]> git.sur5r.net Git - openldap/blob - doc/guide/admin/replication.sdf
Merge branch 'mdb.master' of ssh://git-master.openldap.org/~git/git/openldap
[openldap] / doc / guide / admin / replication.sdf
1 # $OpenLDAP$
2 # Copyright 1999-2011 The OpenLDAP Foundation, All Rights Reserved.
3 # COPYING RESTRICTIONS APPLY, see COPYRIGHT.
4
5 H1: Replication
6
7 Replicated directories are a fundamental requirement for delivering a 
8 resilient enterprise deployment.
9
10 {{PRD:OpenLDAP}} has various configuration options for creating a replicated 
11 directory. In previous releases, replication was discussed in terms of
12 a {{master}} server and some number of {{slave}} servers. A master
13 accepted directory updates from other clients, and a slave only
14 accepted updates from a (single) master. The replication structure
15 was rigidly defined and any particular database could only fulfill
16 a single role, either master or slave.
17
18 As OpenLDAP now supports a wide variety of replication topologies, these
19 terms have been deprecated in favor of {{provider}} and
20 {{consumer}}: A provider replicates directory updates to consumers; 
21 consumers receive replication updates from providers. Unlike the
22 rigidly defined master/slave relationships, provider/consumer roles
23 are quite fluid: replication updates received in a consumer can be
24 further propagated by that consumer to other servers, so a consumer
25 can also act simultaneously as a provider. Also, a consumer need not
26 be an actual LDAP server; it may be just an LDAP client.
27
28 The following sections will describe the replication technology and
29 discuss the various replication options that are available.
30
31 H2: Replication Technology
32
33 H3: LDAP Sync Replication
34
35 The {{TERM:LDAP Sync}} Replication engine, {{TERM:syncrepl}} for
36 short, is a consumer-side replication engine that enables the
37 consumer {{TERM:LDAP}} server to maintain a shadow copy of a
38 {{TERM:DIT}} fragment. A syncrepl engine resides at the consumer
39 and executes as one of the {{slapd}}(8) threads. It creates and maintains a
40 consumer replica by connecting to the replication provider to perform
41 the initial DIT content load followed either by periodic content
42 polling or by timely updates upon content changes.
43
44 Syncrepl uses the LDAP Content Synchronization protocol (or LDAP Sync for
45 short) as the replica synchronization protocol.  LDAP Sync provides
46 a stateful replication which supports both pull-based and push-based
47 synchronization and does not mandate the use of a history store.
48 In pull-based replication the consumer periodically
49 polls the provider for updates. In push-based replication the consumer
50 listens for updates that are sent by the provider in realtime. Since the
51 protocol does not require a history store, the provider does not need to
52 maintain any log of updates it has received (Note
53 that the syncrepl engine is extensible and additional replication
54 protocols may be supported in the future.).
55
56 Syncrepl keeps track of the status of the replication content by
57 maintaining and exchanging synchronization cookies. Because the
58 syncrepl consumer and provider maintain their content status, the
59 consumer can poll the provider content to perform incremental
60 synchronization by asking for the entries required to make the
61 consumer replica up-to-date with the provider content. Syncrepl
62 also enables convenient management of replicas by maintaining replica
63 status.  The consumer replica can be constructed from a consumer-side
64 or a provider-side backup at any synchronization status. Syncrepl
65 can automatically resynchronize the consumer replica up-to-date
66 with the current provider content.
67
68 Syncrepl supports both pull-based and push-based synchronization.
69 In its basic refreshOnly synchronization mode, the provider uses
70 pull-based synchronization where the consumer servers need not be
71 tracked and no history information is maintained.  The information
72 required for the provider to process periodic polling requests is
73 contained in the synchronization cookie of the request itself.  To
74 optimize the pull-based synchronization, syncrepl utilizes the
75 present phase of the LDAP Sync protocol as well as its delete phase,
76 instead of falling back on frequent full reloads. To further optimize
77 the pull-based synchronization, the provider can maintain a per-scope
78 session log as a history store. In its refreshAndPersist mode of
79 synchronization, the provider uses a push-based synchronization.
80 The provider keeps track of the consumer servers that have requested
81 a persistent search and sends them necessary updates as the provider
82 replication content gets modified.
83
84 With syncrepl, a consumer server can create a replica without
85 changing the provider's configurations and without restarting the
86 provider server, if the consumer server has appropriate access
87 privileges for the DIT fragment to be replicated. The consumer
88 server can stop the replication also without the need for provider-side
89 changes and restart.
90
91 Syncrepl supports partial, sparse, and fractional replications.  The shadow
92 DIT fragment is defined by a general search criteria consisting of
93 base, scope, filter, and attribute list.  The replica content is
94 also subject to the access privileges of the bind identity of the
95 syncrepl replication connection.
96
97
98 H4: The LDAP Content Synchronization Protocol
99
100 The LDAP Sync protocol allows a client to maintain a synchronized
101 copy of a DIT fragment. The LDAP Sync operation is defined as a set
102 of controls and other protocol elements which extend the LDAP search
103 operation. This section introduces the LDAP Content Sync protocol
104 only briefly.  For more information, refer to {{REF:RFC4533}}.
105
106 The LDAP Sync protocol supports both polling and listening for changes
107 by defining two respective synchronization operations:
108 {{refreshOnly}} and {{refreshAndPersist}}.  Polling is implemented
109 by the {{refreshOnly}} operation. The consumer
110 polls the provider using an LDAP Search request with an LDAP Sync
111 control attached. The consumer copy is synchronized
112 to the provider copy at the time of polling using the information
113 returned in the search.  The provider finishes the
114 search operation by returning {{SearchResultDone}} at the end of
115 the search operation as in the normal search.  Listening is
116 implemented by the {{refreshAndPersist}} operation. As the name
117 implies, it begins with a search, like refreshOnly. Instead of
118 finishing the search after returning all entries currently matching
119 the search criteria, the synchronization search remains persistent
120 in the provider. Subsequent updates to the synchronization content
121 in the provider cause additional entry updates to be sent to the
122 consumer.
123
124 The {{refreshOnly}} operation and the refresh stage of the
125 {{refreshAndPersist}} operation can be performed with a present
126 phase or a delete phase.
127
128 In the present phase, the provider sends the consumer the entries updated
129 within the search scope since the last synchronization. The provider
130 sends all requested attributes, be they changed or not, of the updated
131 entries.  For each unchanged entry which remains in the scope, the
132 provider sends a present message consisting only of the name of the
133 entry and the synchronization control representing state present.
134 The present message does not contain any attributes of the entry.
135 After the consumer receives all update and present entries, it can
136 reliably determine the new consumer copy by adding the entries added
137 to the provider, by replacing the entries modified at the provider, and
138 by deleting entries in the consumer copy which have not been updated
139 nor specified as being present at the provider.
140
141 The transmission of the updated entries in the delete phase is the
142 same as in the present phase. The provider sends all the requested
143 attributes of the entries updated within the search scope since the
144 last synchronization to the consumer. In the delete phase, however,
145 the provider sends a delete message for each entry deleted from the
146 search scope, instead of sending present messages.  The delete
147 message consists only of the name of the entry and the synchronization
148 control representing state delete.  The new consumer copy can be
149 determined by adding, modifying, and removing entries according to
150 the synchronization control attached to the {{SearchResultEntry}}
151 message.
152
153 In the case that the LDAP Sync provider maintains a history store and
154 can determine which entries are scoped out of the consumer copy since
155 the last synchronization time, the provider can use the delete phase.
156 If the provider does not maintain any history store, cannot determine
157 the scoped-out entries from the history store, or the history store
158 does not cover the outdated synchronization state of the consumer,
159 the provider should use the present phase.  The use of the present
160 phase is much more efficient than a full content reload in terms
161 of the synchronization traffic.  To reduce the synchronization
162 traffic further, the LDAP Sync protocol also provides several
163 optimizations such as the transmission of the normalized {{EX:entryUUID}}s
164 and the transmission of multiple {{EX:entryUUIDs}} in a single
165 {{syncIdSet}} message.
166
167 At the end of the {{refreshOnly}} synchronization, the provider sends
168 a synchronization cookie to the consumer as a state indicator of the
169 consumer copy after the synchronization is completed.  The consumer
170 will present the received cookie when it requests the next incremental
171 synchronization to the provider.
172
173 When {{refreshAndPersist}} synchronization is used, the provider sends
174 a synchronization cookie at the end of the refresh stage by sending
175 a Sync Info message with refreshDone=TRUE.  It also sends a
176 synchronization cookie by attaching it to {{SearchResultEntry}}
177 messages generated in the persist stage of the synchronization search. During
178 the persist stage, the provider can also send a Sync Info message
179 containing the synchronization cookie at any time the provider wants
180 to update the consumer-side state indicator.
181
182 In the LDAP Sync protocol, entries are uniquely identified by the
183 {{EX:entryUUID}} attribute value. It can function as a reliable
184 identifier of the entry. The DN of the entry, on the other hand,
185 can be changed over time and hence cannot be considered as the
186 reliable identifier.  The {{EX:entryUUID}} is attached to each
187 {{SearchResultEntry}} or {{SearchResultReference}} as a part of the
188 synchronization control.
189
190 H4: Syncrepl Details
191
192 The syncrepl engine utilizes both the {{refreshOnly}} and the
193 {{refreshAndPersist}} operations of the LDAP Sync protocol.  If a
194 syncrepl specification is included in a database definition,
195 {{slapd}}(8) launches a syncrepl engine as a {{slapd}}(8) thread
196 and schedules its execution. If the {{refreshOnly}} operation is
197 specified, the syncrepl engine will be rescheduled at the interval
198 time after a synchronization operation is completed.  If the
199 {{refreshAndPersist}} operation is specified, the engine will remain
200 active and process the persistent synchronization messages from the
201 provider.
202
203 The syncrepl engine utilizes both the present phase and the delete
204 phase of the refresh synchronization. It is possible to configure
205 a session log in the provider which stores the
206 {{EX:entryUUID}}s of a finite number of entries deleted from a
207 database. Multiple replicas share the same session log. The syncrepl
208 engine uses the
209 delete phase if the session log is present and the state of the
210 consumer server is recent enough that no session log entries are
211 truncated after the last synchronization of the client.  The syncrepl
212 engine uses the present phase if no session log is configured for
213 the replication content or if the consumer replica is too outdated
214 to be covered by the session log.  The current design of the session
215 log store is memory based, so the information contained in the
216 session log is not persistent over multiple provider invocations.
217 It is not currently supported to access the session log store by
218 using LDAP operations. It is also not currently supported to impose
219 access control to the session log.
220
221 As a further optimization, even in the case the synchronization
222 search is not associated with any session log, no entries will be
223 transmitted to the consumer server when there has been no update
224 in the replication context.
225
226 The syncrepl engine, which is a consumer-side replication engine,
227 can work with any backends. The LDAP Sync provider can be configured
228 as an overlay on any backend, but works best with the {{back-bdb}}
229 or {{back-hdb}} backend.
230
231 The LDAP Sync provider maintains a {{EX:contextCSN}} for each
232 database as the current synchronization state indicator of the
233 provider content.  It is the largest {{EX:entryCSN}} in the provider
234 context such that no transactions for an entry having smaller
235 {{EX:entryCSN}} value remains outstanding.  The {{EX:contextCSN}}
236 could not just be set to the largest issued {{EX:entryCSN}} because
237 {{EX:entryCSN}} is obtained before a transaction starts and
238 transactions are not committed in the issue order.
239
240 The provider stores the {{EX:contextCSN}} of a context in the
241 {{EX:contextCSN}} attribute of the context suffix entry. The attribute
242 is not written to the database after every update operation though;
243 instead it is maintained primarily in memory. At database start
244 time the provider reads the last saved {{EX:contextCSN}} into memory
245 and uses the in-memory copy exclusively thereafter. By default,
246 changes to the {{EX:contextCSN}} as a result of database updates
247 will not be written to the database until the server is cleanly
248 shut down. A checkpoint facility exists to cause the {{EX:contextCSN}} to
249 be written out more frequently if desired.
250
251 Note that at startup time, if the provider is unable to read a
252 {{EX:contextCSN}} from the suffix entry, it will scan the entire
253 database to determine the value, and this scan may take quite a
254 long time on a large database. When a {{EX:contextCSN}} value is
255 read, the database will still be scanned for any {{EX:entryCSN}}
256 values greater than it, to make sure the {{EX:contextCSN}} value
257 truly reflects the greatest committed {{EX:entryCSN}} in the database.
258 On databases which support inequality indexing, setting an eq index
259 on the {{EX:entryCSN}} attribute and configuring {{contextCSN}}
260 checkpoints will greatly speed up this scanning step.
261
262 If no {{EX:contextCSN}} can be determined by reading and scanning
263 the database, a new value will be generated. Also, if scanning the
264 database yielded a greater {{EX:entryCSN}} than was previously
265 recorded in the suffix entry's {{EX:contextCSN}} attribute, a
266 checkpoint will be immediately written with the new value.
267
268 The consumer also stores its replica state, which is the provider's
269 {{EX:contextCSN}} received as a synchronization cookie, in the
270 {{EX:contextCSN}} attribute of the suffix entry.  The replica state
271 maintained by a consumer server is used as the synchronization state
272 indicator when it performs subsequent incremental synchronization
273 with the provider server. It is also used as a provider-side
274 synchronization state indicator when it functions as a secondary
275 provider server in a cascading replication configuration.  Since
276 the consumer and provider state information are maintained in the
277 same location within their respective databases, any consumer can
278 be promoted to a provider (and vice versa) without any special
279 actions.
280
281 Because a general search filter can be used in the syncrepl
282 specification, some entries in the context may be omitted from the
283 synchronization content.  The syncrepl engine creates a glue entry
284 to fill in the holes in the replica context if any part of the
285 replica content is subordinate to the holes. The glue entries will
286 not be returned in the search result unless {{ManageDsaIT}} control
287 is provided.
288
289 Also as a consequence of the search filter used in the syncrepl
290 specification, it is possible for a modification to remove an entry
291 from the replication scope even though the entry has not been deleted
292 on the provider. Logically the entry must be deleted on the consumer
293 but in {{refreshOnly}} mode the provider cannot detect and propagate
294 this change without the use of the session log on the provider.
295
296 For configuration, please see the {{SECT:Syncrepl}} section.
297
298
299 H2: Deployment Alternatives
300
301 While the LDAP Sync specification only defines a narrow scope for replication,
302 the OpenLDAP implementation is extremely flexible and supports a variety of
303 operating modes to handle other scenarios not explicitly addressed in the spec.
304
305
306 H3: Delta-syncrepl replication
307
308 * Disadvantages of LDAP Sync replication:
309
310 LDAP Sync replication is an object-based replication mechanism. 
311 When any attribute value in a replicated object is changed on the provider, 
312 each consumer fetches and processes the complete changed object, including
313 {{B:both the changed and unchanged attribute values}} during replication.
314 One advantage of this approach is that when multiple changes occur to
315 a single object, the precise sequence of those changes need not be preserved;
316 only the final state of the entry is significant. But this approach
317 may have drawbacks when the usage pattern involves single changes to
318 multiple objects.
319
320 For example, suppose you have a database consisting of 102,400 objects of 1 KB 
321 each. Further, suppose you routinely run a batch job to change the value of 
322 a single two-byte attribute value that appears in each of the 102,400 objects 
323 on the master. Not counting LDAP and TCP/IP protocol overhead, each time you 
324 run this job each consumer will transfer and process {{B:100 MB}} of data to
325 process {{B:200KB of changes!}}
326
327 99.98% of the data that is transmitted and processed in a case like this will 
328 be redundant, since it represents values that did not change. This is a waste 
329 of valuable transmission and processing bandwidth and can cause an unacceptable 
330 replication backlog to develop. While this situation is extreme, it serves to 
331 demonstrate a very real problem that is encountered in some LDAP deployments.
332
333
334 * Where Delta-syncrepl comes in:
335
336 Delta-syncrepl, a changelog-based variant of syncrepl, is designed to address 
337 situations like the one described above. Delta-syncrepl works by maintaining a 
338 changelog of a selectable depth on the provider. The replication consumer 
339 checks the changelog for the changes it needs and, as long as 
340 the changelog contains the needed changes, the consumer fetches the changes
341 from the changelog and applies them to its database. If, however, a replica 
342 is too far out of sync (or completely empty), conventional syncrepl is used to 
343 bring it up to date and replication then switches back to the delta-syncrepl
344 mode.
345
346 For configuration, please see the {{SECT:Delta-syncrepl}} section.
347
348
349 H3: N-Way Multi-Master replication
350
351 Multi-Master replication is a replication technique using Syncrepl to replicate 
352 data to multiple provider ("Master") Directory servers. 
353
354 H4: Valid Arguments for Multi-Master replication
355
356 * If any provider fails, other providers will continue to accept updates
357 * Avoids a single point of failure
358 * Providers can be located in several physical sites i.e. distributed across
359 the network/globe.
360 * Good for Automatic failover/High Availability
361
362 H4: Invalid Arguments for Multi-Master replication
363
364 (These are often claimed to be advantages of Multi-Master replication but
365 those claims are false):
366
367 * It has {{B:NOTHING}} to do with load balancing
368 * Providers {{B:must}} propagate writes to {{B:all}} the other servers, which 
369 means the network traffic and write load spreads across all 
370 of the servers the same as for single-master.
371 * Server utilization and performance are at best identical for
372 Multi-Master and Single-Master replication; at worst Single-Master is
373 superior because indexing can be tuned differently to optimize for the
374 different usage patterns between the provider and the consumers.
375
376 H4: Arguments against Multi-Master replication
377
378 * Breaks the data consistency guarantees of the directory model
379 * {{URL:http://www.openldap.org/faq/data/cache/1240.html}}
380 * If connectivity with a provider is lost because of a network partition, then 
381 "automatic failover" can just compound the problem
382 * Typically, a particular machine cannot distinguish between losing contact
383  with a peer because that peer crashed, or because the network link has failed
384 * If a network is partitioned and multiple clients start writing to each of the 
385 "masters" then reconciliation will be a pain; it may be best to simply deny 
386 writes to the clients that are partitioned from the single provider
387
388
389 For configuration, please see the {{SECT:N-Way Multi-Master}} section below
390
391 H3: MirrorMode replication
392
393 MirrorMode is a hybrid configuration that provides all of the consistency
394 guarantees of single-master replication, while also providing the high
395 availability of multi-master. In MirrorMode two providers are set up to
396 replicate from each other (as a multi-master configuration), but an
397 external frontend is employed to direct all writes to only one of
398 the two servers. The second provider will only be used for writes if
399 the first provider crashes, at which point the frontend will switch to
400 directing all writes to the second provider. When a crashed provider is
401 repaired and restarted it will automatically catch up to any changes
402 on the running provider and resync.
403
404 H4: Arguments for MirrorMode
405
406 * Provides a high-availability (HA) solution for directory writes (replicas handle reads)
407 * As long as one provider is operational, writes can safely be accepted
408 * Provider nodes replicate from each other, so they are always up to date and
409 can be ready to take over (hot standby)
410 * Syncrepl also allows the provider nodes to re-synchronize after any downtime
411
412
413 H4: Arguments against MirrorMode
414
415 * MirrorMode is not what is termed as a Multi-Master solution. This is because 
416 writes have to go to just one of the mirror nodes at a time
417 * MirrorMode can be termed as Active-Active Hot-Standby, therefore an external 
418 server (slapd in proxy mode) or device (hardware load balancer)
419 is needed to manage which provider is currently active
420 * Backups are managed slightly differently
421 - If backing up the Berkeley database itself and periodically backing up the 
422 transaction log files, then the same member of the mirror pair needs to be 
423 used to collect logfiles until the next database backup is taken 
424 * Delta-Syncrepl is not yet supported
425
426 For configuration, please see the {{SECT:MirrorMode}} section below
427
428
429 H3: Syncrepl Proxy Mode
430
431 While the LDAP Sync protocol supports both pull- and push-based replication,
432 the push mode (refreshAndPersist) must still be initiated from the consumer
433 before the provider can begin pushing changes. In some network configurations,
434 particularly where firewalls restrict the direction in which connections
435 can be made, a provider-initiated push mode may be needed. 
436
437 This mode can be configured with the aid of the LDAP Backend
438 ({{SECT: Backends}} and {{slapd-ldap(8)}}). Instead of running the
439 syncrepl engine on the actual consumer, a slapd-ldap proxy is set up
440 near (or collocated with) the provider that points to the consumer,
441 and the syncrepl engine runs on the proxy.
442
443 For configuration, please see the {{SECT:Syncrepl Proxy}} section.
444
445 H4: Replacing Slurpd
446
447 The old {{slurpd}} mechanism only operated in provider-initiated
448 push mode.  Slurpd replication was deprecated in favor of Syncrepl
449 replication and has been completely removed from OpenLDAP 2.4.
450
451 The slurpd daemon was the original replication mechanism inherited from 
452 UMich's LDAP and operated in push mode: the master pushed changes to the 
453 slaves. It was replaced for many reasons, in brief:
454
455  * It was not reliable
456  ** It was extremely sensitive to the ordering of records in the replog
457  ** It could easily go out of sync, at which point manual intervention was 
458    required to resync the slave database with the master directory
459  ** It wasn't very tolerant of unavailable servers. If a slave went down 
460    for a long time, the replog could grow to a size that was too large for 
461    slurpd to process
462  * It only worked in push mode
463  * It required stopping and restarting the master to add new slaves
464  * It only supported single master replication
465
466 Syncrepl has none of those weaknesses:
467
468  * Syncrepl is self-synchronizing; you can start with a consumer database
469    in any state from totally empty to fully synced and it will automatically
470    do the right thing to achieve and maintain synchronization
471  ** It is completely insensitive to the order in which changes occur
472  ** It guarantees convergence between the consumer and the provider
473     content without manual intervention
474  ** It can resynchronize regardless of how long a consumer stays out
475     of contact with the provider
476  * Syncrepl can operate in either direction
477  * Consumers can be added at any time without touching anything on the
478    provider
479  * Multi-master replication is supported
480
481
482 H2: Configuring the different replication types
483
484 H3: Syncrepl
485
486 H4: Syncrepl configuration
487
488 Because syncrepl is a consumer-side replication engine, the syncrepl
489 specification is defined in {{slapd.conf}}(5) of the consumer
490 server, not in the provider server's configuration file.  The initial
491 loading of the replica content can be performed either by starting
492 the syncrepl engine with no synchronization cookie or by populating
493 the consumer replica by loading an {{TERM:LDIF}} file dumped as a
494 backup at the provider.
495
496 When loading from a backup, it is not required to perform the initial
497 loading from the up-to-date backup of the provider content. The
498 syncrepl engine will automatically synchronize the initial consumer
499 replica to the current provider content. As a result, it is not
500 required to stop the provider server in order to avoid the replica
501 inconsistency caused by the updates to the provider content during
502 the content backup and loading process.
503
504 When replicating a large scale directory, especially in a bandwidth
505 constrained environment, it is advised to load the consumer replica
506 from a backup instead of performing a full initial load using
507 syncrepl.
508
509
510 H4: Set up the provider slapd
511
512 The provider is implemented as an overlay, so the overlay itself
513 must first be configured in {{slapd.conf}}(5) before it can be
514 used. The provider has only two configuration directives, for setting
515 checkpoints on the {{EX:contextCSN}} and for configuring the session
516 log.  Because the LDAP Sync search is subject to access control,
517 proper access control privileges should be set up for the replicated
518 content.
519
520 The {{EX:contextCSN}} checkpoint is configured by the
521
522 >       syncprov-checkpoint <ops> <minutes>
523
524 directive. Checkpoints are only tested after successful write
525 operations.  If {{<ops>}} operations or more than {{<minutes>}}
526 time has passed since the last checkpoint, a new checkpoint is
527 performed.
528
529 The session log is configured by the
530
531 >       syncprov-sessionlog <size>
532
533 directive, where {{<size>}} is the maximum number of session log
534 entries the session log can record. When a session log is configured,
535 it is automatically used for all LDAP Sync searches within the
536 database.
537
538 Note that using the session log requires searching on the {{entryUUID}}
539 attribute. Setting an eq index on this attribute will greatly benefit
540 the performance of the session log on the provider.
541
542 A more complete example of the {{slapd.conf}}(5) content is thus:
543
544 >       database bdb
545 >       suffix dc=Example,dc=com
546 >       rootdn dc=Example,dc=com
547 >       directory /var/ldap/db
548 >       index objectclass,entryCSN,entryUUID eq
549 >
550 >       overlay syncprov
551 >       syncprov-checkpoint 100 10
552 >       syncprov-sessionlog 100
553
554
555 H4: Set up the consumer slapd
556
557 The syncrepl replication is specified in the database section of
558 {{slapd.conf}}(5) for the replica context.  The syncrepl engine
559 is backend independent and the directive can be defined with any
560 database type.
561
562 >       database hdb
563 >       suffix dc=Example,dc=com
564 >       rootdn dc=Example,dc=com
565 >       directory /var/ldap/db
566 >       index objectclass,entryCSN,entryUUID eq
567 >
568 >       syncrepl rid=123
569 >               provider=ldap://provider.example.com:389
570 >               type=refreshOnly
571 >               interval=01:00:00:00
572 >               searchbase="dc=example,dc=com"
573 >               filter="(objectClass=organizationalPerson)"
574 >               scope=sub
575 >               attrs="cn,sn,ou,telephoneNumber,title,l"
576 >               schemachecking=off
577 >               bindmethod=simple
578 >               binddn="cn=syncuser,dc=example,dc=com"
579 >               credentials=secret
580
581 In this example, the consumer will connect to the provider {{slapd}}(8)
582 at port 389 of {{FILE:ldap://provider.example.com}} to perform a
583 polling ({{refreshOnly}}) mode of synchronization once a day.  It
584 will bind as {{EX:cn=syncuser,dc=example,dc=com}} using simple
585 authentication with password "secret".  Note that the access control
586 privilege of {{EX:cn=syncuser,dc=example,dc=com}} should be set
587 appropriately in the provider to retrieve the desired replication
588 content. Also the search limits must be high enough on the provider
589 to allow the syncuser to retrieve a complete copy of the requested
590 content.  The consumer uses the rootdn to write to its database so
591 it always has full permissions to write all content.
592
593 The synchronization search in the above example will search for the
594 entries whose objectClass is organizationalPerson in the entire
595 subtree rooted at {{EX:dc=example,dc=com}}. The requested attributes
596 are {{EX:cn}}, {{EX:sn}}, {{EX:ou}}, {{EX:telephoneNumber}},
597 {{EX:title}}, and {{EX:l}}. The schema checking is turned off, so
598 that the consumer {{slapd}}(8) will not enforce entry schema
599 checking when it processes updates from the provider {{slapd}}(8).
600
601 For more detailed information on the syncrepl directive, see the
602 {{SECT:syncrepl}} section of {{SECT:The slapd Configuration File}}
603 chapter of this admin guide.
604
605
606 H4: Start the provider and the consumer slapd
607
608 The provider {{slapd}}(8) is not required to be restarted.
609 {{contextCSN}} is automatically generated as needed: it might be
610 originally contained in the {{TERM:LDIF}} file, generated by
611 {{slapadd}} (8), generated upon changes in the context, or generated
612 when the first LDAP Sync search arrives at the provider.  If an
613 LDIF file is being loaded which did not previously contain the
614 {{contextCSN}}, the {{-w}} option should be used with {{slapadd}}
615 (8) to cause it to be generated. This will allow the server to
616 startup a little quicker the first time it runs.
617
618 When starting a consumer {{slapd}}(8), it is possible to provide
619 a synchronization cookie as the {{-c cookie}} command line option
620 in order to start the synchronization from a specific state.  The
621 cookie is a comma separated list of name=value pairs. Currently
622 supported syncrepl cookie fields are {{csn=<csn>}} and {{rid=<rid>}}.
623 {{<csn>}} represents the current synchronization state of the
624 consumer replica.  {{<rid>}} identifies a consumer replica locally
625 within the consumer server. It is used to relate the cookie to the
626 syncrepl definition in {{slapd.conf}}(5) which has the matching
627 replica identifier.  The {{<rid>}} must have no more than 3 decimal
628 digits.  The command line cookie overrides the synchronization
629 cookie stored in the consumer replica database.
630
631
632 H3: Delta-syncrepl
633
634 H4: Delta-syncrepl Provider configuration
635
636 Setting up delta-syncrepl requires configuration changes on both the master and 
637 replica servers:
638
639 >     # Give the replica DN unlimited read access.  This ACL needs to be
640 >     # merged with other ACL statements, and/or moved within the scope
641 >     # of a database.  The "by * break" portion causes evaluation of
642 >     # subsequent rules.  See slapd.access(5) for details.
643 >     access to *
644 >        by dn.base="cn=replicator,dc=symas,dc=com" read
645 >        by * break
646 >     
647 >     # Set the module path location
648 >     modulepath /opt/symas/lib/openldap
649 >     
650 >     # Load the hdb backend
651 >     moduleload back_hdb.la
652 >     
653 >     # Load the accesslog overlay
654 >     moduleload accesslog.la
655 >     
656 >     #Load the syncprov overlay
657 >     moduleload syncprov.la
658 >     
659 >     # Accesslog database definitions
660 >     database hdb
661 >     suffix cn=accesslog
662 >     directory /db/accesslog
663 >     rootdn cn=accesslog
664 >     index default eq
665 >     index entryCSN,objectClass,reqEnd,reqResult,reqStart
666 >     
667 >     overlay syncprov
668 >     syncprov-nopresent TRUE
669 >     syncprov-reloadhint TRUE
670 >     
671 >     # Let the replica DN have limitless searches
672 >     limits dn.exact="cn=replicator,dc=symas,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited
673 >     
674 >     # Primary database definitions
675 >     database hdb
676 >     suffix "dc=symas,dc=com"
677 >     rootdn "cn=manager,dc=symas,dc=com"
678 >     
679 >     ## Whatever other configuration options are desired
680 >     
681 >     # syncprov specific indexing
682 >     index entryCSN eq
683 >     index entryUUID eq
684 >     
685 >     # syncrepl Provider for primary db
686 >     overlay syncprov
687 >     syncprov-checkpoint 1000 60
688 >     
689 >     # accesslog overlay definitions for primary db
690 >     overlay accesslog
691 >     logdb cn=accesslog
692 >     logops writes
693 >     logsuccess TRUE
694 >     # scan the accesslog DB every day, and purge entries older than 7 days
695 >     logpurge 07+00:00 01+00:00
696 >     
697 >     # Let the replica DN have limitless searches
698 >     limits dn.exact="cn=replicator,dc=symas,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited
699
700 For more information, always consult the relevant man pages ({{slapo-accesslog}}(5) and {{slapd.conf}}(5))
701
702
703 H4: Delta-syncrepl Consumer configuration
704
705 >     # Replica database configuration
706 >     database hdb
707 >     suffix "dc=symas,dc=com"
708 >     rootdn "cn=manager,dc=symas,dc=com"
709 >     
710 >     ## Whatever other configuration bits for the replica, like indexing
711 >     ## that you want
712 >     
713 >     # syncrepl specific indices
714 >     index entryUUID eq
715 >     
716 >     # syncrepl directives
717 >     syncrepl  rid=0
718 >               provider=ldap://ldapmaster.symas.com:389
719 >               bindmethod=simple
720 >               binddn="cn=replicator,dc=symas,dc=com"
721 >               credentials=secret
722 >               searchbase="dc=symas,dc=com"
723 >               logbase="cn=accesslog"
724 >               logfilter="(&(objectClass=auditWriteObject)(reqResult=0))"
725 >               schemachecking=on
726 >               type=refreshAndPersist
727 >               retry="60 +"
728 >               syncdata=accesslog
729 >     
730 >     # Refer updates to the master
731 >     updateref               ldap://ldapmaster.symas.com
732
733
734 The above configuration assumes that you have a replicator identity defined 
735 in your database that can be used to bind to the provider. In addition, 
736 all of the databases (primary, replica, and the accesslog 
737 storage database) should also have properly tuned {{DB_CONFIG}} files that meet 
738 your needs.
739
740
741 H3: N-Way Multi-Master
742
743 For the following example we will be using 3 Master nodes. Keeping in line with
744 {{B:test050-syncrepl-multimaster}} of the OpenLDAP test suite, we will be configuring
745 {{slapd(8)}} via {{B:cn=config}}
746
747 This sets up the config database:
748
749 >     dn: cn=config
750 >     objectClass: olcGlobal
751 >     cn: config
752 >     olcServerID: 1
753 >     
754 >     dn: olcDatabase={0}config,cn=config
755 >     objectClass: olcDatabaseConfig
756 >     olcDatabase: {0}config
757 >     olcRootPW: secret
758
759 second and third servers will have a different olcServerID obviously:
760
761 >     dn: cn=config
762 >     objectClass: olcGlobal
763 >     cn: config
764 >     olcServerID: 2
765 >     
766 >     dn: olcDatabase={0}config,cn=config
767 >     objectClass: olcDatabaseConfig
768 >     olcDatabase: {0}config
769 >     olcRootPW: secret
770
771 This sets up syncrepl as a provider (since these are all masters):
772
773 >     dn: cn=module,cn=config
774 >     objectClass: olcModuleList
775 >     cn: module
776 >     olcModulePath: /usr/local/libexec/openldap
777 >     olcModuleLoad: syncprov.la
778
779 Now we setup the first Master Node (replace $URI1, $URI2 and $URI3 etc. with your actual ldap urls):
780
781 >     dn: cn=config
782 >     changetype: modify
783 >     replace: olcServerID
784 >     olcServerID: 1 $URI1
785 >     olcServerID: 2 $URI2
786 >     olcServerID: 3 $URI3
787 >     
788 >     dn: olcOverlay=syncprov,olcDatabase={0}config,cn=config
789 >     changetype: add
790 >     objectClass: olcOverlayConfig
791 >     objectClass: olcSyncProvConfig
792 >     olcOverlay: syncprov
793 >     
794 >     dn: olcDatabase={0}config,cn=config
795 >     changetype: modify
796 >     add: olcSyncRepl
797 >     olcSyncRepl: rid=001 provider=$URI1 binddn="cn=config" bindmethod=simple
798 >       credentials=secret searchbase="cn=config" type=refreshAndPersist
799 >       retry="5 5 300 5" timeout=1
800 >     olcSyncRepl: rid=002 provider=$URI2 binddn="cn=config" bindmethod=simple
801 >       credentials=secret searchbase="cn=config" type=refreshAndPersist
802 >       retry="5 5 300 5" timeout=1
803 >     olcSyncRepl: rid=003 provider=$URI3 binddn="cn=config" bindmethod=simple
804 >       credentials=secret searchbase="cn=config" type=refreshAndPersist
805 >       retry="5 5 300 5" timeout=1
806 >     -
807 >     add: olcMirrorMode
808 >     olcMirrorMode: TRUE
809
810 Now start up the Master and a consumer/s, also add the above LDIF to the first consumer, second consumer etc. It will then replicate {{B:cn=config}}. You now have N-Way Multimaster on the config database.
811
812 We still have to replicate the actual data, not just the config, so add to the master (all active and configured consumers/masters will pull down this config, as they are all syncing). Also, replace all {{${}}} variables with whatever is applicable to your setup:
813
814 >     dn: olcDatabase={1}$BACKEND,cn=config
815 >     objectClass: olcDatabaseConfig
816 >     objectClass: olc${BACKEND}Config
817 >     olcDatabase: {1}$BACKEND
818 >     olcSuffix: $BASEDN
819 >     olcDbDirectory: ./db
820 >     olcRootDN: $MANAGERDN
821 >     olcRootPW: $PASSWD
822 >     olcLimits: dn.exact="$MANAGERDN" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited
823 >     olcSyncRepl: rid=004 provider=$URI1 binddn="$MANAGERDN" bindmethod=simple
824 >       credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
825 >       interval=00:00:00:10 retry="5 5 300 5" timeout=1
826 >     olcSyncRepl: rid=005 provider=$URI2 binddn="$MANAGERDN" bindmethod=simple
827 >       credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
828 >       interval=00:00:00:10 retry="5 5 300 5" timeout=1
829 >     olcSyncRepl: rid=006 provider=$URI3 binddn="$MANAGERDN" bindmethod=simple
830 >       credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
831 >       interval=00:00:00:10 retry="5 5 300 5" timeout=1
832 >     olcMirrorMode: TRUE
833 >     
834 >     dn: olcOverlay=syncprov,olcDatabase={1}${BACKEND},cn=config
835 >     changetype: add
836 >     objectClass: olcOverlayConfig
837 >     objectClass: olcSyncProvConfig
838 >     olcOverlay: syncprov
839
840 Note: All of your servers' clocks must be tightly synchronized using
841 e.g. NTP {{http://www.ntp.org/}}, atomic clock, or some other reliable
842 time reference.
843
844 Note: As stated in {{slapd-config}}(5), URLs specified in {{olcSyncRepl}}
845 directives are the URLs of the servers from which to replicate. These
846 must exactly match the URLs {{slapd}} listens on ({{-h}} in {{SECT:Command-Line Options}}).
847 Otherwise slapd may attempt to replicate from itself, causing a loop.
848
849 H3: MirrorMode
850
851 MirrorMode configuration is actually very easy. If you have ever setup a normal
852 slapd syncrepl provider, then the only change is the following two directives:
853
854 >       mirrormode  on
855 >       serverID    1
856
857 Note: You need to make sure that the {{serverID}} of each mirror node is 
858 different and add it as a global configuration option.
859
860 H4: Mirror Node Configuration
861
862 The first step is to configure the syncrepl provider the same as in the 
863 {{SECT:Set up the provider slapd}} section.
864
865 Note: Delta-syncrepl is not yet supported with MirrorMode.
866
867 Here's a specific cut down example using {{SECT:LDAP Sync Replication}} in
868 {{refreshAndPersist}} mode:
869
870 MirrorMode node 1:
871
872 >       # Global section
873 >       serverID    1
874 >       # database section
875 >       
876 >       # syncrepl directive    \r
877 >       syncrepl      rid=001\r
878 >                     provider=ldap://ldap-sid2.example.com\r
879 >                     bindmethod=simple\r
880 >                     binddn="cn=mirrormode,dc=example,dc=com"\r
881 >                     credentials=mirrormode\r
882 >                     searchbase="dc=example,dc=com"\r
883 >                     schemachecking=on\r
884 >                     type=refreshAndPersist\r
885 >                     retry="60 +"\r
886 >
887 >       mirrormode on
888
889 MirrorMode node 2:
890
891 >       # Global section
892 >       serverID    2
893 >       # database section
894 >       
895 >       # syncrepl directive\r
896 >       syncrepl      rid=001\r
897 >                     provider=ldap://ldap-sid1.example.com\r
898 >                     bindmethod=simple\r
899 >                     binddn="cn=mirrormode,dc=example,dc=com"\r
900 >                     credentials=mirrormode\r
901 >                     searchbase="dc=example,dc=com"\r
902 >                     schemachecking=on\r
903 >                     type=refreshAndPersist\r
904 >                     retry="60 +"\r
905 >       \r
906 >       mirrormode on
907
908 It's simple really; each MirrorMode node is setup {{B:exactly}} the same, except
909 that the {{serverID}} is unique, and each consumer is pointed to 
910 the other server.
911
912 H5: Failover Configuration
913
914 There are generally 2 choices for this; 1.  Hardware proxies/load-balancing or 
915 dedicated proxy software, 2. using a Back-LDAP proxy as a syncrepl provider
916
917 A typical enterprise example might be:
918
919 !import "dual_dc.png"; align="center"; title="MirrorMode Enterprise Configuration"
920 FT[align="Center"] Figure X.Y: MirrorMode in a Dual Data Center Configuration
921
922 H5: Normal Consumer Configuration
923
924 This is exactly the same as the {{SECT:Set up the consumer slapd}} section. It
925 can either setup in normal {{SECT:syncrepl replication}} mode, or in 
926 {{SECT:delta-syncrepl replication}} mode.
927
928 H4: MirrorMode Summary
929
930 You will now have a directory architecture that provides all of the 
931 consistency guarantees of single-master replication, while also providing the 
932 high availability of multi-master replication.
933
934
935 H3: Syncrepl Proxy
936
937 !import "push-based-complete.png"; align="center"; title="Syncrepl Proxy Mode"
938 FT[align="Center"] Figure X.Y: Replacing slurpd
939
940 The following example is for a self-contained push-based replication solution:
941
942 >       #######################################################################
943 >       # Standard OpenLDAP Master/Provider
944 >       #######################################################################
945 >       
946 >       include     /usr/local/etc/openldap/schema/core.schema
947 >       include     /usr/local/etc/openldap/schema/cosine.schema
948 >       include     /usr/local/etc/openldap/schema/nis.schema
949 >       include     /usr/local/etc/openldap/schema/inetorgperson.schema
950 >       
951 >       include     /usr/local/etc/openldap/slapd.acl
952 >       
953 >       modulepath  /usr/local/libexec/openldap
954 >       moduleload  back_hdb.la
955 >       moduleload  syncprov.la
956 >       moduleload  back_monitor.la
957 >       moduleload  back_ldap.la
958 >       
959 >       pidfile     /usr/local/var/slapd.pid
960 >       argsfile    /usr/local/var/slapd.args
961 >       
962 >       loglevel    sync stats
963 >       
964 >       database    hdb
965 >       suffix      "dc=suretecsystems,dc=com"
966 >       directory   /usr/local/var/openldap-data
967 >       
968 >       checkpoint      1024 5
969 >       cachesize       10000
970 >       idlcachesize    10000
971 >       
972 >       index       objectClass eq
973 >       # rest of indexes
974 >       index       default     sub
975 >       
976 >       rootdn          "cn=admin,dc=suretecsystems,dc=com"
977 >       rootpw          testing 
978 >       
979 >       # syncprov specific indexing
980 >       index entryCSN eq
981 >       index entryUUID eq
982 >       
983 >       # syncrepl Provider for primary db
984 >       overlay syncprov
985 >       syncprov-checkpoint 1000 60
986 >       
987 >       # Let the replica DN have limitless searches
988 >       limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited
989 >       
990 >       database    monitor
991 >       
992 >       database    config
993 >       rootpw          testing
994 >       
995 >       ##############################################################################
996 >       # Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap
997 >       ##############################################################################
998 >       
999 >       database        ldap
1000 >       # ignore conflicts with other databases, as we need to push out to same suffix
1001 >       hidden              on
1002 >       suffix          "dc=suretecsystems,dc=com"
1003 >       rootdn          "cn=slapd-ldap"
1004 >       uri             ldap://localhost:9012/
1005 >       
1006 >       lastmod         on
1007 >               
1008 >       # We don't need any access to this DSA
1009 >       restrict        all
1010 >       
1011 >       acl-bind        bindmethod=simple
1012 >                       binddn="cn=replicator,dc=suretecsystems,dc=com"
1013 >                       credentials=testing
1014 >       
1015 >       syncrepl        rid=001
1016 >                       provider=ldap://localhost:9011/
1017 >                       binddn="cn=replicator,dc=suretecsystems,dc=com"
1018 >                       bindmethod=simple
1019 >                       credentials=testing
1020 >                       searchbase="dc=suretecsystems,dc=com"
1021 >                       type=refreshAndPersist
1022 >                       retry="5 5 300 5"
1023 >       
1024 >       overlay         syncprov
1025
1026 A replica configuration for this type of setup could be:
1027
1028 >       #######################################################################
1029 >       # Standard OpenLDAP Slave without Syncrepl
1030 >       #######################################################################
1031 >       
1032 >       include     /usr/local/etc/openldap/schema/core.schema
1033 >       include     /usr/local/etc/openldap/schema/cosine.schema
1034 >       include     /usr/local/etc/openldap/schema/nis.schema
1035 >       include     /usr/local/etc/openldap/schema/inetorgperson.schema
1036 >       
1037 >       include     /usr/local/etc/openldap/slapd.acl
1038 >       
1039 >       modulepath  /usr/local/libexec/openldap
1040 >       moduleload  back_hdb.la
1041 >       moduleload  syncprov.la
1042 >       moduleload  back_monitor.la
1043 >       moduleload  back_ldap.la
1044 >       
1045 >       pidfile     /usr/local/var/slapd.pid
1046 >       argsfile    /usr/local/var/slapd.args
1047 >       
1048 >       loglevel    sync stats
1049 >       
1050 >       database    hdb
1051 >       suffix      "dc=suretecsystems,dc=com"
1052 >       directory   /usr/local/var/openldap-slave/data
1053 >       
1054 >       checkpoint      1024 5
1055 >       cachesize       10000
1056 >       idlcachesize    10000
1057 >       
1058 >       index       objectClass eq
1059 >       # rest of indexes
1060 >       index       default     sub
1061 >       
1062 >       rootdn          "cn=admin,dc=suretecsystems,dc=com"
1063 >       rootpw          testing 
1064 >       
1065 >       # Let the replica DN have limitless searches
1066 >       limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=unlimited size.soft=unlimited size.hard=unlimited
1067 >       
1068 >       updatedn "cn=replicator,dc=suretecsystems,dc=com"
1069 >       
1070 >       # Refer updates to the master
1071 >       updateref   ldap://localhost:9011
1072 >       
1073 >       database    monitor
1074 >       
1075 >       database    config
1076 >       rootpw          testing
1077
1078 You can see we use the {{updatedn}} directive here and example ACLs ({{F:usr/local/etc/openldap/slapd.acl}}) for this could be:
1079         
1080 >       # Give the replica DN unlimited read access.  This ACL may need to be
1081 >       # merged with other ACL statements.
1082 >       
1083 >       access to *
1084 >            by dn.base="cn=replicator,dc=suretecsystems,dc=com" write
1085 >            by * break
1086 >       
1087 >       access to dn.base=""
1088 >               by * read
1089 >       
1090 >       access to dn.base="cn=Subschema"
1091 >               by * read
1092 >       
1093 >       access to dn.subtree="cn=Monitor"
1094 >           by dn.exact="uid=admin,dc=suretecsystems,dc=com" write
1095 >           by users read
1096 >           by * none
1097 >       
1098 >       access to *
1099 >               by self write
1100 >               by * read 
1101
1102 In order to support more replicas, just add more {{database ldap}} sections and
1103 increment the {{syncrepl rid}} number accordingly.
1104
1105 Note: You must populate the Master and Slave directories with the same data, 
1106 unlike when using normal Syncrepl
1107
1108 If you do not have access to modify the master directory configuration you can
1109 configure a standalone ldap proxy, which might look like:
1110
1111 !import "push-based-standalone.png"; align="center"; title="Syncrepl Standalone Proxy Mode"
1112 FT[align="Center"] Figure X.Y: Replacing slurpd with a standalone version
1113
1114 The following configuration is an example of a standalone LDAP Proxy:
1115
1116 >       include     /usr/local/etc/openldap/schema/core.schema
1117 >       include     /usr/local/etc/openldap/schema/cosine.schema
1118 >       include     /usr/local/etc/openldap/schema/nis.schema
1119 >       include     /usr/local/etc/openldap/schema/inetorgperson.schema
1120 >       
1121 >       include     /usr/local/etc/openldap/slapd.acl
1122 >       
1123 >       modulepath  /usr/local/libexec/openldap
1124 >       moduleload  syncprov.la
1125 >       moduleload  back_ldap.la
1126 >       
1127 >       ##############################################################################
1128 >       # Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap
1129 >       ##############################################################################
1130 >       
1131 >       database        ldap
1132 >       # ignore conflicts with other databases, as we need to push out to same suffix
1133 >       hidden              on
1134 >       suffix          "dc=suretecsystems,dc=com"
1135 >       rootdn          "cn=slapd-ldap"
1136 >       uri             ldap://localhost:9012/
1137 >       
1138 >       lastmod         on
1139 >               
1140 >       # We don't need any access to this DSA
1141 >       restrict        all
1142 >       
1143 >       acl-bind        bindmethod=simple
1144 >                       binddn="cn=replicator,dc=suretecsystems,dc=com"
1145 >                       credentials=testing
1146 >       
1147 >       syncrepl        rid=001
1148 >                       provider=ldap://localhost:9011/
1149 >                       binddn="cn=replicator,dc=suretecsystems,dc=com"
1150 >                       bindmethod=simple
1151 >                       credentials=testing
1152 >                       searchbase="dc=suretecsystems,dc=com"
1153 >                       type=refreshAndPersist
1154 >                       retry="5 5 300 5"
1155 >       
1156 >       overlay         syncprov
1157
1158 As you can see, you can let your imagination go wild using Syncrepl and 
1159 {{slapd-ldap(8)}} tailoring your replication to fit your specific network 
1160 topology.