. */
\r
89 #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
\r
91 /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
\r
92 functions but without including stdio.h here. */
\r
93 #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
\r
94 /* At the bottom of this file are two optional functions that can be used
\r
95 to generate human readable text from the raw data generated by the
\r
96 uxTaskGetSystemState() function. Note the formatting functions are provided
\r
97 for convenience only, and are NOT considered part of the kernel. */
\r
99 #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
\r
101 #if( configUSE_PREEMPTION == 0 )
\r
102 /* If the cooperative scheduler is being used then a yield should not be
\r
103 performed just because a higher priority task has been woken. */
\r
104 #define taskYIELD_IF_USING_PREEMPTION()
\r
106 #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
\r
109 /* Values that can be assigned to the ucNotifyState member of the TCB. */
\r
110 #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 )
\r
111 #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 )
\r
112 #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 )
\r
115 * The value used to fill the stack of a task when the task is created. This
\r
116 * is used purely for checking the high water mark for tasks.
\r
118 #define tskSTACK_FILL_BYTE ( 0xa5U )
\r
120 /* Sometimes the FreeRTOSConfig.h settings only allow a task to be created using
\r
121 dynamically allocated RAM, in which case when any task is deleted it is known
\r
122 that both the task's stack and TCB need to be freed. Sometimes the
\r
123 FreeRTOSConfig.h settings only allow a task to be created using statically
\r
124 allocated RAM, in which case when any task is deleted it is known that neither
\r
125 the task's stack or TCB should be freed. Sometimes the FreeRTOSConfig.h
\r
126 settings allow a task to be created using either statically or dynamically
\r
127 allocated RAM, in which case a member of the TCB is used to record whether the
\r
128 stack and/or TCB were allocated statically or dynamically, so when a task is
\r
129 deleted the RAM that was allocated dynamically is freed again and no attempt is
\r
130 made to free the RAM that was allocated statically.
\r
131 tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE is only true if it is possible for a
\r
132 task to be created using either statically or dynamically allocated RAM. Note
\r
133 that if portUSING_MPU_WRAPPERS is 1 then a protected task can be created with
\r
134 a statically allocated stack and a dynamically allocated TCB. */
\r
135 #define tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE ( ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) || ( portUSING_MPU_WRAPPERS == 1 ) )
\r
136 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 )
\r
137 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 )
\r
138 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 )
\r
141 * Macros used by vListTask to indicate which state a task is in.
\r
143 #define tskBLOCKED_CHAR ( 'B' )
\r
144 #define tskREADY_CHAR ( 'R' )
\r
145 #define tskDELETED_CHAR ( 'D' )
\r
146 #define tskSUSPENDED_CHAR ( 'S' )
\r
149 * Some kernel aware debuggers require the data the debugger needs access to be
\r
150 * global, rather than file scope.
\r
152 #ifdef portREMOVE_STATIC_QUALIFIER
\r
156 #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
158 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
\r
159 performed in a generic way that is not optimised to any particular
\r
160 microcontroller architecture. */
\r
162 /* uxTopReadyPriority holds the priority of the highest priority ready
\r
164 #define taskRECORD_READY_PRIORITY( uxPriority ) \
\r
166 if( ( uxPriority ) > uxTopReadyPriority ) \
\r
168 uxTopReadyPriority = ( uxPriority ); \
\r
170 } /* taskRECORD_READY_PRIORITY */
\r
172 /*-----------------------------------------------------------*/
\r
174 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
176 UBaseType_t uxTopPriority = uxTopReadyPriority; \
\r
178 /* Find the highest priority queue that contains ready tasks. */ \
\r
179 while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
\r
181 configASSERT( uxTopPriority ); \
\r
185 /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
\r
186 the same priority get an equal share of the processor time. */ \
\r
187 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
188 uxTopReadyPriority = uxTopPriority; \
\r
189 } /* taskSELECT_HIGHEST_PRIORITY_TASK */
\r
191 /*-----------------------------------------------------------*/
\r
193 /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
\r
194 they are only required when a port optimised method of task selection is
\r
196 #define taskRESET_READY_PRIORITY( uxPriority )
\r
197 #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
199 #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
201 /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
\r
202 performed in a way that is tailored to the particular microcontroller
\r
203 architecture being used. */
\r
205 /* A port optimised version is provided. Call the port defined macros. */
\r
206 #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
\r
208 /*-----------------------------------------------------------*/
\r
210 #define taskSELECT_HIGHEST_PRIORITY_TASK() \
\r
212 UBaseType_t uxTopPriority; \
\r
214 /* Find the highest priority list that contains ready tasks. */ \
\r
215 portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
\r
216 configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
\r
217 listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
\r
218 } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
\r
220 /*-----------------------------------------------------------*/
\r
222 /* A port optimised version is provided, call it only if the TCB being reset
\r
223 is being referenced from a ready list. If it is referenced from a delayed
\r
224 or suspended list then it won't be in a ready list. */
\r
225 #define taskRESET_READY_PRIORITY( uxPriority ) \
\r
227 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
\r
229 portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
\r
233 #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
\r
235 /*-----------------------------------------------------------*/
\r
237 /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
\r
238 count overflows. */
\r
239 #define taskSWITCH_DELAYED_LISTS() \
\r
243 /* The delayed tasks list should be empty when the lists are switched. */ \
\r
244 configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
\r
246 pxTemp = pxDelayedTaskList; \
\r
247 pxDelayedTaskList = pxOverflowDelayedTaskList; \
\r
248 pxOverflowDelayedTaskList = pxTemp; \
\r
249 xNumOfOverflows++; \
\r
250 prvResetNextTaskUnblockTime(); \
\r
253 /*-----------------------------------------------------------*/
\r
256 * Place the task represented by pxTCB into the appropriate ready list for
\r
257 * the task. It is inserted at the end of the list.
\r
259 #define prvAddTaskToReadyList( pxTCB ) \
\r
260 traceMOVED_TASK_TO_READY_STATE( pxTCB ); \
\r
261 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
\r
262 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
\r
263 tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
\r
264 /*-----------------------------------------------------------*/
\r
267 * Several functions take an TaskHandle_t parameter that can optionally be NULL,
\r
268 * where NULL is used to indicate that the handle of the currently executing
\r
269 * task should be used in place of the parameter. This macro simply checks to
\r
270 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
\r
272 #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) )
\r
274 /* The item value of the event list item is normally used to hold the priority
\r
275 of the task to which it belongs (coded to allow it to be held in reverse
\r
276 priority order). However, it is occasionally borrowed for other purposes. It
\r
277 is important its value is not updated due to a task priority change while it is
\r
278 being used for another purpose. The following bit definition is used to inform
\r
279 the scheduler that the value should not be changed - in which case it is the
\r
280 responsibility of whichever module is using the value to ensure it gets set back
\r
281 to its original value when it is released. */
\r
282 #if( configUSE_16_BIT_TICKS == 1 )
\r
283 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
\r
285 #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
\r
289 * Task control block. A task control block (TCB) is allocated for each task,
\r
290 * and stores task state information, including a pointer to the task's context
\r
291 * (the task's run time environment, including register values)
\r
293 typedef struct tskTaskControlBlock
\r
295 volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
\r
297 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
298 xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
\r
301 ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
\r
302 ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
\r
303 UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
\r
304 StackType_t *pxStack; /*< Points to the start of the stack. */
\r
305 char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
307 #if ( portSTACK_GROWTH > 0 )
\r
308 StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */
\r
311 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
312 UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
\r
315 #if ( configUSE_TRACE_FACILITY == 1 )
\r
316 UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
\r
317 UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
\r
320 #if ( configUSE_MUTEXES == 1 )
\r
321 UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
\r
322 UBaseType_t uxMutexesHeld;
\r
325 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
326 TaskHookFunction_t pxTaskTag;
\r
329 #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
\r
330 void *pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
\r
333 #if( configGENERATE_RUN_TIME_STATS == 1 )
\r
334 uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
\r
337 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
338 /* Allocate a Newlib reent structure that is specific to this task.
\r
339 Note Newlib support has been included by popular demand, but is not
\r
340 used by the FreeRTOS maintainers themselves. FreeRTOS is not
\r
341 responsible for resulting newlib operation. User must be familiar with
\r
342 newlib and must provide system-wide implementations of the necessary
\r
343 stubs. Be warned that (at the time of writing) the current newlib design
\r
344 implements a system-wide malloc() that must be provided with locks. */
\r
345 struct _reent xNewLib_reent;
\r
348 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
349 volatile uint32_t ulNotifiedValue;
\r
350 volatile uint8_t ucNotifyState;
\r
353 /* See the comments above the definition of
\r
354 tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
\r
355 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
356 uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
\r
359 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
360 uint8_t ucDelayAborted;
\r
365 /* The old tskTCB name is maintained above then typedefed to the new TCB_t name
\r
366 below to enable the use of older kernel aware debuggers. */
\r
367 typedef tskTCB TCB_t;
\r
369 /*lint -e956 A manual analysis and inspection has been used to determine which
\r
370 static variables must be declared volatile. */
\r
372 PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
\r
374 /* Lists for ready and blocked tasks. --------------------*/
\r
375 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
\r
376 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
\r
377 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
\r
378 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
\r
379 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
\r
380 PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
\r
382 #if( INCLUDE_vTaskDelete == 1 )
\r
384 PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
\r
385 PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
\r
389 #if ( INCLUDE_vTaskSuspend == 1 )
\r
391 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
\r
395 /* Other file private variables. --------------------------------*/
\r
396 PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
\r
397 PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U;
\r
398 PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
\r
399 PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
\r
400 PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U;
\r
401 PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
\r
402 PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
\r
403 PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
\r
404 PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
\r
405 PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
\r
407 /* Context switches are held pending while the scheduler is suspended. Also,
\r
408 interrupts must not manipulate the xStateListItem of a TCB, or any of the
\r
409 lists the xStateListItem can be referenced from, if the scheduler is suspended.
\r
410 If an interrupt needs to unblock a task while the scheduler is suspended then it
\r
411 moves the task's event list item into the xPendingReadyList, ready for the
\r
412 kernel to move the task from the pending ready list into the real ready list
\r
413 when the scheduler is unsuspended. The pending ready list itself can only be
\r
414 accessed from a critical section. */
\r
415 PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
\r
417 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
419 PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
\r
420 PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
\r
426 /*-----------------------------------------------------------*/
\r
428 /* Callback function prototypes. --------------------------*/
\r
429 #if( configCHECK_FOR_STACK_OVERFLOW > 0 )
\r
430 extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
\r
433 #if( configUSE_TICK_HOOK > 0 )
\r
434 extern void vApplicationTickHook( void );
\r
437 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
438 extern void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize );
\r
441 /* File private functions. --------------------------------*/
\r
444 * Utility task that simply returns pdTRUE if the task referenced by xTask is
\r
445 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
\r
446 * is in any other state.
\r
448 #if ( INCLUDE_vTaskSuspend == 1 )
\r
449 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
\r
450 #endif /* INCLUDE_vTaskSuspend */
\r
453 * Utility to ready all the lists used by the scheduler. This is called
\r
454 * automatically upon the creation of the first task.
\r
456 static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
\r
459 * The idle task, which as all tasks is implemented as a never ending loop.
\r
460 * The idle task is automatically created and added to the ready lists upon
\r
461 * creation of the first user task.
\r
463 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
\r
464 * language extensions. The equivalent prototype for this function is:
\r
466 * void prvIdleTask( void *pvParameters );
\r
469 static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );
\r
472 * Utility to free all memory allocated by the scheduler to hold a TCB,
\r
473 * including the stack pointed to by the TCB.
\r
475 * This does not free memory allocated by the task itself (i.e. memory
\r
476 * allocated by calls to pvPortMalloc from within the tasks application code).
\r
478 #if ( INCLUDE_vTaskDelete == 1 )
\r
480 static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;
\r
485 * Used only by the idle task. This checks to see if anything has been placed
\r
486 * in the list of tasks waiting to be deleted. If so the task is cleaned up
\r
487 * and its TCB deleted.
\r
489 static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
\r
492 * The currently executing task is entering the Blocked state. Add the task to
\r
493 * either the current or the overflow delayed task list.
\r
495 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
\r
498 * Fills an TaskStatus_t structure with information on each task that is
\r
499 * referenced from the pxList list (which may be a ready list, a delayed list,
\r
500 * a suspended list, etc.).
\r
502 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
\r
503 * NORMAL APPLICATION CODE.
\r
505 #if ( configUSE_TRACE_FACILITY == 1 )
\r
507 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;
\r
512 * Searches pxList for a task with name pcNameToQuery - returning a handle to
\r
513 * the task if it is found, or NULL if the task is not found.
\r
515 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
517 static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
\r
522 * When a task is created, the stack of the task is filled with a known value.
\r
523 * This function determines the 'high water mark' of the task stack by
\r
524 * determining how much of the stack remains at the original preset value.
\r
526 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
\r
528 static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
\r
533 * Return the amount of time, in ticks, that will pass before the kernel will
\r
534 * next move a task from the Blocked state to the Running state.
\r
536 * This conditional compilation should use inequality to 0, not equality to 1.
\r
537 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
\r
538 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
\r
539 * set to a value other than 1.
\r
541 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
543 static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
\r
548 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
\r
549 * will exit the Blocked state.
\r
551 static void prvResetNextTaskUnblockTime( void );
\r
553 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
556 * Helper function used to pad task names with spaces when printing out
\r
557 * human readable tables of task information.
\r
559 static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName ) PRIVILEGED_FUNCTION;
\r
564 * Called after a Task_t structure has been allocated either statically or
\r
565 * dynamically to fill in the structure's members.
\r
567 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
568 const char * const pcName,
\r
569 const uint32_t ulStackDepth,
\r
570 void * const pvParameters,
\r
571 UBaseType_t uxPriority,
\r
572 TaskHandle_t * const pxCreatedTask,
\r
574 const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
577 * Called after a new task has been created and initialised to place the task
\r
578 * under the control of the scheduler.
\r
580 static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB ) PRIVILEGED_FUNCTION;
\r
582 /*-----------------------------------------------------------*/
\r
584 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
586 TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
\r
587 const char * const pcName,
\r
588 const uint32_t ulStackDepth,
\r
589 void * const pvParameters,
\r
590 UBaseType_t uxPriority,
\r
591 StackType_t * const puxStackBuffer,
\r
592 StaticTask_t * const pxTaskBuffer ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
595 TaskHandle_t xReturn;
\r
597 configASSERT( puxStackBuffer != NULL );
\r
598 configASSERT( pxTaskBuffer != NULL );
\r
600 if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
\r
602 /* The memory used for the task's TCB and stack are passed into this
\r
603 function - use them. */
\r
604 pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
\r
605 pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
\r
607 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
609 /* Tasks can be created statically or dynamically, so note this
\r
610 task was created statically in case the task is later deleted. */
\r
611 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
\r
613 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
615 prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );
\r
616 prvAddNewTaskToReadyList( pxNewTCB );
\r
626 #endif /* SUPPORT_STATIC_ALLOCATION */
\r
627 /*-----------------------------------------------------------*/
\r
629 #if( portUSING_MPU_WRAPPERS == 1 )
\r
631 BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask )
\r
634 BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
636 configASSERT( pxTaskDefinition->puxStackBuffer );
\r
638 if( pxTaskDefinition->puxStackBuffer != NULL )
\r
640 /* Allocate space for the TCB. Where the memory comes from depends
\r
641 on the implementation of the port malloc function and whether or
\r
642 not static allocation is being used. */
\r
643 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
645 if( pxNewTCB != NULL )
\r
647 /* Store the stack location in the TCB. */
\r
648 pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
\r
650 /* Tasks can be created statically or dynamically, so note
\r
651 this task had a statically allocated stack in case it is
\r
652 later deleted. The TCB was allocated dynamically. */
\r
653 pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
\r
655 prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
\r
656 pxTaskDefinition->pcName,
\r
657 ( uint32_t ) pxTaskDefinition->usStackDepth,
\r
658 pxTaskDefinition->pvParameters,
\r
659 pxTaskDefinition->uxPriority,
\r
660 pxCreatedTask, pxNewTCB,
\r
661 pxTaskDefinition->xRegions );
\r
663 prvAddNewTaskToReadyList( pxNewTCB );
\r
671 #endif /* portUSING_MPU_WRAPPERS */
\r
672 /*-----------------------------------------------------------*/
\r
674 #if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
\r
676 BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
\r
677 const char * const pcName,
\r
678 const uint16_t usStackDepth,
\r
679 void * const pvParameters,
\r
680 UBaseType_t uxPriority,
\r
681 TaskHandle_t * const pxCreatedTask ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
684 BaseType_t xReturn;
\r
686 /* If the stack grows down then allocate the stack then the TCB so the stack
\r
687 does not grow into the TCB. Likewise if the stack grows up then allocate
\r
688 the TCB then the stack. */
\r
689 #if( portSTACK_GROWTH > 0 )
\r
691 /* Allocate space for the TCB. Where the memory comes from depends on
\r
692 the implementation of the port malloc function and whether or not static
\r
693 allocation is being used. */
\r
694 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
\r
696 if( pxNewTCB != NULL )
\r
698 /* Allocate space for the stack used by the task being created.
\r
699 The base of the stack memory stored in the TCB so the task can
\r
700 be deleted later if required. */
\r
701 pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
703 if( pxNewTCB->pxStack == NULL )
\r
705 /* Could not allocate the stack. Delete the allocated TCB. */
\r
706 vPortFree( pxNewTCB );
\r
711 #else /* portSTACK_GROWTH */
\r
713 StackType_t *pxStack;
\r
715 /* Allocate space for the stack used by the task being created. */
\r
716 pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
718 if( pxStack != NULL )
\r
720 /* Allocate space for the TCB. */
\r
721 pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e961 MISRA exception as the casts are only redundant for some paths. */
\r
723 if( pxNewTCB != NULL )
\r
725 /* Store the stack location in the TCB. */
\r
726 pxNewTCB->pxStack = pxStack;
\r
730 /* The stack cannot be used as the TCB was not created. Free
\r
732 vPortFree( pxStack );
\r
740 #endif /* portSTACK_GROWTH */
\r
742 if( pxNewTCB != NULL )
\r
744 #if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
\r
746 /* Tasks can be created statically or dynamically, so note this
\r
747 task was created dynamically in case it is later deleted. */
\r
748 pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
\r
750 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
752 prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );
\r
753 prvAddNewTaskToReadyList( pxNewTCB );
\r
758 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
\r
764 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
765 /*-----------------------------------------------------------*/
\r
767 static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
\r
768 const char * const pcName,
\r
769 const uint32_t ulStackDepth,
\r
770 void * const pvParameters,
\r
771 UBaseType_t uxPriority,
\r
772 TaskHandle_t * const pxCreatedTask,
\r
774 const MemoryRegion_t * const xRegions ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
776 StackType_t *pxTopOfStack;
\r
779 #if( portUSING_MPU_WRAPPERS == 1 )
\r
780 /* Should the task be created in privileged mode? */
\r
781 BaseType_t xRunPrivileged;
\r
782 if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
\r
784 xRunPrivileged = pdTRUE;
\r
788 xRunPrivileged = pdFALSE;
\r
790 uxPriority &= ~portPRIVILEGE_BIT;
\r
791 #endif /* portUSING_MPU_WRAPPERS == 1 */
\r
793 /* Avoid dependency on memset() if it is not required. */
\r
794 #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
\r
796 /* Fill the stack with a known value to assist debugging. */
\r
797 ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
\r
799 #endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */
\r
801 /* Calculate the top of stack address. This depends on whether the stack
\r
802 grows from high memory to low (as per the 80x86) or vice versa.
\r
803 portSTACK_GROWTH is used to make the result positive or negative as required
\r
805 #if( portSTACK_GROWTH < 0 )
\r
807 pxTopOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
808 pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */
\r
810 /* Check the alignment of the calculated top of stack is correct. */
\r
811 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
813 #else /* portSTACK_GROWTH */
\r
815 pxTopOfStack = pxNewTCB->pxStack;
\r
817 /* Check the alignment of the stack buffer is correct. */
\r
818 configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
\r
820 /* The other extreme of the stack space is required if stack checking is
\r
822 pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
\r
824 #endif /* portSTACK_GROWTH */
\r
826 /* Store the task name in the TCB. */
\r
827 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
829 pxNewTCB->pcTaskName[ x ] = pcName[ x ];
\r
831 /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
\r
832 configMAX_TASK_NAME_LEN characters just in case the memory after the
\r
833 string is not accessible (extremely unlikely). */
\r
834 if( pcName[ x ] == 0x00 )
\r
840 mtCOVERAGE_TEST_MARKER();
\r
844 /* Ensure the name string is terminated in the case that the string length
\r
845 was greater or equal to configMAX_TASK_NAME_LEN. */
\r
846 pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
\r
848 /* This is used as an array index so must ensure it's not too large. First
\r
849 remove the privilege bit if one is present. */
\r
850 if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
852 uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
856 mtCOVERAGE_TEST_MARKER();
\r
859 pxNewTCB->uxPriority = uxPriority;
\r
860 #if ( configUSE_MUTEXES == 1 )
\r
862 pxNewTCB->uxBasePriority = uxPriority;
\r
863 pxNewTCB->uxMutexesHeld = 0;
\r
865 #endif /* configUSE_MUTEXES */
\r
867 vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
\r
868 vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
\r
870 /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get
\r
871 back to the containing TCB from a generic item in a list. */
\r
872 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
\r
874 /* Event lists are always in priority order. */
\r
875 listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
876 listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
\r
878 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
880 pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
\r
882 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
884 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
886 pxNewTCB->pxTaskTag = NULL;
\r
888 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
890 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
892 pxNewTCB->ulRunTimeCounter = 0UL;
\r
894 #endif /* configGENERATE_RUN_TIME_STATS */
\r
896 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
898 vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
\r
902 /* Avoid compiler warning about unreferenced parameter. */
\r
907 #if( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
909 for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
\r
911 pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL;
\r
916 #if ( configUSE_TASK_NOTIFICATIONS == 1 )
\r
918 pxNewTCB->ulNotifiedValue = 0;
\r
919 pxNewTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
923 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
925 /* Initialise this task's Newlib reent structure. */
\r
926 _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
\r
930 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
932 pxNewTCB->ucDelayAborted = pdFALSE;
\r
936 /* Initialize the TCB stack to look as if the task was already running,
\r
937 but had been interrupted by the scheduler. The return address is set
\r
938 to the start of the task function. Once the stack has been initialised
\r
939 the top of stack variable is updated. */
\r
940 #if( portUSING_MPU_WRAPPERS == 1 )
\r
942 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
\r
944 #else /* portUSING_MPU_WRAPPERS */
\r
946 pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
\r
948 #endif /* portUSING_MPU_WRAPPERS */
\r
950 if( ( void * ) pxCreatedTask != NULL )
\r
952 /* Pass the handle out in an anonymous way. The handle can be used to
\r
953 change the created task's priority, delete the created task, etc.*/
\r
954 *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
\r
958 mtCOVERAGE_TEST_MARKER();
\r
961 /*-----------------------------------------------------------*/
\r
963 static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB )
\r
965 /* Ensure interrupts don't access the task lists while the lists are being
\r
967 taskENTER_CRITICAL();
\r
969 uxCurrentNumberOfTasks++;
\r
970 if( pxCurrentTCB == NULL )
\r
972 /* There are no other tasks, or all the other tasks are in
\r
973 the suspended state - make this the current task. */
\r
974 pxCurrentTCB = pxNewTCB;
\r
976 if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
\r
978 /* This is the first task to be created so do the preliminary
\r
979 initialisation required. We will not recover if this call
\r
980 fails, but we will report the failure. */
\r
981 prvInitialiseTaskLists();
\r
985 mtCOVERAGE_TEST_MARKER();
\r
990 /* If the scheduler is not already running, make this task the
\r
991 current task if it is the highest priority task to be created
\r
993 if( xSchedulerRunning == pdFALSE )
\r
995 if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )
\r
997 pxCurrentTCB = pxNewTCB;
\r
1001 mtCOVERAGE_TEST_MARKER();
\r
1006 mtCOVERAGE_TEST_MARKER();
\r
1012 #if ( configUSE_TRACE_FACILITY == 1 )
\r
1014 /* Add a counter into the TCB for tracing only. */
\r
1015 pxNewTCB->uxTCBNumber = uxTaskNumber;
\r
1017 #endif /* configUSE_TRACE_FACILITY */
\r
1018 traceTASK_CREATE( pxNewTCB );
\r
1020 prvAddTaskToReadyList( pxNewTCB );
\r
1022 portSETUP_TCB( pxNewTCB );
\r
1024 taskEXIT_CRITICAL();
\r
1026 if( xSchedulerRunning != pdFALSE )
\r
1028 /* If the created task is of a higher priority than the current task
\r
1029 then it should run now. */
\r
1030 if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )
\r
1032 taskYIELD_IF_USING_PREEMPTION();
\r
1036 mtCOVERAGE_TEST_MARKER();
\r
1041 mtCOVERAGE_TEST_MARKER();
\r
1044 /*-----------------------------------------------------------*/
\r
1046 #if ( INCLUDE_vTaskDelete == 1 )
\r
1048 void vTaskDelete( TaskHandle_t xTaskToDelete )
\r
1052 taskENTER_CRITICAL();
\r
1054 /* If null is passed in here then it is the calling task that is
\r
1056 pxTCB = prvGetTCBFromHandle( xTaskToDelete );
\r
1058 /* Remove task from the ready list. */
\r
1059 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1061 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1065 mtCOVERAGE_TEST_MARKER();
\r
1068 /* Is the task waiting on an event also? */
\r
1069 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1071 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1075 mtCOVERAGE_TEST_MARKER();
\r
1078 /* Increment the uxTaskNumber also so kernel aware debuggers can
\r
1079 detect that the task lists need re-generating. This is done before
\r
1080 portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
\r
1084 if( pxTCB == pxCurrentTCB )
\r
1086 /* A task is deleting itself. This cannot complete within the
\r
1087 task itself, as a context switch to another task is required.
\r
1088 Place the task in the termination list. The idle task will
\r
1089 check the termination list and free up any memory allocated by
\r
1090 the scheduler for the TCB and stack of the deleted task. */
\r
1091 vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
\r
1093 /* Increment the ucTasksDeleted variable so the idle task knows
\r
1094 there is a task that has been deleted and that it should therefore
\r
1095 check the xTasksWaitingTermination list. */
\r
1096 ++uxDeletedTasksWaitingCleanUp;
\r
1098 /* The pre-delete hook is primarily for the Windows simulator,
\r
1099 in which Windows specific clean up operations are performed,
\r
1100 after which it is not possible to yield away from this task -
\r
1101 hence xYieldPending is used to latch that a context switch is
\r
1103 portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
\r
1107 --uxCurrentNumberOfTasks;
\r
1108 prvDeleteTCB( pxTCB );
\r
1110 /* Reset the next expected unblock time in case it referred to
\r
1111 the task that has just been deleted. */
\r
1112 prvResetNextTaskUnblockTime();
\r
1115 traceTASK_DELETE( pxTCB );
\r
1117 taskEXIT_CRITICAL();
\r
1119 /* Force a reschedule if it is the currently running task that has just
\r
1121 if( xSchedulerRunning != pdFALSE )
\r
1123 if( pxTCB == pxCurrentTCB )
\r
1125 configASSERT( uxSchedulerSuspended == 0 );
\r
1126 portYIELD_WITHIN_API();
\r
1130 mtCOVERAGE_TEST_MARKER();
\r
1135 #endif /* INCLUDE_vTaskDelete */
\r
1136 /*-----------------------------------------------------------*/
\r
1138 #if ( INCLUDE_vTaskDelayUntil == 1 )
\r
1140 void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
\r
1142 TickType_t xTimeToWake;
\r
1143 BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
\r
1145 configASSERT( pxPreviousWakeTime );
\r
1146 configASSERT( ( xTimeIncrement > 0U ) );
\r
1147 configASSERT( uxSchedulerSuspended == 0 );
\r
1149 vTaskSuspendAll();
\r
1151 /* Minor optimisation. The tick count cannot change in this
\r
1153 const TickType_t xConstTickCount = xTickCount;
\r
1155 /* Generate the tick time at which the task wants to wake. */
\r
1156 xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
\r
1158 if( xConstTickCount < *pxPreviousWakeTime )
\r
1160 /* The tick count has overflowed since this function was
\r
1161 lasted called. In this case the only time we should ever
\r
1162 actually delay is if the wake time has also overflowed,
\r
1163 and the wake time is greater than the tick time. When this
\r
1164 is the case it is as if neither time had overflowed. */
\r
1165 if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
\r
1167 xShouldDelay = pdTRUE;
\r
1171 mtCOVERAGE_TEST_MARKER();
\r
1176 /* The tick time has not overflowed. In this case we will
\r
1177 delay if either the wake time has overflowed, and/or the
\r
1178 tick time is less than the wake time. */
\r
1179 if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
\r
1181 xShouldDelay = pdTRUE;
\r
1185 mtCOVERAGE_TEST_MARKER();
\r
1189 /* Update the wake time ready for the next call. */
\r
1190 *pxPreviousWakeTime = xTimeToWake;
\r
1192 if( xShouldDelay != pdFALSE )
\r
1194 traceTASK_DELAY_UNTIL( xTimeToWake );
\r
1196 /* prvAddCurrentTaskToDelayedList() needs the block time, not
\r
1197 the time to wake, so subtract the current tick count. */
\r
1198 prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
\r
1202 mtCOVERAGE_TEST_MARKER();
\r
1205 xAlreadyYielded = xTaskResumeAll();
\r
1207 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1208 have put ourselves to sleep. */
\r
1209 if( xAlreadyYielded == pdFALSE )
\r
1211 portYIELD_WITHIN_API();
\r
1215 mtCOVERAGE_TEST_MARKER();
\r
1219 #endif /* INCLUDE_vTaskDelayUntil */
\r
1220 /*-----------------------------------------------------------*/
\r
1222 #if ( INCLUDE_vTaskDelay == 1 )
\r
1224 void vTaskDelay( const TickType_t xTicksToDelay )
\r
1226 BaseType_t xAlreadyYielded = pdFALSE;
\r
1228 /* A delay time of zero just forces a reschedule. */
\r
1229 if( xTicksToDelay > ( TickType_t ) 0U )
\r
1231 configASSERT( uxSchedulerSuspended == 0 );
\r
1232 vTaskSuspendAll();
\r
1234 traceTASK_DELAY();
\r
1236 /* A task that is removed from the event list while the
\r
1237 scheduler is suspended will not get placed in the ready
\r
1238 list or removed from the blocked list until the scheduler
\r
1241 This task cannot be in an event list as it is the currently
\r
1242 executing task. */
\r
1243 prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
\r
1245 xAlreadyYielded = xTaskResumeAll();
\r
1249 mtCOVERAGE_TEST_MARKER();
\r
1252 /* Force a reschedule if xTaskResumeAll has not already done so, we may
\r
1253 have put ourselves to sleep. */
\r
1254 if( xAlreadyYielded == pdFALSE )
\r
1256 portYIELD_WITHIN_API();
\r
1260 mtCOVERAGE_TEST_MARKER();
\r
1264 #endif /* INCLUDE_vTaskDelay */
\r
1265 /*-----------------------------------------------------------*/
\r
1267 #if( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) )
\r
1269 eTaskState eTaskGetState( TaskHandle_t xTask )
\r
1271 eTaskState eReturn;
\r
1272 List_t *pxStateList;
\r
1273 const TCB_t * const pxTCB = ( TCB_t * ) xTask;
\r
1275 configASSERT( pxTCB );
\r
1277 if( pxTCB == pxCurrentTCB )
\r
1279 /* The task calling this function is querying its own state. */
\r
1280 eReturn = eRunning;
\r
1284 taskENTER_CRITICAL();
\r
1286 pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
\r
1288 taskEXIT_CRITICAL();
\r
1290 if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) )
\r
1292 /* The task being queried is referenced from one of the Blocked
\r
1294 eReturn = eBlocked;
\r
1297 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1298 else if( pxStateList == &xSuspendedTaskList )
\r
1300 /* The task being queried is referenced from the suspended
\r
1301 list. Is it genuinely suspended or is it block
\r
1303 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
\r
1305 eReturn = eSuspended;
\r
1309 eReturn = eBlocked;
\r
1314 #if ( INCLUDE_vTaskDelete == 1 )
\r
1315 else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
\r
1317 /* The task being queried is referenced from the deleted
\r
1318 tasks list, or it is not referenced from any lists at
\r
1320 eReturn = eDeleted;
\r
1324 else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
\r
1326 /* If the task is not in any other state, it must be in the
\r
1327 Ready (including pending ready) state. */
\r
1333 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1335 #endif /* INCLUDE_eTaskGetState */
\r
1336 /*-----------------------------------------------------------*/
\r
1338 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1340 UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask )
\r
1343 UBaseType_t uxReturn;
\r
1345 taskENTER_CRITICAL();
\r
1347 /* If null is passed in here then it is the priority of the that
\r
1348 called uxTaskPriorityGet() that is being queried. */
\r
1349 pxTCB = prvGetTCBFromHandle( xTask );
\r
1350 uxReturn = pxTCB->uxPriority;
\r
1352 taskEXIT_CRITICAL();
\r
1357 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1358 /*-----------------------------------------------------------*/
\r
1360 #if ( INCLUDE_uxTaskPriorityGet == 1 )
\r
1362 UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask )
\r
1365 UBaseType_t uxReturn, uxSavedInterruptState;
\r
1367 /* RTOS ports that support interrupt nesting have the concept of a
\r
1368 maximum system call (or maximum API call) interrupt priority.
\r
1369 Interrupts that are above the maximum system call priority are keep
\r
1370 permanently enabled, even when the RTOS kernel is in a critical section,
\r
1371 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1372 is defined in FreeRTOSConfig.h then
\r
1373 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1374 failure if a FreeRTOS API function is called from an interrupt that has
\r
1375 been assigned a priority above the configured maximum system call
\r
1376 priority. Only FreeRTOS functions that end in FromISR can be called
\r
1377 from interrupts that have been assigned a priority at or (logically)
\r
1378 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1379 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1380 simple as possible. More information (albeit Cortex-M specific) is
\r
1381 provided on the following link:
\r
1382 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1383 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1385 uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1387 /* If null is passed in here then it is the priority of the calling
\r
1388 task that is being queried. */
\r
1389 pxTCB = prvGetTCBFromHandle( xTask );
\r
1390 uxReturn = pxTCB->uxPriority;
\r
1392 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );
\r
1397 #endif /* INCLUDE_uxTaskPriorityGet */
\r
1398 /*-----------------------------------------------------------*/
\r
1400 #if ( INCLUDE_vTaskPrioritySet == 1 )
\r
1402 void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
\r
1405 UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
\r
1406 BaseType_t xYieldRequired = pdFALSE;
\r
1408 configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
\r
1410 /* Ensure the new priority is valid. */
\r
1411 if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
\r
1413 uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
\r
1417 mtCOVERAGE_TEST_MARKER();
\r
1420 taskENTER_CRITICAL();
\r
1422 /* If null is passed in here then it is the priority of the calling
\r
1423 task that is being changed. */
\r
1424 pxTCB = prvGetTCBFromHandle( xTask );
\r
1426 traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
\r
1428 #if ( configUSE_MUTEXES == 1 )
\r
1430 uxCurrentBasePriority = pxTCB->uxBasePriority;
\r
1434 uxCurrentBasePriority = pxTCB->uxPriority;
\r
1438 if( uxCurrentBasePriority != uxNewPriority )
\r
1440 /* The priority change may have readied a task of higher
\r
1441 priority than the calling task. */
\r
1442 if( uxNewPriority > uxCurrentBasePriority )
\r
1444 if( pxTCB != pxCurrentTCB )
\r
1446 /* The priority of a task other than the currently
\r
1447 running task is being raised. Is the priority being
\r
1448 raised above that of the running task? */
\r
1449 if( uxNewPriority >= pxCurrentTCB->uxPriority )
\r
1451 xYieldRequired = pdTRUE;
\r
1455 mtCOVERAGE_TEST_MARKER();
\r
1460 /* The priority of the running task is being raised,
\r
1461 but the running task must already be the highest
\r
1462 priority task able to run so no yield is required. */
\r
1465 else if( pxTCB == pxCurrentTCB )
\r
1467 /* Setting the priority of the running task down means
\r
1468 there may now be another task of higher priority that
\r
1469 is ready to execute. */
\r
1470 xYieldRequired = pdTRUE;
\r
1474 /* Setting the priority of any other task down does not
\r
1475 require a yield as the running task must be above the
\r
1476 new priority of the task being modified. */
\r
1479 /* Remember the ready list the task might be referenced from
\r
1480 before its uxPriority member is changed so the
\r
1481 taskRESET_READY_PRIORITY() macro can function correctly. */
\r
1482 uxPriorityUsedOnEntry = pxTCB->uxPriority;
\r
1484 #if ( configUSE_MUTEXES == 1 )
\r
1486 /* Only change the priority being used if the task is not
\r
1487 currently using an inherited priority. */
\r
1488 if( pxTCB->uxBasePriority == pxTCB->uxPriority )
\r
1490 pxTCB->uxPriority = uxNewPriority;
\r
1494 mtCOVERAGE_TEST_MARKER();
\r
1497 /* The base priority gets set whatever. */
\r
1498 pxTCB->uxBasePriority = uxNewPriority;
\r
1502 pxTCB->uxPriority = uxNewPriority;
\r
1506 /* Only reset the event list item value if the value is not
\r
1507 being used for anything else. */
\r
1508 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
1510 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
1514 mtCOVERAGE_TEST_MARKER();
\r
1517 /* If the task is in the blocked or suspended list we need do
\r
1518 nothing more than change it's priority variable. However, if
\r
1519 the task is in a ready list it needs to be removed and placed
\r
1520 in the list appropriate to its new priority. */
\r
1521 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1523 /* The task is currently in its ready list - remove before adding
\r
1524 it to it's new ready list. As we are in a critical section we
\r
1525 can do this even if the scheduler is suspended. */
\r
1526 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1528 /* It is known that the task is in its ready list so
\r
1529 there is no need to check again and the port level
\r
1530 reset macro can be called directly. */
\r
1531 portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
\r
1535 mtCOVERAGE_TEST_MARKER();
\r
1537 prvAddTaskToReadyList( pxTCB );
\r
1541 mtCOVERAGE_TEST_MARKER();
\r
1544 if( xYieldRequired != pdFALSE )
\r
1546 taskYIELD_IF_USING_PREEMPTION();
\r
1550 mtCOVERAGE_TEST_MARKER();
\r
1553 /* Remove compiler warning about unused variables when the port
\r
1554 optimised task selection is not being used. */
\r
1555 ( void ) uxPriorityUsedOnEntry;
\r
1558 taskEXIT_CRITICAL();
\r
1561 #endif /* INCLUDE_vTaskPrioritySet */
\r
1562 /*-----------------------------------------------------------*/
\r
1564 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1566 void vTaskSuspend( TaskHandle_t xTaskToSuspend )
\r
1570 taskENTER_CRITICAL();
\r
1572 /* If null is passed in here then it is the running task that is
\r
1573 being suspended. */
\r
1574 pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
\r
1576 traceTASK_SUSPEND( pxTCB );
\r
1578 /* Remove task from the ready/delayed list and place in the
\r
1579 suspended list. */
\r
1580 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
1582 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
1586 mtCOVERAGE_TEST_MARKER();
\r
1589 /* Is the task waiting on an event also? */
\r
1590 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
1592 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
1596 mtCOVERAGE_TEST_MARKER();
\r
1599 vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
\r
1601 taskEXIT_CRITICAL();
\r
1603 if( xSchedulerRunning != pdFALSE )
\r
1605 /* Reset the next expected unblock time in case it referred to the
\r
1606 task that is now in the Suspended state. */
\r
1607 taskENTER_CRITICAL();
\r
1609 prvResetNextTaskUnblockTime();
\r
1611 taskEXIT_CRITICAL();
\r
1615 mtCOVERAGE_TEST_MARKER();
\r
1618 if( pxTCB == pxCurrentTCB )
\r
1620 if( xSchedulerRunning != pdFALSE )
\r
1622 /* The current task has just been suspended. */
\r
1623 configASSERT( uxSchedulerSuspended == 0 );
\r
1624 portYIELD_WITHIN_API();
\r
1628 /* The scheduler is not running, but the task that was pointed
\r
1629 to by pxCurrentTCB has just been suspended and pxCurrentTCB
\r
1630 must be adjusted to point to a different task. */
\r
1631 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
\r
1633 /* No other tasks are ready, so set pxCurrentTCB back to
\r
1634 NULL so when the next task is created pxCurrentTCB will
\r
1635 be set to point to it no matter what its relative priority
\r
1637 pxCurrentTCB = NULL;
\r
1641 vTaskSwitchContext();
\r
1647 mtCOVERAGE_TEST_MARKER();
\r
1651 #endif /* INCLUDE_vTaskSuspend */
\r
1652 /*-----------------------------------------------------------*/
\r
1654 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1656 static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
\r
1658 BaseType_t xReturn = pdFALSE;
\r
1659 const TCB_t * const pxTCB = ( TCB_t * ) xTask;
\r
1661 /* Accesses xPendingReadyList so must be called from a critical
\r
1664 /* It does not make sense to check if the calling task is suspended. */
\r
1665 configASSERT( xTask );
\r
1667 /* Is the task being resumed actually in the suspended list? */
\r
1668 if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
1670 /* Has the task already been resumed from within an ISR? */
\r
1671 if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
\r
1673 /* Is it in the suspended list because it is in the Suspended
\r
1674 state, or because is is blocked with no timeout? */
\r
1675 if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
\r
1681 mtCOVERAGE_TEST_MARKER();
\r
1686 mtCOVERAGE_TEST_MARKER();
\r
1691 mtCOVERAGE_TEST_MARKER();
\r
1695 } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
\r
1697 #endif /* INCLUDE_vTaskSuspend */
\r
1698 /*-----------------------------------------------------------*/
\r
1700 #if ( INCLUDE_vTaskSuspend == 1 )
\r
1702 void vTaskResume( TaskHandle_t xTaskToResume )
\r
1704 TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
\r
1706 /* It does not make sense to resume the calling task. */
\r
1707 configASSERT( xTaskToResume );
\r
1709 /* The parameter cannot be NULL as it is impossible to resume the
\r
1710 currently executing task. */
\r
1711 if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) )
\r
1713 taskENTER_CRITICAL();
\r
1715 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1717 traceTASK_RESUME( pxTCB );
\r
1719 /* As we are in a critical section we can access the ready
\r
1720 lists even if the scheduler is suspended. */
\r
1721 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1722 prvAddTaskToReadyList( pxTCB );
\r
1724 /* We may have just resumed a higher priority task. */
\r
1725 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1727 /* This yield may not cause the task just resumed to run,
\r
1728 but will leave the lists in the correct state for the
\r
1730 taskYIELD_IF_USING_PREEMPTION();
\r
1734 mtCOVERAGE_TEST_MARKER();
\r
1739 mtCOVERAGE_TEST_MARKER();
\r
1742 taskEXIT_CRITICAL();
\r
1746 mtCOVERAGE_TEST_MARKER();
\r
1750 #endif /* INCLUDE_vTaskSuspend */
\r
1752 /*-----------------------------------------------------------*/
\r
1754 #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
\r
1756 BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
\r
1758 BaseType_t xYieldRequired = pdFALSE;
\r
1759 TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
\r
1760 UBaseType_t uxSavedInterruptStatus;
\r
1762 configASSERT( xTaskToResume );
\r
1764 /* RTOS ports that support interrupt nesting have the concept of a
\r
1765 maximum system call (or maximum API call) interrupt priority.
\r
1766 Interrupts that are above the maximum system call priority are keep
\r
1767 permanently enabled, even when the RTOS kernel is in a critical section,
\r
1768 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
1769 is defined in FreeRTOSConfig.h then
\r
1770 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
1771 failure if a FreeRTOS API function is called from an interrupt that has
\r
1772 been assigned a priority above the configured maximum system call
\r
1773 priority. Only FreeRTOS functions that end in FromISR can be called
\r
1774 from interrupts that have been assigned a priority at or (logically)
\r
1775 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
1776 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
1777 simple as possible. More information (albeit Cortex-M specific) is
\r
1778 provided on the following link:
\r
1779 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
1780 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
1782 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
1784 if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
\r
1786 traceTASK_RESUME_FROM_ISR( pxTCB );
\r
1788 /* Check the ready lists can be accessed. */
\r
1789 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
1791 /* Ready lists can be accessed so move the task from the
\r
1792 suspended list to the ready list directly. */
\r
1793 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
1795 xYieldRequired = pdTRUE;
\r
1799 mtCOVERAGE_TEST_MARKER();
\r
1802 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
1803 prvAddTaskToReadyList( pxTCB );
\r
1807 /* The delayed or ready lists cannot be accessed so the task
\r
1808 is held in the pending ready list until the scheduler is
\r
1810 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
1815 mtCOVERAGE_TEST_MARKER();
\r
1818 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
1820 return xYieldRequired;
\r
1823 #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
\r
1824 /*-----------------------------------------------------------*/
\r
1826 void vTaskStartScheduler( void )
\r
1828 BaseType_t xReturn;
\r
1830 /* Add the idle task at the lowest priority. */
\r
1831 #if( configSUPPORT_STATIC_ALLOCATION == 1 )
\r
1833 StaticTask_t *pxIdleTaskTCBBuffer = NULL;
\r
1834 StackType_t *pxIdleTaskStackBuffer = NULL;
\r
1835 uint32_t ulIdleTaskStackSize;
\r
1837 /* The Idle task is created using user provided RAM - obtain the
\r
1838 address of the RAM then create the idle task. */
\r
1839 vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
\r
1840 xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,
\r
1842 ulIdleTaskStackSize,
\r
1844 ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ),
\r
1845 pxIdleTaskStackBuffer,
\r
1846 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1848 if( xIdleTaskHandle != NULL )
\r
1859 /* The Idle task is being created using dynamically allocated RAM. */
\r
1860 xReturn = xTaskCreate( prvIdleTask,
\r
1861 "IDLE", configMINIMAL_STACK_SIZE,
\r
1863 ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ),
\r
1864 &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
\r
1866 #endif /* configSUPPORT_STATIC_ALLOCATION */
\r
1868 #if ( configUSE_TIMERS == 1 )
\r
1870 if( xReturn == pdPASS )
\r
1872 xReturn = xTimerCreateTimerTask();
\r
1876 mtCOVERAGE_TEST_MARKER();
\r
1879 #endif /* configUSE_TIMERS */
\r
1881 if( xReturn == pdPASS )
\r
1883 /* Interrupts are turned off here, to ensure a tick does not occur
\r
1884 before or during the call to xPortStartScheduler(). The stacks of
\r
1885 the created tasks contain a status word with interrupts switched on
\r
1886 so interrupts will automatically get re-enabled when the first task
\r
1888 portDISABLE_INTERRUPTS();
\r
1890 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
1892 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
1893 structure specific to the task that will run first. */
\r
1894 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
1896 #endif /* configUSE_NEWLIB_REENTRANT */
\r
1898 xNextTaskUnblockTime = portMAX_DELAY;
\r
1899 xSchedulerRunning = pdTRUE;
\r
1900 xTickCount = ( TickType_t ) 0U;
\r
1902 /* If configGENERATE_RUN_TIME_STATS is defined then the following
\r
1903 macro must be defined to configure the timer/counter used to generate
\r
1904 the run time counter time base. */
\r
1905 portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
\r
1907 /* Setting up the timer tick is hardware specific and thus in the
\r
1908 portable interface. */
\r
1909 if( xPortStartScheduler() != pdFALSE )
\r
1911 /* Should not reach here as if the scheduler is running the
\r
1912 function will not return. */
\r
1916 /* Should only reach here if a task calls xTaskEndScheduler(). */
\r
1921 /* This line will only be reached if the kernel could not be started,
\r
1922 because there was not enough FreeRTOS heap to create the idle task
\r
1923 or the timer task. */
\r
1924 configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
\r
1927 /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
\r
1928 meaning xIdleTaskHandle is not used anywhere else. */
\r
1929 ( void ) xIdleTaskHandle;
\r
1931 /*-----------------------------------------------------------*/
\r
1933 void vTaskEndScheduler( void )
\r
1935 /* Stop the scheduler interrupts and call the portable scheduler end
\r
1936 routine so the original ISRs can be restored if necessary. The port
\r
1937 layer must ensure interrupts enable bit is left in the correct state. */
\r
1938 portDISABLE_INTERRUPTS();
\r
1939 xSchedulerRunning = pdFALSE;
\r
1940 vPortEndScheduler();
\r
1942 /*----------------------------------------------------------*/
\r
1944 void vTaskSuspendAll( void )
\r
1946 /* A critical section is not required as the variable is of type
\r
1947 BaseType_t. Please read Richard Barry's reply in the following link to a
\r
1948 post in the FreeRTOS support forum before reporting this as a bug! -
\r
1949 http://goo.gl/wu4acr */
\r
1950 ++uxSchedulerSuspended;
\r
1952 /*----------------------------------------------------------*/
\r
1954 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
1956 static TickType_t prvGetExpectedIdleTime( void )
\r
1958 TickType_t xReturn;
\r
1959 UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
\r
1961 /* uxHigherPriorityReadyTasks takes care of the case where
\r
1962 configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
\r
1963 task that are in the Ready state, even though the idle task is
\r
1965 #if( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
\r
1967 if( uxTopReadyPriority > tskIDLE_PRIORITY )
\r
1969 uxHigherPriorityReadyTasks = pdTRUE;
\r
1974 const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
\r
1976 /* When port optimised task selection is used the uxTopReadyPriority
\r
1977 variable is used as a bit map. If bits other than the least
\r
1978 significant bit are set then there are tasks that have a priority
\r
1979 above the idle priority that are in the Ready state. This takes
\r
1980 care of the case where the co-operative scheduler is in use. */
\r
1981 if( uxTopReadyPriority > uxLeastSignificantBit )
\r
1983 uxHigherPriorityReadyTasks = pdTRUE;
\r
1988 if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
\r
1992 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
\r
1994 /* There are other idle priority tasks in the ready state. If
\r
1995 time slicing is used then the very next tick interrupt must be
\r
1999 else if( uxHigherPriorityReadyTasks != pdFALSE )
\r
2001 /* There are tasks in the Ready state that have a priority above the
\r
2002 idle priority. This path can only be reached if
\r
2003 configUSE_PREEMPTION is 0. */
\r
2008 xReturn = xNextTaskUnblockTime - xTickCount;
\r
2014 #endif /* configUSE_TICKLESS_IDLE */
\r
2015 /*----------------------------------------------------------*/
\r
2017 BaseType_t xTaskResumeAll( void )
\r
2019 TCB_t *pxTCB = NULL;
\r
2020 BaseType_t xAlreadyYielded = pdFALSE;
\r
2022 /* If uxSchedulerSuspended is zero then this function does not match a
\r
2023 previous call to vTaskSuspendAll(). */
\r
2024 configASSERT( uxSchedulerSuspended );
\r
2026 /* It is possible that an ISR caused a task to be removed from an event
\r
2027 list while the scheduler was suspended. If this was the case then the
\r
2028 removed task will have been added to the xPendingReadyList. Once the
\r
2029 scheduler has been resumed it is safe to move all the pending ready
\r
2030 tasks from this list into their appropriate ready list. */
\r
2031 taskENTER_CRITICAL();
\r
2033 --uxSchedulerSuspended;
\r
2035 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2037 if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
\r
2039 /* Move any readied tasks from the pending list into the
\r
2040 appropriate ready list. */
\r
2041 while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
\r
2043 pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
\r
2044 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2045 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2046 prvAddTaskToReadyList( pxTCB );
\r
2048 /* If the moved task has a priority higher than the current
\r
2049 task then a yield must be performed. */
\r
2050 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2052 xYieldPending = pdTRUE;
\r
2056 mtCOVERAGE_TEST_MARKER();
\r
2060 if( pxTCB != NULL )
\r
2062 /* A task was unblocked while the scheduler was suspended,
\r
2063 which may have prevented the next unblock time from being
\r
2064 re-calculated, in which case re-calculate it now. Mainly
\r
2065 important for low power tickless implementations, where
\r
2066 this can prevent an unnecessary exit from low power
\r
2068 prvResetNextTaskUnblockTime();
\r
2071 /* If any ticks occurred while the scheduler was suspended then
\r
2072 they should be processed now. This ensures the tick count does
\r
2073 not slip, and that any delayed tasks are resumed at the correct
\r
2076 UBaseType_t uxPendedCounts = uxPendedTicks; /* Non-volatile copy. */
\r
2078 if( uxPendedCounts > ( UBaseType_t ) 0U )
\r
2082 if( xTaskIncrementTick() != pdFALSE )
\r
2084 xYieldPending = pdTRUE;
\r
2088 mtCOVERAGE_TEST_MARKER();
\r
2091 } while( uxPendedCounts > ( UBaseType_t ) 0U );
\r
2093 uxPendedTicks = 0;
\r
2097 mtCOVERAGE_TEST_MARKER();
\r
2101 if( xYieldPending != pdFALSE )
\r
2103 #if( configUSE_PREEMPTION != 0 )
\r
2105 xAlreadyYielded = pdTRUE;
\r
2108 taskYIELD_IF_USING_PREEMPTION();
\r
2112 mtCOVERAGE_TEST_MARKER();
\r
2118 mtCOVERAGE_TEST_MARKER();
\r
2121 taskEXIT_CRITICAL();
\r
2123 return xAlreadyYielded;
\r
2125 /*-----------------------------------------------------------*/
\r
2127 TickType_t xTaskGetTickCount( void )
\r
2129 TickType_t xTicks;
\r
2131 /* Critical section required if running on a 16 bit processor. */
\r
2132 portTICK_TYPE_ENTER_CRITICAL();
\r
2134 xTicks = xTickCount;
\r
2136 portTICK_TYPE_EXIT_CRITICAL();
\r
2140 /*-----------------------------------------------------------*/
\r
2142 TickType_t xTaskGetTickCountFromISR( void )
\r
2144 TickType_t xReturn;
\r
2145 UBaseType_t uxSavedInterruptStatus;
\r
2147 /* RTOS ports that support interrupt nesting have the concept of a maximum
\r
2148 system call (or maximum API call) interrupt priority. Interrupts that are
\r
2149 above the maximum system call priority are kept permanently enabled, even
\r
2150 when the RTOS kernel is in a critical section, but cannot make any calls to
\r
2151 FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
\r
2152 then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
2153 failure if a FreeRTOS API function is called from an interrupt that has been
\r
2154 assigned a priority above the configured maximum system call priority.
\r
2155 Only FreeRTOS functions that end in FromISR can be called from interrupts
\r
2156 that have been assigned a priority at or (logically) below the maximum
\r
2157 system call interrupt priority. FreeRTOS maintains a separate interrupt
\r
2158 safe API to ensure interrupt entry is as fast and as simple as possible.
\r
2159 More information (albeit Cortex-M specific) is provided on the following
\r
2160 link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
2161 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
2163 uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
\r
2165 xReturn = xTickCount;
\r
2167 portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
2171 /*-----------------------------------------------------------*/
\r
2173 UBaseType_t uxTaskGetNumberOfTasks( void )
\r
2175 /* A critical section is not required because the variables are of type
\r
2177 return uxCurrentNumberOfTasks;
\r
2179 /*-----------------------------------------------------------*/
\r
2181 char *pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2185 /* If null is passed in here then the name of the calling task is being
\r
2187 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
2188 configASSERT( pxTCB );
\r
2189 return &( pxTCB->pcTaskName[ 0 ] );
\r
2191 /*-----------------------------------------------------------*/
\r
2193 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2195 static TCB_t *prvSearchForNameWithinSingleList( List_t *pxList, const char pcNameToQuery[] )
\r
2197 TCB_t *pxNextTCB, *pxFirstTCB, *pxReturn = NULL;
\r
2201 /* This function is called with the scheduler suspended. */
\r
2203 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
2205 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
\r
2209 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
\r
2211 /* Check each character in the name looking for a match or
\r
2213 for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
\r
2215 cNextChar = pxNextTCB->pcTaskName[ x ];
\r
2217 if( cNextChar != pcNameToQuery[ x ] )
\r
2219 /* Characters didn't match. */
\r
2222 else if( cNextChar == 0x00 )
\r
2224 /* Both strings terminated, a match must have been
\r
2226 pxReturn = pxNextTCB;
\r
2231 mtCOVERAGE_TEST_MARKER();
\r
2235 if( pxReturn != NULL )
\r
2237 /* The handle has been found. */
\r
2241 } while( pxNextTCB != pxFirstTCB );
\r
2245 mtCOVERAGE_TEST_MARKER();
\r
2251 #endif /* INCLUDE_xTaskGetHandle */
\r
2252 /*-----------------------------------------------------------*/
\r
2254 #if ( INCLUDE_xTaskGetHandle == 1 )
\r
2256 TaskHandle_t xTaskGetHandle( const char *pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
\r
2258 UBaseType_t uxQueue = configMAX_PRIORITIES;
\r
2261 /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
\r
2262 configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
\r
2264 vTaskSuspendAll();
\r
2266 /* Search the ready lists. */
\r
2270 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
\r
2272 if( pxTCB != NULL )
\r
2274 /* Found the handle. */
\r
2278 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2280 /* Search the delayed lists. */
\r
2281 if( pxTCB == NULL )
\r
2283 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
\r
2286 if( pxTCB == NULL )
\r
2288 pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
\r
2291 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2293 if( pxTCB == NULL )
\r
2295 /* Search the suspended list. */
\r
2296 pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
\r
2301 #if( INCLUDE_vTaskDelete == 1 )
\r
2303 if( pxTCB == NULL )
\r
2305 /* Search the deleted list. */
\r
2306 pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
\r
2311 ( void ) xTaskResumeAll();
\r
2313 return ( TaskHandle_t ) pxTCB;
\r
2316 #endif /* INCLUDE_xTaskGetHandle */
\r
2317 /*-----------------------------------------------------------*/
\r
2319 #if ( configUSE_TRACE_FACILITY == 1 )
\r
2321 UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
\r
2323 UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
\r
2325 vTaskSuspendAll();
\r
2327 /* Is there a space in the array for each task in the system? */
\r
2328 if( uxArraySize >= uxCurrentNumberOfTasks )
\r
2330 /* Fill in an TaskStatus_t structure with information on each
\r
2331 task in the Ready state. */
\r
2335 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
\r
2337 } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2339 /* Fill in an TaskStatus_t structure with information on each
\r
2340 task in the Blocked state. */
\r
2341 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
\r
2342 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
\r
2344 #if( INCLUDE_vTaskDelete == 1 )
\r
2346 /* Fill in an TaskStatus_t structure with information on
\r
2347 each task that has been deleted but not yet cleaned up. */
\r
2348 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
\r
2352 #if ( INCLUDE_vTaskSuspend == 1 )
\r
2354 /* Fill in an TaskStatus_t structure with information on
\r
2355 each task in the Suspended state. */
\r
2356 uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
\r
2360 #if ( configGENERATE_RUN_TIME_STATS == 1)
\r
2362 if( pulTotalRunTime != NULL )
\r
2364 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2365 portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
\r
2367 *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2373 if( pulTotalRunTime != NULL )
\r
2375 *pulTotalRunTime = 0;
\r
2382 mtCOVERAGE_TEST_MARKER();
\r
2385 ( void ) xTaskResumeAll();
\r
2390 #endif /* configUSE_TRACE_FACILITY */
\r
2391 /*----------------------------------------------------------*/
\r
2393 #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
\r
2395 TaskHandle_t xTaskGetIdleTaskHandle( void )
\r
2397 /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
\r
2398 started, then xIdleTaskHandle will be NULL. */
\r
2399 configASSERT( ( xIdleTaskHandle != NULL ) );
\r
2400 return xIdleTaskHandle;
\r
2403 #endif /* INCLUDE_xTaskGetIdleTaskHandle */
\r
2404 /*----------------------------------------------------------*/
\r
2406 /* This conditional compilation should use inequality to 0, not equality to 1.
\r
2407 This is to ensure vTaskStepTick() is available when user defined low power mode
\r
2408 implementations require configUSE_TICKLESS_IDLE to be set to a value other than
\r
2410 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
2412 void vTaskStepTick( const TickType_t xTicksToJump )
\r
2414 /* Correct the tick count value after a period during which the tick
\r
2415 was suppressed. Note this does *not* call the tick hook function for
\r
2416 each stepped tick. */
\r
2417 configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
\r
2418 xTickCount += xTicksToJump;
\r
2419 traceINCREASE_TICK_COUNT( xTicksToJump );
\r
2422 #endif /* configUSE_TICKLESS_IDLE */
\r
2423 /*----------------------------------------------------------*/
\r
2425 #if ( INCLUDE_xTaskAbortDelay == 1 )
\r
2427 BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
\r
2429 TCB_t *pxTCB = ( TCB_t * ) xTask;
\r
2430 BaseType_t xReturn = pdFALSE;
\r
2432 configASSERT( pxTCB );
\r
2434 vTaskSuspendAll();
\r
2436 /* A task can only be prematurely removed from the Blocked state if
\r
2437 it is actually in the Blocked state. */
\r
2438 if( eTaskGetState( xTask ) == eBlocked )
\r
2440 /* Remove the reference to the task from the blocked list. An
\r
2441 interrupt won't touch the xStateListItem because the
\r
2442 scheduler is suspended. */
\r
2443 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2445 /* Is the task waiting on an event also? If so remove it from
\r
2446 the event list too. Interrupts can touch the event list item,
\r
2447 even though the scheduler is suspended, so a critical section
\r
2449 taskENTER_CRITICAL();
\r
2451 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2453 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2454 pxTCB->ucDelayAborted = pdTRUE;
\r
2458 mtCOVERAGE_TEST_MARKER();
\r
2461 taskEXIT_CRITICAL();
\r
2463 /* Place the unblocked task into the appropriate ready list. */
\r
2464 prvAddTaskToReadyList( pxTCB );
\r
2466 /* A task being unblocked cannot cause an immediate context
\r
2467 switch if preemption is turned off. */
\r
2468 #if ( configUSE_PREEMPTION == 1 )
\r
2470 /* Preemption is on, but a context switch should only be
\r
2471 performed if the unblocked task has a priority that is
\r
2472 equal to or higher than the currently executing task. */
\r
2473 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2475 /* Pend the yield to be performed when the scheduler
\r
2476 is unsuspended. */
\r
2477 xYieldPending = pdTRUE;
\r
2481 mtCOVERAGE_TEST_MARKER();
\r
2484 #endif /* configUSE_PREEMPTION */
\r
2488 mtCOVERAGE_TEST_MARKER();
\r
2496 #endif /* INCLUDE_xTaskAbortDelay */
\r
2497 /*----------------------------------------------------------*/
\r
2499 BaseType_t xTaskIncrementTick( void )
\r
2502 TickType_t xItemValue;
\r
2503 BaseType_t xSwitchRequired = pdFALSE;
\r
2505 /* Called by the portable layer each time a tick interrupt occurs.
\r
2506 Increments the tick then checks to see if the new tick value will cause any
\r
2507 tasks to be unblocked. */
\r
2508 traceTASK_INCREMENT_TICK( xTickCount );
\r
2509 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2511 /* Minor optimisation. The tick count cannot change in this
\r
2513 const TickType_t xConstTickCount = xTickCount + 1;
\r
2515 /* Increment the RTOS tick, switching the delayed and overflowed
\r
2516 delayed lists if it wraps to 0. */
\r
2517 xTickCount = xConstTickCount;
\r
2519 if( xConstTickCount == ( TickType_t ) 0U )
\r
2521 taskSWITCH_DELAYED_LISTS();
\r
2525 mtCOVERAGE_TEST_MARKER();
\r
2528 /* See if this tick has made a timeout expire. Tasks are stored in
\r
2529 the queue in the order of their wake time - meaning once one task
\r
2530 has been found whose block time has not expired there is no need to
\r
2531 look any further down the list. */
\r
2532 if( xConstTickCount >= xNextTaskUnblockTime )
\r
2536 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
2538 /* The delayed list is empty. Set xNextTaskUnblockTime
\r
2539 to the maximum possible value so it is extremely
\r
2541 if( xTickCount >= xNextTaskUnblockTime ) test will pass
\r
2542 next time through. */
\r
2543 xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
2548 /* The delayed list is not empty, get the value of the
\r
2549 item at the head of the delayed list. This is the time
\r
2550 at which the task at the head of the delayed list must
\r
2551 be removed from the Blocked state. */
\r
2552 pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
2553 xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
\r
2555 if( xConstTickCount < xItemValue )
\r
2557 /* It is not time to unblock this item yet, but the
\r
2558 item value is the time at which the task at the head
\r
2559 of the blocked list must be removed from the Blocked
\r
2560 state - so record the item value in
\r
2561 xNextTaskUnblockTime. */
\r
2562 xNextTaskUnblockTime = xItemValue;
\r
2567 mtCOVERAGE_TEST_MARKER();
\r
2570 /* It is time to remove the item from the Blocked state. */
\r
2571 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
2573 /* Is the task waiting on an event also? If so remove
\r
2574 it from the event list. */
\r
2575 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
2577 ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
\r
2581 mtCOVERAGE_TEST_MARKER();
\r
2584 /* Place the unblocked task into the appropriate ready
\r
2586 prvAddTaskToReadyList( pxTCB );
\r
2588 /* A task being unblocked cannot cause an immediate
\r
2589 context switch if preemption is turned off. */
\r
2590 #if ( configUSE_PREEMPTION == 1 )
\r
2592 /* Preemption is on, but a context switch should
\r
2593 only be performed if the unblocked task has a
\r
2594 priority that is equal to or higher than the
\r
2595 currently executing task. */
\r
2596 if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
\r
2598 xSwitchRequired = pdTRUE;
\r
2602 mtCOVERAGE_TEST_MARKER();
\r
2605 #endif /* configUSE_PREEMPTION */
\r
2610 /* Tasks of equal priority to the currently running task will share
\r
2611 processing time (time slice) if preemption is on, and the application
\r
2612 writer has not explicitly turned time slicing off. */
\r
2613 #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
\r
2615 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
\r
2617 xSwitchRequired = pdTRUE;
\r
2621 mtCOVERAGE_TEST_MARKER();
\r
2624 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
\r
2626 #if ( configUSE_TICK_HOOK == 1 )
\r
2628 /* Guard against the tick hook being called when the pended tick
\r
2629 count is being unwound (when the scheduler is being unlocked). */
\r
2630 if( uxPendedTicks == ( UBaseType_t ) 0U )
\r
2632 vApplicationTickHook();
\r
2636 mtCOVERAGE_TEST_MARKER();
\r
2639 #endif /* configUSE_TICK_HOOK */
\r
2645 /* The tick hook gets called at regular intervals, even if the
\r
2646 scheduler is locked. */
\r
2647 #if ( configUSE_TICK_HOOK == 1 )
\r
2649 vApplicationTickHook();
\r
2654 #if ( configUSE_PREEMPTION == 1 )
\r
2656 if( xYieldPending != pdFALSE )
\r
2658 xSwitchRequired = pdTRUE;
\r
2662 mtCOVERAGE_TEST_MARKER();
\r
2665 #endif /* configUSE_PREEMPTION */
\r
2667 return xSwitchRequired;
\r
2669 /*-----------------------------------------------------------*/
\r
2671 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2673 void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
\r
2677 /* If xTask is NULL then it is the task hook of the calling task that is
\r
2679 if( xTask == NULL )
\r
2681 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2685 xTCB = ( TCB_t * ) xTask;
\r
2688 /* Save the hook function in the TCB. A critical section is required as
\r
2689 the value can be accessed from an interrupt. */
\r
2690 taskENTER_CRITICAL();
\r
2691 xTCB->pxTaskTag = pxHookFunction;
\r
2692 taskEXIT_CRITICAL();
\r
2695 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2696 /*-----------------------------------------------------------*/
\r
2698 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2700 TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
\r
2703 TaskHookFunction_t xReturn;
\r
2705 /* If xTask is NULL then we are setting our own task hook. */
\r
2706 if( xTask == NULL )
\r
2708 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2712 xTCB = ( TCB_t * ) xTask;
\r
2715 /* Save the hook function in the TCB. A critical section is required as
\r
2716 the value can be accessed from an interrupt. */
\r
2717 taskENTER_CRITICAL();
\r
2719 xReturn = xTCB->pxTaskTag;
\r
2721 taskEXIT_CRITICAL();
\r
2726 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2727 /*-----------------------------------------------------------*/
\r
2729 #if ( configUSE_APPLICATION_TASK_TAG == 1 )
\r
2731 BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
\r
2734 BaseType_t xReturn;
\r
2736 /* If xTask is NULL then we are calling our own task hook. */
\r
2737 if( xTask == NULL )
\r
2739 xTCB = ( TCB_t * ) pxCurrentTCB;
\r
2743 xTCB = ( TCB_t * ) xTask;
\r
2746 if( xTCB->pxTaskTag != NULL )
\r
2748 xReturn = xTCB->pxTaskTag( pvParameter );
\r
2758 #endif /* configUSE_APPLICATION_TASK_TAG */
\r
2759 /*-----------------------------------------------------------*/
\r
2761 void vTaskSwitchContext( void )
\r
2763 if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
\r
2765 /* The scheduler is currently suspended - do not allow a context
\r
2767 xYieldPending = pdTRUE;
\r
2771 xYieldPending = pdFALSE;
\r
2772 traceTASK_SWITCHED_OUT();
\r
2774 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
2776 #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
\r
2777 portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
\r
2779 ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
\r
2782 /* Add the amount of time the task has been running to the
\r
2783 accumulated time so far. The time the task started running was
\r
2784 stored in ulTaskSwitchedInTime. Note that there is no overflow
\r
2785 protection here so count values are only valid until the timer
\r
2786 overflows. The guard against negative values is to protect
\r
2787 against suspect run time stat counter implementations - which
\r
2788 are provided by the application, not the kernel. */
\r
2789 if( ulTotalRunTime > ulTaskSwitchedInTime )
\r
2791 pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
\r
2795 mtCOVERAGE_TEST_MARKER();
\r
2797 ulTaskSwitchedInTime = ulTotalRunTime;
\r
2799 #endif /* configGENERATE_RUN_TIME_STATS */
\r
2801 /* Check for stack overflow, if configured. */
\r
2802 taskCHECK_FOR_STACK_OVERFLOW();
\r
2804 /* Select a new task to run using either the generic C or port
\r
2805 optimised asm code. */
\r
2806 taskSELECT_HIGHEST_PRIORITY_TASK();
\r
2807 traceTASK_SWITCHED_IN();
\r
2809 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
2811 /* Switch Newlib's _impure_ptr variable to point to the _reent
\r
2812 structure specific to this task. */
\r
2813 _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
\r
2815 #endif /* configUSE_NEWLIB_REENTRANT */
\r
2818 /*-----------------------------------------------------------*/
\r
2820 void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
\r
2822 configASSERT( pxEventList );
\r
2824 /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
\r
2825 SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
\r
2827 /* Place the event list item of the TCB in the appropriate event list.
\r
2828 This is placed in the list in priority order so the highest priority task
\r
2829 is the first to be woken by the event. The queue that contains the event
\r
2830 list is locked, preventing simultaneous access from interrupts. */
\r
2831 vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
2833 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
2835 /*-----------------------------------------------------------*/
\r
2837 void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
\r
2839 configASSERT( pxEventList );
\r
2841 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
2842 the event groups implementation. */
\r
2843 configASSERT( uxSchedulerSuspended != 0 );
\r
2845 /* Store the item value in the event list item. It is safe to access the
\r
2846 event list item here as interrupts won't access the event list item of a
\r
2847 task that is not in the Blocked state. */
\r
2848 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
2850 /* Place the event list item of the TCB at the end of the appropriate event
\r
2851 list. It is safe to access the event list here because it is part of an
\r
2852 event group implementation - and interrupts don't access event groups
\r
2853 directly (instead they access them indirectly by pending function calls to
\r
2854 the task level). */
\r
2855 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
2857 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
2859 /*-----------------------------------------------------------*/
\r
2861 #if( configUSE_TIMERS == 1 )
\r
2863 void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely )
\r
2865 configASSERT( pxEventList );
\r
2867 /* This function should not be called by application code hence the
\r
2868 'Restricted' in its name. It is not part of the public API. It is
\r
2869 designed for use by kernel code, and has special calling requirements -
\r
2870 it should be called with the scheduler suspended. */
\r
2873 /* Place the event list item of the TCB in the appropriate event list.
\r
2874 In this case it is assume that this is the only task that is going to
\r
2875 be waiting on this event list, so the faster vListInsertEnd() function
\r
2876 can be used in place of vListInsert. */
\r
2877 vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
\r
2879 /* If the task should block indefinitely then set the block time to a
\r
2880 value that will be recognised as an indefinite delay inside the
\r
2881 prvAddCurrentTaskToDelayedList() function. */
\r
2882 if( xWaitIndefinitely != pdFALSE )
\r
2884 xTicksToWait = portMAX_DELAY;
\r
2887 traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
\r
2888 prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
\r
2891 #endif /* configUSE_TIMERS */
\r
2892 /*-----------------------------------------------------------*/
\r
2894 BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
\r
2896 TCB_t *pxUnblockedTCB;
\r
2897 BaseType_t xReturn;
\r
2899 /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
\r
2900 called from a critical section within an ISR. */
\r
2902 /* The event list is sorted in priority order, so the first in the list can
\r
2903 be removed as it is known to be the highest priority. Remove the TCB from
\r
2904 the delayed list, and add it to the ready list.
\r
2906 If an event is for a queue that is locked then this function will never
\r
2907 get called - the lock count on the queue will get modified instead. This
\r
2908 means exclusive access to the event list is guaranteed here.
\r
2910 This function assumes that a check has already been made to ensure that
\r
2911 pxEventList is not empty. */
\r
2912 pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
\r
2913 configASSERT( pxUnblockedTCB );
\r
2914 ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
\r
2916 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
2918 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
2919 prvAddTaskToReadyList( pxUnblockedTCB );
\r
2923 /* The delayed and ready lists cannot be accessed, so hold this task
\r
2924 pending until the scheduler is resumed. */
\r
2925 vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
\r
2928 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2930 /* Return true if the task removed from the event list has a higher
\r
2931 priority than the calling task. This allows the calling task to know if
\r
2932 it should force a context switch now. */
\r
2935 /* Mark that a yield is pending in case the user is not using the
\r
2936 "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
2937 xYieldPending = pdTRUE;
\r
2941 xReturn = pdFALSE;
\r
2944 #if( configUSE_TICKLESS_IDLE != 0 )
\r
2946 /* If a task is blocked on a kernel object then xNextTaskUnblockTime
\r
2947 might be set to the blocked task's time out time. If the task is
\r
2948 unblocked for a reason other than a timeout xNextTaskUnblockTime is
\r
2949 normally left unchanged, because it is automatically reset to a new
\r
2950 value when the tick count equals xNextTaskUnblockTime. However if
\r
2951 tickless idling is used it might be more important to enter sleep mode
\r
2952 at the earliest possible time - so reset xNextTaskUnblockTime here to
\r
2953 ensure it is updated at the earliest possible time. */
\r
2954 prvResetNextTaskUnblockTime();
\r
2960 /*-----------------------------------------------------------*/
\r
2962 BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
\r
2964 TCB_t *pxUnblockedTCB;
\r
2965 BaseType_t xReturn;
\r
2967 /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
\r
2968 the event flags implementation. */
\r
2969 configASSERT( uxSchedulerSuspended != pdFALSE );
\r
2971 /* Store the new item value in the event list. */
\r
2972 listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
\r
2974 /* Remove the event list form the event flag. Interrupts do not access
\r
2976 pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem );
\r
2977 configASSERT( pxUnblockedTCB );
\r
2978 ( void ) uxListRemove( pxEventListItem );
\r
2980 /* Remove the task from the delayed list and add it to the ready list. The
\r
2981 scheduler is suspended so interrupts will not be accessing the ready
\r
2983 ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
\r
2984 prvAddTaskToReadyList( pxUnblockedTCB );
\r
2986 if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
2988 /* Return true if the task removed from the event list has
\r
2989 a higher priority than the calling task. This allows
\r
2990 the calling task to know if it should force a context
\r
2994 /* Mark that a yield is pending in case the user is not using the
\r
2995 "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
\r
2996 xYieldPending = pdTRUE;
\r
3000 xReturn = pdFALSE;
\r
3005 /*-----------------------------------------------------------*/
\r
3007 void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
\r
3009 configASSERT( pxTimeOut );
\r
3010 pxTimeOut->xOverflowCount = xNumOfOverflows;
\r
3011 pxTimeOut->xTimeOnEntering = xTickCount;
\r
3013 /*-----------------------------------------------------------*/
\r
3015 BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
\r
3017 BaseType_t xReturn;
\r
3019 configASSERT( pxTimeOut );
\r
3020 configASSERT( pxTicksToWait );
\r
3022 taskENTER_CRITICAL();
\r
3024 /* Minor optimisation. The tick count cannot change in this block. */
\r
3025 const TickType_t xConstTickCount = xTickCount;
\r
3027 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
3028 if( pxCurrentTCB->ucDelayAborted != pdFALSE )
\r
3030 /* The delay was aborted, which is not the same as a time out,
\r
3031 but has the same result. */
\r
3032 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
3038 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3039 if( *pxTicksToWait == portMAX_DELAY )
\r
3041 /* If INCLUDE_vTaskSuspend is set to 1 and the block time
\r
3042 specified is the maximum block time then the task should block
\r
3043 indefinitely, and therefore never time out. */
\r
3044 xReturn = pdFALSE;
\r
3049 if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
\r
3051 /* The tick count is greater than the time at which
\r
3052 vTaskSetTimeout() was called, but has also overflowed since
\r
3053 vTaskSetTimeOut() was called. It must have wrapped all the way
\r
3054 around and gone past again. This passed since vTaskSetTimeout()
\r
3058 else if( ( ( TickType_t ) ( xConstTickCount - pxTimeOut->xTimeOnEntering ) ) < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
\r
3060 /* Not a genuine timeout. Adjust parameters for time remaining. */
\r
3061 *pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering );
\r
3062 vTaskSetTimeOutState( pxTimeOut );
\r
3063 xReturn = pdFALSE;
\r
3070 taskEXIT_CRITICAL();
\r
3074 /*-----------------------------------------------------------*/
\r
3076 void vTaskMissedYield( void )
\r
3078 xYieldPending = pdTRUE;
\r
3080 /*-----------------------------------------------------------*/
\r
3082 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3084 UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
\r
3086 UBaseType_t uxReturn;
\r
3089 if( xTask != NULL )
\r
3091 pxTCB = ( TCB_t * ) xTask;
\r
3092 uxReturn = pxTCB->uxTaskNumber;
\r
3102 #endif /* configUSE_TRACE_FACILITY */
\r
3103 /*-----------------------------------------------------------*/
\r
3105 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3107 void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
\r
3111 if( xTask != NULL )
\r
3113 pxTCB = ( TCB_t * ) xTask;
\r
3114 pxTCB->uxTaskNumber = uxHandle;
\r
3118 #endif /* configUSE_TRACE_FACILITY */
\r
3121 * -----------------------------------------------------------
\r
3123 * ----------------------------------------------------------
\r
3125 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
\r
3126 * language extensions. The equivalent prototype for this function is:
\r
3128 * void prvIdleTask( void *pvParameters );
\r
3131 static portTASK_FUNCTION( prvIdleTask, pvParameters )
\r
3133 /* Stop warnings. */
\r
3134 ( void ) pvParameters;
\r
3136 /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
\r
3137 SCHEDULER IS STARTED. **/
\r
3141 /* See if any tasks have deleted themselves - if so then the idle task
\r
3142 is responsible for freeing the deleted task's TCB and stack. */
\r
3143 prvCheckTasksWaitingTermination();
\r
3145 #if ( configUSE_PREEMPTION == 0 )
\r
3147 /* If we are not using preemption we keep forcing a task switch to
\r
3148 see if any other task has become available. If we are using
\r
3149 preemption we don't need to do this as any task becoming available
\r
3150 will automatically get the processor anyway. */
\r
3153 #endif /* configUSE_PREEMPTION */
\r
3155 #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
\r
3157 /* When using preemption tasks of equal priority will be
\r
3158 timesliced. If a task that is sharing the idle priority is ready
\r
3159 to run then the idle task should yield before the end of the
\r
3162 A critical region is not required here as we are just reading from
\r
3163 the list, and an occasional incorrect value will not matter. If
\r
3164 the ready list at the idle priority contains more than one task
\r
3165 then a task other than the idle task is ready to execute. */
\r
3166 if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
\r
3172 mtCOVERAGE_TEST_MARKER();
\r
3175 #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
\r
3177 #if ( configUSE_IDLE_HOOK == 1 )
\r
3179 extern void vApplicationIdleHook( void );
\r
3181 /* Call the user defined function from within the idle task. This
\r
3182 allows the application designer to add background functionality
\r
3183 without the overhead of a separate task.
\r
3184 NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
\r
3185 CALL A FUNCTION THAT MIGHT BLOCK. */
\r
3186 vApplicationIdleHook();
\r
3188 #endif /* configUSE_IDLE_HOOK */
\r
3190 /* This conditional compilation should use inequality to 0, not equality
\r
3191 to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
\r
3192 user defined low power mode implementations require
\r
3193 configUSE_TICKLESS_IDLE to be set to a value other than 1. */
\r
3194 #if ( configUSE_TICKLESS_IDLE != 0 )
\r
3196 TickType_t xExpectedIdleTime;
\r
3198 /* It is not desirable to suspend then resume the scheduler on
\r
3199 each iteration of the idle task. Therefore, a preliminary
\r
3200 test of the expected idle time is performed without the
\r
3201 scheduler suspended. The result here is not necessarily
\r
3203 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3205 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3207 vTaskSuspendAll();
\r
3209 /* Now the scheduler is suspended, the expected idle
\r
3210 time can be sampled again, and this time its value can
\r
3212 configASSERT( xNextTaskUnblockTime >= xTickCount );
\r
3213 xExpectedIdleTime = prvGetExpectedIdleTime();
\r
3215 if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
\r
3217 traceLOW_POWER_IDLE_BEGIN();
\r
3218 portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
\r
3219 traceLOW_POWER_IDLE_END();
\r
3223 mtCOVERAGE_TEST_MARKER();
\r
3226 ( void ) xTaskResumeAll();
\r
3230 mtCOVERAGE_TEST_MARKER();
\r
3233 #endif /* configUSE_TICKLESS_IDLE */
\r
3236 /*-----------------------------------------------------------*/
\r
3238 #if( configUSE_TICKLESS_IDLE != 0 )
\r
3240 eSleepModeStatus eTaskConfirmSleepModeStatus( void )
\r
3242 /* The idle task exists in addition to the application tasks. */
\r
3243 const UBaseType_t uxNonApplicationTasks = 1;
\r
3244 eSleepModeStatus eReturn = eStandardSleep;
\r
3246 if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
\r
3248 /* A task was made ready while the scheduler was suspended. */
\r
3249 eReturn = eAbortSleep;
\r
3251 else if( xYieldPending != pdFALSE )
\r
3253 /* A yield was pended while the scheduler was suspended. */
\r
3254 eReturn = eAbortSleep;
\r
3258 /* If all the tasks are in the suspended list (which might mean they
\r
3259 have an infinite block time rather than actually being suspended)
\r
3260 then it is safe to turn all clocks off and just wait for external
\r
3262 if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
\r
3264 eReturn = eNoTasksWaitingTimeout;
\r
3268 mtCOVERAGE_TEST_MARKER();
\r
3275 #endif /* configUSE_TICKLESS_IDLE */
\r
3276 /*-----------------------------------------------------------*/
\r
3278 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3280 void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue )
\r
3284 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3286 pxTCB = prvGetTCBFromHandle( xTaskToSet );
\r
3287 pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
\r
3291 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3292 /*-----------------------------------------------------------*/
\r
3294 #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
\r
3296 void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex )
\r
3298 void *pvReturn = NULL;
\r
3301 if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
\r
3303 pxTCB = prvGetTCBFromHandle( xTaskToQuery );
\r
3304 pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
\r
3314 #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
\r
3315 /*-----------------------------------------------------------*/
\r
3317 #if ( portUSING_MPU_WRAPPERS == 1 )
\r
3319 void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
\r
3323 /* If null is passed in here then we are modifying the MPU settings of
\r
3324 the calling task. */
\r
3325 pxTCB = prvGetTCBFromHandle( xTaskToModify );
\r
3327 vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
\r
3330 #endif /* portUSING_MPU_WRAPPERS */
\r
3331 /*-----------------------------------------------------------*/
\r
3333 static void prvInitialiseTaskLists( void )
\r
3335 UBaseType_t uxPriority;
\r
3337 for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
\r
3339 vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
\r
3342 vListInitialise( &xDelayedTaskList1 );
\r
3343 vListInitialise( &xDelayedTaskList2 );
\r
3344 vListInitialise( &xPendingReadyList );
\r
3346 #if ( INCLUDE_vTaskDelete == 1 )
\r
3348 vListInitialise( &xTasksWaitingTermination );
\r
3350 #endif /* INCLUDE_vTaskDelete */
\r
3352 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3354 vListInitialise( &xSuspendedTaskList );
\r
3356 #endif /* INCLUDE_vTaskSuspend */
\r
3358 /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
\r
3360 pxDelayedTaskList = &xDelayedTaskList1;
\r
3361 pxOverflowDelayedTaskList = &xDelayedTaskList2;
\r
3363 /*-----------------------------------------------------------*/
\r
3365 static void prvCheckTasksWaitingTermination( void )
\r
3368 /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
\r
3370 #if ( INCLUDE_vTaskDelete == 1 )
\r
3372 BaseType_t xListIsEmpty;
\r
3374 /* ucTasksDeleted is used to prevent vTaskSuspendAll() being called
\r
3375 too often in the idle task. */
\r
3376 while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
\r
3378 vTaskSuspendAll();
\r
3380 xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination );
\r
3382 ( void ) xTaskResumeAll();
\r
3384 if( xListIsEmpty == pdFALSE )
\r
3388 taskENTER_CRITICAL();
\r
3390 pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
\r
3391 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
3392 --uxCurrentNumberOfTasks;
\r
3393 --uxDeletedTasksWaitingCleanUp;
\r
3395 taskEXIT_CRITICAL();
\r
3397 prvDeleteTCB( pxTCB );
\r
3401 mtCOVERAGE_TEST_MARKER();
\r
3405 #endif /* INCLUDE_vTaskDelete */
\r
3407 /*-----------------------------------------------------------*/
\r
3409 #if( configUSE_TRACE_FACILITY == 1 )
\r
3411 void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t *pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState )
\r
3415 /* xTask is NULL then get the state of the calling task. */
\r
3416 pxTCB = prvGetTCBFromHandle( xTask );
\r
3418 pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
\r
3419 pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName [ 0 ] );
\r
3420 pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
\r
3421 pxTaskStatus->pxStackBase = pxTCB->pxStack;
\r
3422 pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
\r
3424 #if ( INCLUDE_vTaskSuspend == 1 )
\r
3426 /* If the task is in the suspended list then there is a chance it is
\r
3427 actually just blocked indefinitely - so really it should be reported as
\r
3428 being in the Blocked state. */
\r
3429 if( pxTaskStatus->eCurrentState == eSuspended )
\r
3431 vTaskSuspendAll();
\r
3433 if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
\r
3435 pxTaskStatus->eCurrentState = eBlocked;
\r
3441 #endif /* INCLUDE_vTaskSuspend */
\r
3443 #if ( configUSE_MUTEXES == 1 )
\r
3445 pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
\r
3449 pxTaskStatus->uxBasePriority = 0;
\r
3453 #if ( configGENERATE_RUN_TIME_STATS == 1 )
\r
3455 pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
\r
3459 pxTaskStatus->ulRunTimeCounter = 0;
\r
3463 /* Obtaining the task state is a little fiddly, so is only done if the value
\r
3464 of eState passed into this function is eInvalid - otherwise the state is
\r
3465 just set to whatever is passed in. */
\r
3466 if( eState != eInvalid )
\r
3468 pxTaskStatus->eCurrentState = eState;
\r
3472 pxTaskStatus->eCurrentState = eTaskGetState( xTask );
\r
3475 /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
\r
3476 parameter is provided to allow it to be skipped. */
\r
3477 if( xGetFreeStackSpace != pdFALSE )
\r
3479 #if ( portSTACK_GROWTH > 0 )
\r
3481 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
\r
3485 pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
\r
3491 pxTaskStatus->usStackHighWaterMark = 0;
\r
3495 #endif /* configUSE_TRACE_FACILITY */
\r
3496 /*-----------------------------------------------------------*/
\r
3498 #if ( configUSE_TRACE_FACILITY == 1 )
\r
3500 static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
\r
3502 volatile TCB_t *pxNextTCB, *pxFirstTCB;
\r
3503 UBaseType_t uxTask = 0;
\r
3505 if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
\r
3507 listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
\r
3509 /* Populate an TaskStatus_t structure within the
\r
3510 pxTaskStatusArray array for each task that is referenced from
\r
3511 pxList. See the definition of TaskStatus_t in task.h for the
\r
3512 meaning of each TaskStatus_t structure member. */
\r
3515 listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
\r
3516 vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
\r
3518 } while( pxNextTCB != pxFirstTCB );
\r
3522 mtCOVERAGE_TEST_MARKER();
\r
3528 #endif /* configUSE_TRACE_FACILITY */
\r
3529 /*-----------------------------------------------------------*/
\r
3531 #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
\r
3533 static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
\r
3535 uint32_t ulCount = 0U;
\r
3537 while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
\r
3539 pucStackByte -= portSTACK_GROWTH;
\r
3543 ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
\r
3545 return ( uint16_t ) ulCount;
\r
3548 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */
\r
3549 /*-----------------------------------------------------------*/
\r
3551 #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
\r
3553 UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
\r
3556 uint8_t *pucEndOfStack;
\r
3557 UBaseType_t uxReturn;
\r
3559 pxTCB = prvGetTCBFromHandle( xTask );
\r
3561 #if portSTACK_GROWTH < 0
\r
3563 pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
\r
3567 pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
\r
3571 uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
\r
3576 #endif /* INCLUDE_uxTaskGetStackHighWaterMark */
\r
3577 /*-----------------------------------------------------------*/
\r
3579 #if ( INCLUDE_vTaskDelete == 1 )
\r
3581 static void prvDeleteTCB( TCB_t *pxTCB )
\r
3583 /* This call is required specifically for the TriCore port. It must be
\r
3584 above the vPortFree() calls. The call is also used by ports/demos that
\r
3585 want to allocate and clean RAM statically. */
\r
3586 portCLEAN_UP_TCB( pxTCB );
\r
3588 /* Free up the memory allocated by the scheduler for the task. It is up
\r
3589 to the task to free any memory allocated at the application level. */
\r
3590 #if ( configUSE_NEWLIB_REENTRANT == 1 )
\r
3592 _reclaim_reent( &( pxTCB->xNewLib_reent ) );
\r
3594 #endif /* configUSE_NEWLIB_REENTRANT */
\r
3596 #if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
\r
3598 /* The task can only have been allocated dynamically - free both
\r
3599 the stack and TCB. */
\r
3600 vPortFree( pxTCB->pxStack );
\r
3601 vPortFree( pxTCB );
\r
3603 #elif( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
\r
3605 /* The task could have been allocated statically or dynamically, so
\r
3606 check what was statically allocated before trying to free the
\r
3608 if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
\r
3610 /* Both the stack and TCB were allocated dynamically, so both
\r
3612 vPortFree( pxTCB->pxStack );
\r
3613 vPortFree( pxTCB );
\r
3615 else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
\r
3617 /* Only the stack was statically allocated, so the TCB is the
\r
3618 only memory that must be freed. */
\r
3619 vPortFree( pxTCB );
\r
3623 /* Neither the stack nor the TCB were allocated dynamically, so
\r
3624 nothing needs to be freed. */
\r
3625 configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
\r
3626 mtCOVERAGE_TEST_MARKER();
\r
3629 #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
\r
3632 #endif /* INCLUDE_vTaskDelete */
\r
3633 /*-----------------------------------------------------------*/
\r
3635 static void prvResetNextTaskUnblockTime( void )
\r
3639 if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
\r
3641 /* The new current delayed list is empty. Set xNextTaskUnblockTime to
\r
3642 the maximum possible value so it is extremely unlikely that the
\r
3643 if( xTickCount >= xNextTaskUnblockTime ) test will pass until
\r
3644 there is an item in the delayed list. */
\r
3645 xNextTaskUnblockTime = portMAX_DELAY;
\r
3649 /* The new current delayed list is not empty, get the value of
\r
3650 the item at the head of the delayed list. This is the time at
\r
3651 which the task at the head of the delayed list should be removed
\r
3652 from the Blocked state. */
\r
3653 ( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
\r
3654 xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) );
\r
3657 /*-----------------------------------------------------------*/
\r
3659 #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
\r
3661 TaskHandle_t xTaskGetCurrentTaskHandle( void )
\r
3663 TaskHandle_t xReturn;
\r
3665 /* A critical section is not required as this is not called from
\r
3666 an interrupt and the current TCB will always be the same for any
\r
3667 individual execution thread. */
\r
3668 xReturn = pxCurrentTCB;
\r
3673 #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
\r
3674 /*-----------------------------------------------------------*/
\r
3676 #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
\r
3678 BaseType_t xTaskGetSchedulerState( void )
\r
3680 BaseType_t xReturn;
\r
3682 if( xSchedulerRunning == pdFALSE )
\r
3684 xReturn = taskSCHEDULER_NOT_STARTED;
\r
3688 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
3690 xReturn = taskSCHEDULER_RUNNING;
\r
3694 xReturn = taskSCHEDULER_SUSPENDED;
\r
3701 #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
\r
3702 /*-----------------------------------------------------------*/
\r
3704 #if ( configUSE_MUTEXES == 1 )
\r
3706 void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
\r
3708 TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
\r
3710 /* If the mutex was given back by an interrupt while the queue was
\r
3711 locked then the mutex holder might now be NULL. */
\r
3712 if( pxMutexHolder != NULL )
\r
3714 /* If the holder of the mutex has a priority below the priority of
\r
3715 the task attempting to obtain the mutex then it will temporarily
\r
3716 inherit the priority of the task attempting to obtain the mutex. */
\r
3717 if( pxTCB->uxPriority < pxCurrentTCB->uxPriority )
\r
3719 /* Adjust the mutex holder state to account for its new
\r
3720 priority. Only reset the event list item value if the value is
\r
3721 not being used for anything else. */
\r
3722 if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
\r
3724 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
3728 mtCOVERAGE_TEST_MARKER();
\r
3731 /* If the task being modified is in the ready state it will need
\r
3732 to be moved into a new list. */
\r
3733 if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
\r
3735 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
3737 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
3741 mtCOVERAGE_TEST_MARKER();
\r
3744 /* Inherit the priority before being moved into the new list. */
\r
3745 pxTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
3746 prvAddTaskToReadyList( pxTCB );
\r
3750 /* Just inherit the priority. */
\r
3751 pxTCB->uxPriority = pxCurrentTCB->uxPriority;
\r
3754 traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB->uxPriority );
\r
3758 mtCOVERAGE_TEST_MARKER();
\r
3763 mtCOVERAGE_TEST_MARKER();
\r
3767 #endif /* configUSE_MUTEXES */
\r
3768 /*-----------------------------------------------------------*/
\r
3770 #if ( configUSE_MUTEXES == 1 )
\r
3772 BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
\r
3774 TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
\r
3775 BaseType_t xReturn = pdFALSE;
\r
3777 if( pxMutexHolder != NULL )
\r
3779 /* A task can only have an inherited priority if it holds the mutex.
\r
3780 If the mutex is held by a task then it cannot be given from an
\r
3781 interrupt, and if a mutex is given by the holding task then it must
\r
3782 be the running state task. */
\r
3783 configASSERT( pxTCB == pxCurrentTCB );
\r
3785 configASSERT( pxTCB->uxMutexesHeld );
\r
3786 ( pxTCB->uxMutexesHeld )--;
\r
3788 /* Has the holder of the mutex inherited the priority of another
\r
3790 if( pxTCB->uxPriority != pxTCB->uxBasePriority )
\r
3792 /* Only disinherit if no other mutexes are held. */
\r
3793 if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
\r
3795 /* A task can only have an inherited priority if it holds
\r
3796 the mutex. If the mutex is held by a task then it cannot be
\r
3797 given from an interrupt, and if a mutex is given by the
\r
3798 holding task then it must be the running state task. Remove
\r
3799 the holding task from the ready list. */
\r
3800 if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
3802 taskRESET_READY_PRIORITY( pxTCB->uxPriority );
\r
3806 mtCOVERAGE_TEST_MARKER();
\r
3809 /* Disinherit the priority before adding the task into the
\r
3810 new ready list. */
\r
3811 traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
\r
3812 pxTCB->uxPriority = pxTCB->uxBasePriority;
\r
3814 /* Reset the event list item value. It cannot be in use for
\r
3815 any other purpose if this task is running, and it must be
\r
3816 running to give back the mutex. */
\r
3817 listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
3818 prvAddTaskToReadyList( pxTCB );
\r
3820 /* Return true to indicate that a context switch is required.
\r
3821 This is only actually required in the corner case whereby
\r
3822 multiple mutexes were held and the mutexes were given back
\r
3823 in an order different to that in which they were taken.
\r
3824 If a context switch did not occur when the first mutex was
\r
3825 returned, even if a task was waiting on it, then a context
\r
3826 switch should occur when the last mutex is returned whether
\r
3827 a task is waiting on it or not. */
\r
3832 mtCOVERAGE_TEST_MARKER();
\r
3837 mtCOVERAGE_TEST_MARKER();
\r
3842 mtCOVERAGE_TEST_MARKER();
\r
3848 #endif /* configUSE_MUTEXES */
\r
3849 /*-----------------------------------------------------------*/
\r
3851 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
3853 void vTaskEnterCritical( void )
\r
3855 portDISABLE_INTERRUPTS();
\r
3857 if( xSchedulerRunning != pdFALSE )
\r
3859 ( pxCurrentTCB->uxCriticalNesting )++;
\r
3861 /* This is not the interrupt safe version of the enter critical
\r
3862 function so assert() if it is being called from an interrupt
\r
3863 context. Only API functions that end in "FromISR" can be used in an
\r
3864 interrupt. Only assert if the critical nesting count is 1 to
\r
3865 protect against recursive calls if the assert function also uses a
\r
3866 critical section. */
\r
3867 if( pxCurrentTCB->uxCriticalNesting == 1 )
\r
3869 portASSERT_IF_IN_ISR();
\r
3874 mtCOVERAGE_TEST_MARKER();
\r
3878 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
3879 /*-----------------------------------------------------------*/
\r
3881 #if ( portCRITICAL_NESTING_IN_TCB == 1 )
\r
3883 void vTaskExitCritical( void )
\r
3885 if( xSchedulerRunning != pdFALSE )
\r
3887 if( pxCurrentTCB->uxCriticalNesting > 0U )
\r
3889 ( pxCurrentTCB->uxCriticalNesting )--;
\r
3891 if( pxCurrentTCB->uxCriticalNesting == 0U )
\r
3893 portENABLE_INTERRUPTS();
\r
3897 mtCOVERAGE_TEST_MARKER();
\r
3902 mtCOVERAGE_TEST_MARKER();
\r
3907 mtCOVERAGE_TEST_MARKER();
\r
3911 #endif /* portCRITICAL_NESTING_IN_TCB */
\r
3912 /*-----------------------------------------------------------*/
\r
3914 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
3916 static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName )
\r
3920 /* Start by copying the entire string. */
\r
3921 strcpy( pcBuffer, pcTaskName );
\r
3923 /* Pad the end of the string with spaces to ensure columns line up when
\r
3925 for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
\r
3927 pcBuffer[ x ] = ' ';
\r
3931 pcBuffer[ x ] = 0x00;
\r
3933 /* Return the new end of string. */
\r
3934 return &( pcBuffer[ x ] );
\r
3937 #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
\r
3938 /*-----------------------------------------------------------*/
\r
3940 #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
3942 void vTaskList( char * pcWriteBuffer )
\r
3944 TaskStatus_t *pxTaskStatusArray;
\r
3945 volatile UBaseType_t uxArraySize, x;
\r
3951 * This function is provided for convenience only, and is used by many
\r
3952 * of the demo applications. Do not consider it to be part of the
\r
3955 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
\r
3956 * uxTaskGetSystemState() output into a human readable table that
\r
3957 * displays task names, states and stack usage.
\r
3959 * vTaskList() has a dependency on the sprintf() C library function that
\r
3960 * might bloat the code size, use a lot of stack, and provide different
\r
3961 * results on different platforms. An alternative, tiny, third party,
\r
3962 * and limited functionality implementation of sprintf() is provided in
\r
3963 * many of the FreeRTOS/Demo sub-directories in a file called
\r
3964 * printf-stdarg.c (note printf-stdarg.c does not provide a full
\r
3965 * snprintf() implementation!).
\r
3967 * It is recommended that production systems call uxTaskGetSystemState()
\r
3968 * directly to get access to raw stats data, rather than indirectly
\r
3969 * through a call to vTaskList().
\r
3973 /* Make sure the write buffer does not contain a string. */
\r
3974 *pcWriteBuffer = 0x00;
\r
3976 /* Take a snapshot of the number of tasks in case it changes while this
\r
3977 function is executing. */
\r
3978 uxArraySize = uxCurrentNumberOfTasks;
\r
3980 /* Allocate an array index for each task. NOTE! if
\r
3981 configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
3982 equate to NULL. */
\r
3983 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
\r
3985 if( pxTaskStatusArray != NULL )
\r
3987 /* Generate the (binary) data. */
\r
3988 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
\r
3990 /* Create a human readable table from the binary data. */
\r
3991 for( x = 0; x < uxArraySize; x++ )
\r
3993 switch( pxTaskStatusArray[ x ].eCurrentState )
\r
3995 case eReady: cStatus = tskREADY_CHAR;
\r
3998 case eBlocked: cStatus = tskBLOCKED_CHAR;
\r
4001 case eSuspended: cStatus = tskSUSPENDED_CHAR;
\r
4004 case eDeleted: cStatus = tskDELETED_CHAR;
\r
4007 default: /* Should not get here, but it is included
\r
4008 to prevent static checking errors. */
\r
4013 /* Write the task name to the string, padding with spaces so it
\r
4014 can be printed in tabular form more easily. */
\r
4015 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4017 /* Write the rest of the string. */
\r
4018 sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
\r
4019 pcWriteBuffer += strlen( pcWriteBuffer );
\r
4022 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4023 is 0 then vPortFree() will be #defined to nothing. */
\r
4024 vPortFree( pxTaskStatusArray );
\r
4028 mtCOVERAGE_TEST_MARKER();
\r
4032 #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
\r
4033 /*----------------------------------------------------------*/
\r
4035 #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
\r
4037 void vTaskGetRunTimeStats( char *pcWriteBuffer )
\r
4039 TaskStatus_t *pxTaskStatusArray;
\r
4040 volatile UBaseType_t uxArraySize, x;
\r
4041 uint32_t ulTotalTime, ulStatsAsPercentage;
\r
4043 #if( configUSE_TRACE_FACILITY != 1 )
\r
4045 #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
\r
4052 * This function is provided for convenience only, and is used by many
\r
4053 * of the demo applications. Do not consider it to be part of the
\r
4056 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
\r
4057 * of the uxTaskGetSystemState() output into a human readable table that
\r
4058 * displays the amount of time each task has spent in the Running state
\r
4059 * in both absolute and percentage terms.
\r
4061 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
\r
4062 * function that might bloat the code size, use a lot of stack, and
\r
4063 * provide different results on different platforms. An alternative,
\r
4064 * tiny, third party, and limited functionality implementation of
\r
4065 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
\r
4066 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
\r
4067 * a full snprintf() implementation!).
\r
4069 * It is recommended that production systems call uxTaskGetSystemState()
\r
4070 * directly to get access to raw stats data, rather than indirectly
\r
4071 * through a call to vTaskGetRunTimeStats().
\r
4074 /* Make sure the write buffer does not contain a string. */
\r
4075 *pcWriteBuffer = 0x00;
\r
4077 /* Take a snapshot of the number of tasks in case it changes while this
\r
4078 function is executing. */
\r
4079 uxArraySize = uxCurrentNumberOfTasks;
\r
4081 /* Allocate an array index for each task. NOTE! If
\r
4082 configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
\r
4083 equate to NULL. */
\r
4084 pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
\r
4086 if( pxTaskStatusArray != NULL )
\r
4088 /* Generate the (binary) data. */
\r
4089 uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
\r
4091 /* For percentage calculations. */
\r
4092 ulTotalTime /= 100UL;
\r
4094 /* Avoid divide by zero errors. */
\r
4095 if( ulTotalTime > 0 )
\r
4097 /* Create a human readable table from the binary data. */
\r
4098 for( x = 0; x < uxArraySize; x++ )
\r
4100 /* What percentage of the total run time has the task used?
\r
4101 This will always be rounded down to the nearest integer.
\r
4102 ulTotalRunTimeDiv100 has already been divided by 100. */
\r
4103 ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
\r
4105 /* Write the task name to the string, padding with
\r
4106 spaces so it can be printed in tabular form more
\r
4108 pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
\r
4110 if( ulStatsAsPercentage > 0UL )
\r
4112 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4114 sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
\r
4118 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4119 printf() library can be used. */
\r
4120 sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage );
\r
4126 /* If the percentage is zero here then the task has
\r
4127 consumed less than 1% of the total run time. */
\r
4128 #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
\r
4130 sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4134 /* sizeof( int ) == sizeof( long ) so a smaller
\r
4135 printf() library can be used. */
\r
4136 sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
\r
4141 pcWriteBuffer += strlen( pcWriteBuffer );
\r
4146 mtCOVERAGE_TEST_MARKER();
\r
4149 /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION
\r
4150 is 0 then vPortFree() will be #defined to nothing. */
\r
4151 vPortFree( pxTaskStatusArray );
\r
4155 mtCOVERAGE_TEST_MARKER();
\r
4159 #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
\r
4160 /*-----------------------------------------------------------*/
\r
4162 TickType_t uxTaskResetEventItemValue( void )
\r
4164 TickType_t uxReturn;
\r
4166 uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
\r
4168 /* Reset the event list item to its normal value - so it can be used with
\r
4169 queues and semaphores. */
\r
4170 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
\r
4174 /*-----------------------------------------------------------*/
\r
4176 #if ( configUSE_MUTEXES == 1 )
\r
4178 void *pvTaskIncrementMutexHeldCount( void )
\r
4180 /* If xSemaphoreCreateMutex() is called before any tasks have been created
\r
4181 then pxCurrentTCB will be NULL. */
\r
4182 if( pxCurrentTCB != NULL )
\r
4184 ( pxCurrentTCB->uxMutexesHeld )++;
\r
4187 return pxCurrentTCB;
\r
4190 #endif /* configUSE_MUTEXES */
\r
4191 /*-----------------------------------------------------------*/
\r
4193 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4195 uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait )
\r
4197 uint32_t ulReturn;
\r
4199 taskENTER_CRITICAL();
\r
4201 /* Only block if the notification count is not already non-zero. */
\r
4202 if( pxCurrentTCB->ulNotifiedValue == 0UL )
\r
4204 /* Mark this task as waiting for a notification. */
\r
4205 pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION;
\r
4207 if( xTicksToWait > ( TickType_t ) 0 )
\r
4209 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4210 traceTASK_NOTIFY_TAKE_BLOCK();
\r
4212 /* All ports are written to allow a yield in a critical
\r
4213 section (some will yield immediately, others wait until the
\r
4214 critical section exits) - but it is not something that
\r
4215 application code should ever do. */
\r
4216 portYIELD_WITHIN_API();
\r
4220 mtCOVERAGE_TEST_MARKER();
\r
4225 mtCOVERAGE_TEST_MARKER();
\r
4228 taskEXIT_CRITICAL();
\r
4230 taskENTER_CRITICAL();
\r
4232 traceTASK_NOTIFY_TAKE();
\r
4233 ulReturn = pxCurrentTCB->ulNotifiedValue;
\r
4235 if( ulReturn != 0UL )
\r
4237 if( xClearCountOnExit != pdFALSE )
\r
4239 pxCurrentTCB->ulNotifiedValue = 0UL;
\r
4243 pxCurrentTCB->ulNotifiedValue = ulReturn - 1;
\r
4248 mtCOVERAGE_TEST_MARKER();
\r
4251 pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4253 taskEXIT_CRITICAL();
\r
4258 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4259 /*-----------------------------------------------------------*/
\r
4261 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4263 BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait )
\r
4265 BaseType_t xReturn;
\r
4267 taskENTER_CRITICAL();
\r
4269 /* Only block if a notification is not already pending. */
\r
4270 if( pxCurrentTCB->ucNotifyState != taskNOTIFICATION_RECEIVED )
\r
4272 /* Clear bits in the task's notification value as bits may get
\r
4273 set by the notifying task or interrupt. This can be used to
\r
4274 clear the value to zero. */
\r
4275 pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnEntry;
\r
4277 /* Mark this task as waiting for a notification. */
\r
4278 pxCurrentTCB->ucNotifyState = taskWAITING_NOTIFICATION;
\r
4280 if( xTicksToWait > ( TickType_t ) 0 )
\r
4282 prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
\r
4283 traceTASK_NOTIFY_WAIT_BLOCK();
\r
4285 /* All ports are written to allow a yield in a critical
\r
4286 section (some will yield immediately, others wait until the
\r
4287 critical section exits) - but it is not something that
\r
4288 application code should ever do. */
\r
4289 portYIELD_WITHIN_API();
\r
4293 mtCOVERAGE_TEST_MARKER();
\r
4298 mtCOVERAGE_TEST_MARKER();
\r
4301 taskEXIT_CRITICAL();
\r
4303 taskENTER_CRITICAL();
\r
4305 traceTASK_NOTIFY_WAIT();
\r
4307 if( pulNotificationValue != NULL )
\r
4309 /* Output the current notification value, which may or may not
\r
4311 *pulNotificationValue = pxCurrentTCB->ulNotifiedValue;
\r
4314 /* If ucNotifyValue is set then either the task never entered the
\r
4315 blocked state (because a notification was already pending) or the
\r
4316 task unblocked because of a notification. Otherwise the task
\r
4317 unblocked because of a timeout. */
\r
4318 if( pxCurrentTCB->ucNotifyState == taskWAITING_NOTIFICATION )
\r
4320 /* A notification was not received. */
\r
4321 xReturn = pdFALSE;
\r
4325 /* A notification was already pending or a notification was
\r
4326 received while the task was waiting. */
\r
4327 pxCurrentTCB->ulNotifiedValue &= ~ulBitsToClearOnExit;
\r
4331 pxCurrentTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4333 taskEXIT_CRITICAL();
\r
4338 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4339 /*-----------------------------------------------------------*/
\r
4341 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4343 BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue )
\r
4346 BaseType_t xReturn = pdPASS;
\r
4347 uint8_t ucOriginalNotifyState;
\r
4349 configASSERT( xTaskToNotify );
\r
4350 pxTCB = ( TCB_t * ) xTaskToNotify;
\r
4352 taskENTER_CRITICAL();
\r
4354 if( pulPreviousNotificationValue != NULL )
\r
4356 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
\r
4359 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4361 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4366 pxTCB->ulNotifiedValue |= ulValue;
\r
4370 ( pxTCB->ulNotifiedValue )++;
\r
4373 case eSetValueWithOverwrite :
\r
4374 pxTCB->ulNotifiedValue = ulValue;
\r
4377 case eSetValueWithoutOverwrite :
\r
4378 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4380 pxTCB->ulNotifiedValue = ulValue;
\r
4384 /* The value could not be written to the task. */
\r
4390 /* The task is being notified without its notify value being
\r
4395 traceTASK_NOTIFY();
\r
4397 /* If the task is in the blocked state specifically to wait for a
\r
4398 notification then unblock it now. */
\r
4399 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4401 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4402 prvAddTaskToReadyList( pxTCB );
\r
4404 /* The task should not have been on an event list. */
\r
4405 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4407 #if( configUSE_TICKLESS_IDLE != 0 )
\r
4409 /* If a task is blocked waiting for a notification then
\r
4410 xNextTaskUnblockTime might be set to the blocked task's time
\r
4411 out time. If the task is unblocked for a reason other than
\r
4412 a timeout xNextTaskUnblockTime is normally left unchanged,
\r
4413 because it will automatically get reset to a new value when
\r
4414 the tick count equals xNextTaskUnblockTime. However if
\r
4415 tickless idling is used it might be more important to enter
\r
4416 sleep mode at the earliest possible time - so reset
\r
4417 xNextTaskUnblockTime here to ensure it is updated at the
\r
4418 earliest possible time. */
\r
4419 prvResetNextTaskUnblockTime();
\r
4423 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4425 /* The notified task has a priority above the currently
\r
4426 executing task so a yield is required. */
\r
4427 taskYIELD_IF_USING_PREEMPTION();
\r
4431 mtCOVERAGE_TEST_MARKER();
\r
4436 mtCOVERAGE_TEST_MARKER();
\r
4439 taskEXIT_CRITICAL();
\r
4444 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4445 /*-----------------------------------------------------------*/
\r
4447 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4449 BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t *pulPreviousNotificationValue, BaseType_t *pxHigherPriorityTaskWoken )
\r
4452 uint8_t ucOriginalNotifyState;
\r
4453 BaseType_t xReturn = pdPASS;
\r
4454 UBaseType_t uxSavedInterruptStatus;
\r
4456 configASSERT( xTaskToNotify );
\r
4458 /* RTOS ports that support interrupt nesting have the concept of a
\r
4459 maximum system call (or maximum API call) interrupt priority.
\r
4460 Interrupts that are above the maximum system call priority are keep
\r
4461 permanently enabled, even when the RTOS kernel is in a critical section,
\r
4462 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4463 is defined in FreeRTOSConfig.h then
\r
4464 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4465 failure if a FreeRTOS API function is called from an interrupt that has
\r
4466 been assigned a priority above the configured maximum system call
\r
4467 priority. Only FreeRTOS functions that end in FromISR can be called
\r
4468 from interrupts that have been assigned a priority at or (logically)
\r
4469 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4470 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4471 simple as possible. More information (albeit Cortex-M specific) is
\r
4472 provided on the following link:
\r
4473 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
4474 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
4476 pxTCB = ( TCB_t * ) xTaskToNotify;
\r
4478 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
4480 if( pulPreviousNotificationValue != NULL )
\r
4482 *pulPreviousNotificationValue = pxTCB->ulNotifiedValue;
\r
4485 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4486 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4491 pxTCB->ulNotifiedValue |= ulValue;
\r
4495 ( pxTCB->ulNotifiedValue )++;
\r
4498 case eSetValueWithOverwrite :
\r
4499 pxTCB->ulNotifiedValue = ulValue;
\r
4502 case eSetValueWithoutOverwrite :
\r
4503 if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
\r
4505 pxTCB->ulNotifiedValue = ulValue;
\r
4509 /* The value could not be written to the task. */
\r
4515 /* The task is being notified without its notify value being
\r
4520 traceTASK_NOTIFY_FROM_ISR();
\r
4522 /* If the task is in the blocked state specifically to wait for a
\r
4523 notification then unblock it now. */
\r
4524 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4526 /* The task should not have been on an event list. */
\r
4527 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4529 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4531 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4532 prvAddTaskToReadyList( pxTCB );
\r
4536 /* The delayed and ready lists cannot be accessed, so hold
\r
4537 this task pending until the scheduler is resumed. */
\r
4538 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
4541 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4543 /* The notified task has a priority above the currently
\r
4544 executing task so a yield is required. */
\r
4545 if( pxHigherPriorityTaskWoken != NULL )
\r
4547 *pxHigherPriorityTaskWoken = pdTRUE;
\r
4551 /* Mark that a yield is pending in case the user is not
\r
4552 using the "xHigherPriorityTaskWoken" parameter to an ISR
\r
4553 safe FreeRTOS function. */
\r
4554 xYieldPending = pdTRUE;
\r
4559 mtCOVERAGE_TEST_MARKER();
\r
4563 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
4568 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4569 /*-----------------------------------------------------------*/
\r
4571 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4573 void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken )
\r
4576 uint8_t ucOriginalNotifyState;
\r
4577 UBaseType_t uxSavedInterruptStatus;
\r
4579 configASSERT( xTaskToNotify );
\r
4581 /* RTOS ports that support interrupt nesting have the concept of a
\r
4582 maximum system call (or maximum API call) interrupt priority.
\r
4583 Interrupts that are above the maximum system call priority are keep
\r
4584 permanently enabled, even when the RTOS kernel is in a critical section,
\r
4585 but cannot make any calls to FreeRTOS API functions. If configASSERT()
\r
4586 is defined in FreeRTOSConfig.h then
\r
4587 portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
\r
4588 failure if a FreeRTOS API function is called from an interrupt that has
\r
4589 been assigned a priority above the configured maximum system call
\r
4590 priority. Only FreeRTOS functions that end in FromISR can be called
\r
4591 from interrupts that have been assigned a priority at or (logically)
\r
4592 below the maximum system call interrupt priority. FreeRTOS maintains a
\r
4593 separate interrupt safe API to ensure interrupt entry is as fast and as
\r
4594 simple as possible. More information (albeit Cortex-M specific) is
\r
4595 provided on the following link:
\r
4596 http://www.freertos.org/RTOS-Cortex-M3-M4.html */
\r
4597 portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
\r
4599 pxTCB = ( TCB_t * ) xTaskToNotify;
\r
4601 uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
\r
4603 ucOriginalNotifyState = pxTCB->ucNotifyState;
\r
4604 pxTCB->ucNotifyState = taskNOTIFICATION_RECEIVED;
\r
4606 /* 'Giving' is equivalent to incrementing a count in a counting
\r
4608 ( pxTCB->ulNotifiedValue )++;
\r
4610 traceTASK_NOTIFY_GIVE_FROM_ISR();
\r
4612 /* If the task is in the blocked state specifically to wait for a
\r
4613 notification then unblock it now. */
\r
4614 if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
\r
4616 /* The task should not have been on an event list. */
\r
4617 configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
\r
4619 if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
\r
4621 ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
\r
4622 prvAddTaskToReadyList( pxTCB );
\r
4626 /* The delayed and ready lists cannot be accessed, so hold
\r
4627 this task pending until the scheduler is resumed. */
\r
4628 vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
\r
4631 if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )
\r
4633 /* The notified task has a priority above the currently
\r
4634 executing task so a yield is required. */
\r
4635 if( pxHigherPriorityTaskWoken != NULL )
\r
4637 *pxHigherPriorityTaskWoken = pdTRUE;
\r
4641 /* Mark that a yield is pending in case the user is not
\r
4642 using the "xHigherPriorityTaskWoken" parameter in an ISR
\r
4643 safe FreeRTOS function. */
\r
4644 xYieldPending = pdTRUE;
\r
4649 mtCOVERAGE_TEST_MARKER();
\r
4653 portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
\r
4656 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4658 /*-----------------------------------------------------------*/
\r
4660 #if( configUSE_TASK_NOTIFICATIONS == 1 )
\r
4662 BaseType_t xTaskNotifyStateClear( TaskHandle_t xTask )
\r
4665 BaseType_t xReturn;
\r
4667 /* If null is passed in here then it is the calling task that is having
\r
4668 its notification state cleared. */
\r
4669 pxTCB = prvGetTCBFromHandle( xTask );
\r
4671 taskENTER_CRITICAL();
\r
4673 if( pxTCB->ucNotifyState == taskNOTIFICATION_RECEIVED )
\r
4675 pxTCB->ucNotifyState = taskNOT_WAITING_NOTIFICATION;
\r
4683 taskEXIT_CRITICAL();
\r
4688 #endif /* configUSE_TASK_NOTIFICATIONS */
\r
4689 /*-----------------------------------------------------------*/
\r
4692 static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely )
\r
4694 TickType_t xTimeToWake;
\r
4695 const TickType_t xConstTickCount = xTickCount;
\r
4697 #if( INCLUDE_xTaskAbortDelay == 1 )
\r
4699 /* About to enter a delayed list, so ensure the ucDelayAborted flag is
\r
4700 reset to pdFALSE so it can be detected as having been set to pdTRUE
\r
4701 when the task leaves the Blocked state. */
\r
4702 pxCurrentTCB->ucDelayAborted = pdFALSE;
\r
4706 /* Remove the task from the ready list before adding it to the blocked list
\r
4707 as the same list item is used for both lists. */
\r
4708 if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
\r
4710 /* The current task must be in a ready list, so there is no need to
\r
4711 check, and the port reset macro can be called directly. */
\r
4712 portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
\r
4716 mtCOVERAGE_TEST_MARKER();
\r
4719 #if ( INCLUDE_vTaskSuspend == 1 )
\r
4721 if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
\r
4723 /* Add the task to the suspended task list instead of a delayed task
\r
4724 list to ensure it is not woken by a timing event. It will block
\r
4726 vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4730 /* Calculate the time at which the task should be woken if the event
\r
4731 does not occur. This may overflow but this doesn't matter, the
\r
4732 kernel will manage it correctly. */
\r
4733 xTimeToWake = xConstTickCount + xTicksToWait;
\r
4735 /* The list item will be inserted in wake time order. */
\r
4736 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
4738 if( xTimeToWake < xConstTickCount )
\r
4740 /* Wake time has overflowed. Place this item in the overflow
\r
4742 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4746 /* The wake time has not overflowed, so the current block list
\r
4748 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4750 /* If the task entering the blocked state was placed at the
\r
4751 head of the list of blocked tasks then xNextTaskUnblockTime
\r
4752 needs to be updated too. */
\r
4753 if( xTimeToWake < xNextTaskUnblockTime )
\r
4755 xNextTaskUnblockTime = xTimeToWake;
\r
4759 mtCOVERAGE_TEST_MARKER();
\r
4764 #else /* INCLUDE_vTaskSuspend */
\r
4766 /* Calculate the time at which the task should be woken if the event
\r
4767 does not occur. This may overflow but this doesn't matter, the kernel
\r
4768 will manage it correctly. */
\r
4769 xTimeToWake = xConstTickCount + xTicksToWait;
\r
4771 /* The list item will be inserted in wake time order. */
\r
4772 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
\r
4774 if( xTimeToWake < xConstTickCount )
\r
4776 /* Wake time has overflowed. Place this item in the overflow list. */
\r
4777 vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4781 /* The wake time has not overflowed, so the current block list is used. */
\r
4782 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
\r
4784 /* If the task entering the blocked state was placed at the head of the
\r
4785 list of blocked tasks then xNextTaskUnblockTime needs to be updated
\r
4787 if( xTimeToWake < xNextTaskUnblockTime )
\r
4789 xNextTaskUnblockTime = xTimeToWake;
\r
4793 mtCOVERAGE_TEST_MARKER();
\r
4797 /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
\r
4798 ( void ) xCanBlockIndefinitely;
\r
4800 #endif /* INCLUDE_vTaskSuspend */
\r
4804 #ifdef FREERTOS_MODULE_TEST
\r
4805 #include "tasks_test_access_functions.h"
\r