]> git.sur5r.net Git - u-boot/blob - arch/arm/mach-keystone/clock.c
3c46824d0b94943231b2685a6ea59d357fb2ee2e
[u-boot] / arch / arm / mach-keystone / clock.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Keystone2: pll initialization
4  *
5  * (C) Copyright 2012-2014
6  *     Texas Instruments Incorporated, <www.ti.com>
7  */
8
9 #include <common.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/clock_defs.h>
12
13 /* DEV and ARM speed definitions as specified in DEVSPEED register */
14 int __weak speeds[DEVSPEED_NUMSPDS] = {
15         SPD1000,
16         SPD1200,
17         SPD1350,
18         SPD1400,
19         SPD1500,
20         SPD1400,
21         SPD1350,
22         SPD1200,
23         SPD1000,
24         SPD800,
25 };
26
27 const struct keystone_pll_regs keystone_pll_regs[] = {
28         [CORE_PLL]      = {KS2_MAINPLLCTL0, KS2_MAINPLLCTL1},
29         [PASS_PLL]      = {KS2_PASSPLLCTL0, KS2_PASSPLLCTL1},
30         [TETRIS_PLL]    = {KS2_ARMPLLCTL0, KS2_ARMPLLCTL1},
31         [DDR3A_PLL]     = {KS2_DDR3APLLCTL0, KS2_DDR3APLLCTL1},
32         [DDR3B_PLL]     = {KS2_DDR3BPLLCTL0, KS2_DDR3BPLLCTL1},
33         [UART_PLL]      = {KS2_UARTPLLCTL0, KS2_UARTPLLCTL1},
34 };
35
36 inline void pll_pa_clk_sel(void)
37 {
38         setbits_le32(keystone_pll_regs[PASS_PLL].reg1, CFG_PLLCTL1_PAPLL_MASK);
39 }
40
41 static void wait_for_completion(const struct pll_init_data *data)
42 {
43         int i;
44         for (i = 0; i < 100; i++) {
45                 sdelay(450);
46                 if (!(pllctl_reg_read(data->pll, stat) & PLLSTAT_GOSTAT_MASK))
47                         break;
48         }
49 }
50
51 static inline void bypass_main_pll(const struct pll_init_data *data)
52 {
53         pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC_MASK |
54                            PLLCTL_PLLEN_MASK);
55
56         /* 4 cycles of reference clock CLKIN*/
57         sdelay(340);
58 }
59
60 static void configure_mult_div(const struct pll_init_data *data)
61 {
62         u32 pllm, plld, bwadj;
63
64         pllm = data->pll_m - 1;
65         plld = (data->pll_d - 1) & CFG_PLLCTL0_PLLD_MASK;
66
67         /* Program Multiplier */
68         if (data->pll == MAIN_PLL)
69                 pllctl_reg_write(data->pll, mult, pllm & PLLM_MULT_LO_MASK);
70
71         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
72                         CFG_PLLCTL0_PLLM_MASK,
73                         pllm << CFG_PLLCTL0_PLLM_SHIFT);
74
75         /* Program BWADJ */
76         bwadj = (data->pll_m - 1) >> 1; /* Divide pllm by 2 */
77         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
78                         CFG_PLLCTL0_BWADJ_MASK,
79                         (bwadj << CFG_PLLCTL0_BWADJ_SHIFT) &
80                         CFG_PLLCTL0_BWADJ_MASK);
81         bwadj = bwadj >> CFG_PLLCTL0_BWADJ_BITS;
82         clrsetbits_le32(keystone_pll_regs[data->pll].reg1,
83                         CFG_PLLCTL1_BWADJ_MASK, bwadj);
84
85         /* Program Divider */
86         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
87                         CFG_PLLCTL0_PLLD_MASK, plld);
88 }
89
90 void configure_main_pll(const struct pll_init_data *data)
91 {
92         u32 tmp, pllod, i, alnctl_val = 0;
93         u32 *offset;
94
95         pllod = data->pll_od - 1;
96
97         /* 100 micro sec for stabilization */
98         sdelay(210000);
99
100         tmp = pllctl_reg_read(data->pll, secctl);
101
102         /* Check for Bypass */
103         if (tmp & SECCTL_BYPASS_MASK) {
104                 setbits_le32(keystone_pll_regs[data->pll].reg1,
105                              CFG_PLLCTL1_ENSAT_MASK);
106
107                 bypass_main_pll(data);
108
109                 /* Powerdown and powerup Main Pll */
110                 pllctl_reg_setbits(data->pll, secctl, SECCTL_BYPASS_MASK);
111                 pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
112                 /* 5 micro sec */
113                 sdelay(21000);
114
115                 pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN_MASK);
116         } else {
117                 bypass_main_pll(data);
118         }
119
120         configure_mult_div(data);
121
122         /* Program Output Divider */
123         pllctl_reg_rmw(data->pll, secctl, SECCTL_OP_DIV_MASK,
124                        ((pllod << SECCTL_OP_DIV_SHIFT) & SECCTL_OP_DIV_MASK));
125
126         /* Program PLLDIVn */
127         wait_for_completion(data);
128         for (i = 0; i < PLLDIV_MAX; i++) {
129                 if (i < 3)
130                         offset = pllctl_reg(data->pll, div1) + i;
131                 else
132                         offset = pllctl_reg(data->pll, div4) + (i - 3);
133
134                 if (divn_val[i] != -1) {
135                         __raw_writel(divn_val[i] | PLLDIV_ENABLE_MASK, offset);
136                         alnctl_val |= BIT(i);
137                 }
138         }
139
140         if (alnctl_val) {
141                 pllctl_reg_setbits(data->pll, alnctl, alnctl_val);
142                 /*
143                  * Set GOSET bit in PLLCMD to initiate the GO operation
144                  * to change the divide
145                  */
146                 pllctl_reg_setbits(data->pll, cmd, PLLSTAT_GOSTAT_MASK);
147                 wait_for_completion(data);
148         }
149
150         /* Reset PLL */
151         pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
152         sdelay(21000);  /* Wait for a minimum of 7 us*/
153         pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST_MASK);
154         sdelay(105000); /* Wait for PLL Lock time (min 50 us) */
155
156         /* Enable PLL */
157         pllctl_reg_clrbits(data->pll, secctl, SECCTL_BYPASS_MASK);
158         pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN_MASK);
159 }
160
161 void configure_secondary_pll(const struct pll_init_data *data)
162 {
163         int pllod = data->pll_od - 1;
164
165         /* Enable Glitch free bypass for ARM PLL */
166         if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
167                 clrbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
168
169         /* Enable Bypass mode */
170         setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_ENSAT_MASK);
171         setbits_le32(keystone_pll_regs[data->pll].reg0,
172                      CFG_PLLCTL0_BYPASS_MASK);
173
174         configure_mult_div(data);
175
176         /* Program Output Divider */
177         clrsetbits_le32(keystone_pll_regs[data->pll].reg0,
178                         CFG_PLLCTL0_CLKOD_MASK,
179                         (pllod << CFG_PLLCTL0_CLKOD_SHIFT) &
180                         CFG_PLLCTL0_CLKOD_MASK);
181
182         /* Reset PLL */
183         setbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
184         /* Wait for 5 micro seconds */
185         sdelay(21000);
186
187         /* Select the Output of PASS PLL as input to PASS */
188         if (data->pll == PASS_PLL && cpu_is_k2hk())
189                 pll_pa_clk_sel();
190
191         clrbits_le32(keystone_pll_regs[data->pll].reg1, CFG_PLLCTL1_RST_MASK);
192         /* Wait for 500 * REFCLK cucles * (PLLD + 1) */
193         sdelay(105000);
194
195         /* Switch to PLL mode */
196         clrbits_le32(keystone_pll_regs[data->pll].reg0,
197                      CFG_PLLCTL0_BYPASS_MASK);
198
199         /* Select the Output of ARM PLL as input to ARM */
200         if (cpu_is_k2hk() && data->pll == TETRIS_PLL)
201                 setbits_le32(KS2_MISC_CTRL, MISC_CTL1_ARM_PLL_EN);
202 }
203
204 void init_pll(const struct pll_init_data *data)
205 {
206         if (data->pll == MAIN_PLL)
207                 configure_main_pll(data);
208         else
209                 configure_secondary_pll(data);
210
211         /*
212          * This is required to provide a delay between multiple
213          * consequent PPL configurations
214          */
215         sdelay(210000);
216 }
217
218 void init_plls(void)
219 {
220         struct pll_init_data *data;
221         int pll;
222
223         for (pll = MAIN_PLL; pll < MAX_PLL_COUNT; pll++) {
224                 data = get_pll_init_data(pll);
225                 if (data)
226                         init_pll(data);
227         }
228 }
229
230 static int get_max_speed(u32 val, u32 speed_supported, int *spds)
231 {
232         int speed;
233
234         /* Left most setbit gives the speed */
235         for (speed = DEVSPEED_NUMSPDS; speed >= 0; speed--) {
236                 if ((val & BIT(speed)) & speed_supported)
237                         return spds[speed];
238         }
239
240         /* If no bit is set, return minimum speed */
241         if (cpu_is_k2g())
242                 return SPD200;
243         else
244                 return SPD800;
245 }
246
247 static inline u32 read_efuse_bootrom(void)
248 {
249         if (cpu_is_k2hk() && (cpu_revision() <= 1))
250                 return __raw_readl(KS2_REV1_DEVSPEED);
251         else
252                 return __raw_readl(KS2_EFUSE_BOOTROM);
253 }
254
255 int get_max_arm_speed(int *spds)
256 {
257         u32 armspeed = read_efuse_bootrom();
258
259         armspeed = (armspeed & DEVSPEED_ARMSPEED_MASK) >>
260                     DEVSPEED_ARMSPEED_SHIFT;
261
262         return get_max_speed(armspeed, ARM_SUPPORTED_SPEEDS, spds);
263 }
264
265 int get_max_dev_speed(int *spds)
266 {
267         u32 devspeed = read_efuse_bootrom();
268
269         devspeed = (devspeed & DEVSPEED_DEVSPEED_MASK) >>
270                     DEVSPEED_DEVSPEED_SHIFT;
271
272         return get_max_speed(devspeed, DEV_SUPPORTED_SPEEDS, spds);
273 }
274
275 /**
276  * pll_freq_get - get pll frequency
277  * @pll:        pll identifier
278  */
279 static unsigned long pll_freq_get(int pll)
280 {
281         unsigned long mult = 1, prediv = 1, output_div = 2;
282         unsigned long ret;
283         u32 tmp, reg;
284
285         if (pll == MAIN_PLL) {
286                 ret = get_external_clk(sys_clk);
287                 if (pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN_MASK) {
288                         /* PLL mode */
289                         tmp = __raw_readl(KS2_MAINPLLCTL0);
290                         prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
291                         mult = ((tmp & CFG_PLLCTL0_PLLM_HI_MASK) >>
292                                 CFG_PLLCTL0_PLLM_SHIFT |
293                                 (pllctl_reg_read(pll, mult) &
294                                  PLLM_MULT_LO_MASK)) + 1;
295                         output_div = ((pllctl_reg_read(pll, secctl) &
296                                        SECCTL_OP_DIV_MASK) >>
297                                        SECCTL_OP_DIV_SHIFT) + 1;
298
299                         ret = ret / prediv / output_div * mult;
300                 }
301         } else {
302                 switch (pll) {
303                 case PASS_PLL:
304                         ret = get_external_clk(pa_clk);
305                         reg = KS2_PASSPLLCTL0;
306                         break;
307                 case TETRIS_PLL:
308                         ret = get_external_clk(tetris_clk);
309                         reg = KS2_ARMPLLCTL0;
310                         break;
311                 case DDR3A_PLL:
312                         ret = get_external_clk(ddr3a_clk);
313                         reg = KS2_DDR3APLLCTL0;
314                         break;
315                 case DDR3B_PLL:
316                         ret = get_external_clk(ddr3b_clk);
317                         reg = KS2_DDR3BPLLCTL0;
318                         break;
319                 case UART_PLL:
320                         ret = get_external_clk(uart_clk);
321                         reg = KS2_UARTPLLCTL0;
322                         break;
323                 default:
324                         return 0;
325                 }
326
327                 tmp = __raw_readl(reg);
328
329                 if (!(tmp & CFG_PLLCTL0_BYPASS_MASK)) {
330                         /* Bypass disabled */
331                         prediv = (tmp & CFG_PLLCTL0_PLLD_MASK) + 1;
332                         mult = ((tmp & CFG_PLLCTL0_PLLM_MASK) >>
333                                 CFG_PLLCTL0_PLLM_SHIFT) + 1;
334                         output_div = ((tmp & CFG_PLLCTL0_CLKOD_MASK) >>
335                                       CFG_PLLCTL0_CLKOD_SHIFT) + 1;
336                         ret = ((ret / prediv) * mult) / output_div;
337                 }
338         }
339
340         return ret;
341 }
342
343 unsigned long ks_clk_get_rate(unsigned int clk)
344 {
345         unsigned long freq = 0;
346
347         switch (clk) {
348         case core_pll_clk:
349                 freq = pll_freq_get(CORE_PLL);
350                 break;
351         case pass_pll_clk:
352                 freq = pll_freq_get(PASS_PLL);
353                 break;
354         case tetris_pll_clk:
355                 if (!cpu_is_k2e())
356                         freq = pll_freq_get(TETRIS_PLL);
357                 break;
358         case ddr3a_pll_clk:
359                 freq = pll_freq_get(DDR3A_PLL);
360                 break;
361         case ddr3b_pll_clk:
362                 if (cpu_is_k2hk())
363                         freq = pll_freq_get(DDR3B_PLL);
364                 break;
365         case uart_pll_clk:
366                 if (cpu_is_k2g())
367                         freq = pll_freq_get(UART_PLL);
368                 break;
369         case sys_clk0_1_clk:
370         case sys_clk0_clk:
371                 freq = pll_freq_get(CORE_PLL) / pll0div_read(1);
372                 break;
373         case sys_clk1_clk:
374         return pll_freq_get(CORE_PLL) / pll0div_read(2);
375                 break;
376         case sys_clk2_clk:
377                 freq = pll_freq_get(CORE_PLL) / pll0div_read(3);
378                 break;
379         case sys_clk3_clk:
380                 freq = pll_freq_get(CORE_PLL) / pll0div_read(4);
381                 break;
382         case sys_clk0_2_clk:
383                 freq = ks_clk_get_rate(sys_clk0_clk) / 2;
384                 break;
385         case sys_clk0_3_clk:
386                 freq = ks_clk_get_rate(sys_clk0_clk) / 3;
387                 break;
388         case sys_clk0_4_clk:
389                 freq = ks_clk_get_rate(sys_clk0_clk) / 4;
390                 break;
391         case sys_clk0_6_clk:
392                 freq = ks_clk_get_rate(sys_clk0_clk) / 6;
393                 break;
394         case sys_clk0_8_clk:
395                 freq = ks_clk_get_rate(sys_clk0_clk) / 8;
396                 break;
397         case sys_clk0_12_clk:
398                 freq = ks_clk_get_rate(sys_clk0_clk) / 12;
399                 break;
400         case sys_clk0_24_clk:
401                 freq = ks_clk_get_rate(sys_clk0_clk) / 24;
402                 break;
403         case sys_clk1_3_clk:
404                 freq = ks_clk_get_rate(sys_clk1_clk) / 3;
405                 break;
406         case sys_clk1_4_clk:
407                 freq = ks_clk_get_rate(sys_clk1_clk) / 4;
408                 break;
409         case sys_clk1_6_clk:
410                 freq = ks_clk_get_rate(sys_clk1_clk) / 6;
411                 break;
412         case sys_clk1_12_clk:
413                 freq = ks_clk_get_rate(sys_clk1_clk) / 12;
414                 break;
415         default:
416                 break;
417         }
418
419         return freq;
420 }