]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/mxc_nand.c
7221d0ba0d7da4fef7307ab3a8784578d2e2748d
[u-boot] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
5  *
6  * SPDX-License-Identifier:     GPL-2.0+
7  */
8
9 #include <common.h>
10 #include <nand.h>
11 #include <linux/err.h>
12 #include <asm/io.h>
13 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
14         defined(CONFIG_MX51) || defined(CONFIG_MX53)
15 #include <asm/arch/imx-regs.h>
16 #endif
17 #include "mxc_nand.h"
18
19 #define DRIVER_NAME "mxc_nand"
20
21 struct mxc_nand_host {
22         struct nand_chip                *nand;
23
24         struct mxc_nand_regs __iomem    *regs;
25 #ifdef MXC_NFC_V3_2
26         struct mxc_nand_ip_regs __iomem *ip_regs;
27 #endif
28         int                             spare_only;
29         int                             status_request;
30         int                             pagesize_2k;
31         int                             clk_act;
32         uint16_t                        col_addr;
33         unsigned int                    page_addr;
34 };
35
36 static struct mxc_nand_host mxc_host;
37 static struct mxc_nand_host *host = &mxc_host;
38
39 /* Define delays in microsec for NAND device operations */
40 #define TROP_US_DELAY   2000
41 /* Macros to get byte and bit positions of ECC */
42 #define COLPOS(x)  ((x) >> 3)
43 #define BITPOS(x) ((x) & 0xf)
44
45 /* Define single bit Error positions in Main & Spare area */
46 #define MAIN_SINGLEBIT_ERROR 0x4
47 #define SPARE_SINGLEBIT_ERROR 0x1
48
49 /* OOB placement block for use with hardware ecc generation */
50 #if defined(MXC_NFC_V1)
51 #ifndef CONFIG_SYS_NAND_LARGEPAGE
52 static struct nand_ecclayout nand_hw_eccoob = {
53         .eccbytes = 5,
54         .eccpos = {6, 7, 8, 9, 10},
55         .oobfree = { {0, 5}, {11, 5}, }
56 };
57 #else
58 static struct nand_ecclayout nand_hw_eccoob2k = {
59         .eccbytes = 20,
60         .eccpos = {
61                 6, 7, 8, 9, 10,
62                 22, 23, 24, 25, 26,
63                 38, 39, 40, 41, 42,
64                 54, 55, 56, 57, 58,
65         },
66         .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
67 };
68 #endif
69 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
70 #ifndef CONFIG_SYS_NAND_LARGEPAGE
71 static struct nand_ecclayout nand_hw_eccoob = {
72         .eccbytes = 9,
73         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
74         .oobfree = { {2, 5} }
75 };
76 #else
77 static struct nand_ecclayout nand_hw_eccoob2k = {
78         .eccbytes = 36,
79         .eccpos = {
80                 7, 8, 9, 10, 11, 12, 13, 14, 15,
81                 23, 24, 25, 26, 27, 28, 29, 30, 31,
82                 39, 40, 41, 42, 43, 44, 45, 46, 47,
83                 55, 56, 57, 58, 59, 60, 61, 62, 63,
84         },
85         .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
86 };
87 #endif
88 #endif
89
90 static int is_16bit_nand(void)
91 {
92 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
93         return 1;
94 #else
95         return 0;
96 #endif
97 }
98
99 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
100 {
101         uint32_t *d = dest;
102
103         size >>= 2;
104         while (size--)
105                 __raw_writel(__raw_readl(source++), d++);
106         return dest;
107 }
108
109 /*
110  * This function polls the NANDFC to wait for the basic operation to
111  * complete by checking the INT bit.
112  */
113 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
114                                 uint16_t param)
115 {
116         uint32_t tmp;
117
118         while (max_retries-- > 0) {
119 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
120                 tmp = readnfc(&host->regs->config2);
121                 if (tmp & NFC_V1_V2_CONFIG2_INT) {
122                         tmp &= ~NFC_V1_V2_CONFIG2_INT;
123                         writenfc(tmp, &host->regs->config2);
124 #elif defined(MXC_NFC_V3_2)
125                 tmp = readnfc(&host->ip_regs->ipc);
126                 if (tmp & NFC_V3_IPC_INT) {
127                         tmp &= ~NFC_V3_IPC_INT;
128                         writenfc(tmp, &host->ip_regs->ipc);
129 #endif
130                         break;
131                 }
132                 udelay(1);
133         }
134         if (max_retries < 0) {
135                 MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
136                                 __func__, param);
137         }
138 }
139
140 /*
141  * This function issues the specified command to the NAND device and
142  * waits for completion.
143  */
144 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
145 {
146         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
147
148         writenfc(cmd, &host->regs->flash_cmd);
149         writenfc(NFC_CMD, &host->regs->operation);
150
151         /* Wait for operation to complete */
152         wait_op_done(host, TROP_US_DELAY, cmd);
153 }
154
155 /*
156  * This function sends an address (or partial address) to the
157  * NAND device. The address is used to select the source/destination for
158  * a NAND command.
159  */
160 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
161 {
162         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);
163
164         writenfc(addr, &host->regs->flash_addr);
165         writenfc(NFC_ADDR, &host->regs->operation);
166
167         /* Wait for operation to complete */
168         wait_op_done(host, TROP_US_DELAY, addr);
169 }
170
171 /*
172  * This function requests the NANDFC to initiate the transfer
173  * of data currently in the NANDFC RAM buffer to the NAND device.
174  */
175 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
176                         int spare_only)
177 {
178         if (spare_only)
179                 MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
180
181         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
182                 int i;
183                 /*
184                  *  The controller copies the 64 bytes of spare data from
185                  *  the first 16 bytes of each of the 4 64 byte spare buffers.
186                  *  Copy the contiguous data starting in spare_area[0] to
187                  *  the four spare area buffers.
188                  */
189                 for (i = 1; i < 4; i++) {
190                         void __iomem *src = &host->regs->spare_area[0][i * 16];
191                         void __iomem *dst = &host->regs->spare_area[i][0];
192
193                         mxc_nand_memcpy32(dst, src, 16);
194                 }
195         }
196
197 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
198         writenfc(buf_id, &host->regs->buf_addr);
199 #elif defined(MXC_NFC_V3_2)
200         uint32_t tmp = readnfc(&host->regs->config1);
201         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
202         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
203         writenfc(tmp, &host->regs->config1);
204 #endif
205
206         /* Configure spare or page+spare access */
207         if (!host->pagesize_2k) {
208                 uint32_t config1 = readnfc(&host->regs->config1);
209                 if (spare_only)
210                         config1 |= NFC_CONFIG1_SP_EN;
211                 else
212                         config1 &= ~NFC_CONFIG1_SP_EN;
213                 writenfc(config1, &host->regs->config1);
214         }
215
216         writenfc(NFC_INPUT, &host->regs->operation);
217
218         /* Wait for operation to complete */
219         wait_op_done(host, TROP_US_DELAY, spare_only);
220 }
221
222 /*
223  * Requests NANDFC to initiate the transfer of data from the
224  * NAND device into in the NANDFC ram buffer.
225  */
226 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
227                 int spare_only)
228 {
229         MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
230
231 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
232         writenfc(buf_id, &host->regs->buf_addr);
233 #elif defined(MXC_NFC_V3_2)
234         uint32_t tmp = readnfc(&host->regs->config1);
235         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
236         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
237         writenfc(tmp, &host->regs->config1);
238 #endif
239
240         /* Configure spare or page+spare access */
241         if (!host->pagesize_2k) {
242                 uint32_t config1 = readnfc(&host->regs->config1);
243                 if (spare_only)
244                         config1 |= NFC_CONFIG1_SP_EN;
245                 else
246                         config1 &= ~NFC_CONFIG1_SP_EN;
247                 writenfc(config1, &host->regs->config1);
248         }
249
250         writenfc(NFC_OUTPUT, &host->regs->operation);
251
252         /* Wait for operation to complete */
253         wait_op_done(host, TROP_US_DELAY, spare_only);
254
255         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
256                 int i;
257
258                 /*
259                  *  The controller copies the 64 bytes of spare data to
260                  *  the first 16 bytes of each of the 4 spare buffers.
261                  *  Make the data contiguous starting in spare_area[0].
262                  */
263                 for (i = 1; i < 4; i++) {
264                         void __iomem *src = &host->regs->spare_area[i][0];
265                         void __iomem *dst = &host->regs->spare_area[0][i * 16];
266
267                         mxc_nand_memcpy32(dst, src, 16);
268                 }
269         }
270 }
271
272 /* Request the NANDFC to perform a read of the NAND device ID. */
273 static void send_read_id(struct mxc_nand_host *host)
274 {
275         uint32_t tmp;
276
277 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
278         /* NANDFC buffer 0 is used for device ID output */
279         writenfc(0x0, &host->regs->buf_addr);
280 #elif defined(MXC_NFC_V3_2)
281         tmp = readnfc(&host->regs->config1);
282         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
283         writenfc(tmp, &host->regs->config1);
284 #endif
285
286         /* Read ID into main buffer */
287         tmp = readnfc(&host->regs->config1);
288         tmp &= ~NFC_CONFIG1_SP_EN;
289         writenfc(tmp, &host->regs->config1);
290
291         writenfc(NFC_ID, &host->regs->operation);
292
293         /* Wait for operation to complete */
294         wait_op_done(host, TROP_US_DELAY, 0);
295 }
296
297 /*
298  * This function requests the NANDFC to perform a read of the
299  * NAND device status and returns the current status.
300  */
301 static uint16_t get_dev_status(struct mxc_nand_host *host)
302 {
303 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
304         void __iomem *main_buf = host->regs->main_area[1];
305         uint32_t store;
306 #endif
307         uint32_t ret, tmp;
308         /* Issue status request to NAND device */
309
310 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
311         /* store the main area1 first word, later do recovery */
312         store = readl(main_buf);
313         /* NANDFC buffer 1 is used for device status */
314         writenfc(1, &host->regs->buf_addr);
315 #endif
316
317         /* Read status into main buffer */
318         tmp = readnfc(&host->regs->config1);
319         tmp &= ~NFC_CONFIG1_SP_EN;
320         writenfc(tmp, &host->regs->config1);
321
322         writenfc(NFC_STATUS, &host->regs->operation);
323
324         /* Wait for operation to complete */
325         wait_op_done(host, TROP_US_DELAY, 0);
326
327 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
328         /*
329          *  Status is placed in first word of main buffer
330          * get status, then recovery area 1 data
331          */
332         ret = readw(main_buf);
333         writel(store, main_buf);
334 #elif defined(MXC_NFC_V3_2)
335         ret = readnfc(&host->regs->config1) >> 16;
336 #endif
337
338         return ret;
339 }
340
341 /* This function is used by upper layer to checks if device is ready */
342 static int mxc_nand_dev_ready(struct mtd_info *mtd)
343 {
344         /*
345          * NFC handles R/B internally. Therefore, this function
346          * always returns status as ready.
347          */
348         return 1;
349 }
350
351 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
352 {
353         struct nand_chip *nand_chip = mtd_to_nand(mtd);
354         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
355 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
356         uint16_t tmp = readnfc(&host->regs->config1);
357
358         if (on)
359                 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
360         else
361                 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
362         writenfc(tmp, &host->regs->config1);
363 #elif defined(MXC_NFC_V3_2)
364         uint32_t tmp = readnfc(&host->ip_regs->config2);
365
366         if (on)
367                 tmp |= NFC_V3_CONFIG2_ECC_EN;
368         else
369                 tmp &= ~NFC_V3_CONFIG2_ECC_EN;
370         writenfc(tmp, &host->ip_regs->config2);
371 #endif
372 }
373
374 #ifdef CONFIG_MXC_NAND_HWECC
375 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
376 {
377         /*
378          * If HW ECC is enabled, we turn it on during init. There is
379          * no need to enable again here.
380          */
381 }
382
383 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
384 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
385                                       struct nand_chip *chip,
386                                       int page)
387 {
388         struct mxc_nand_host *host = nand_get_controller_data(chip);
389         uint8_t *buf = chip->oob_poi;
390         int length = mtd->oobsize;
391         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
392         uint8_t *bufpoi = buf;
393         int i, toread;
394
395         MTDDEBUG(MTD_DEBUG_LEVEL0,
396                         "%s: Reading OOB area of page %u to oob %p\n",
397                          __func__, page, buf);
398
399         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
400         for (i = 0; i < chip->ecc.steps; i++) {
401                 toread = min_t(int, length, chip->ecc.prepad);
402                 if (toread) {
403                         chip->read_buf(mtd, bufpoi, toread);
404                         bufpoi += toread;
405                         length -= toread;
406                 }
407                 bufpoi += chip->ecc.bytes;
408                 host->col_addr += chip->ecc.bytes;
409                 length -= chip->ecc.bytes;
410
411                 toread = min_t(int, length, chip->ecc.postpad);
412                 if (toread) {
413                         chip->read_buf(mtd, bufpoi, toread);
414                         bufpoi += toread;
415                         length -= toread;
416                 }
417         }
418         if (length > 0)
419                 chip->read_buf(mtd, bufpoi, length);
420
421         _mxc_nand_enable_hwecc(mtd, 0);
422         chip->cmdfunc(mtd, NAND_CMD_READOOB,
423                         mtd->writesize + chip->ecc.prepad, page);
424         bufpoi = buf + chip->ecc.prepad;
425         length = mtd->oobsize - chip->ecc.prepad;
426         for (i = 0; i < chip->ecc.steps; i++) {
427                 toread = min_t(int, length, chip->ecc.bytes);
428                 chip->read_buf(mtd, bufpoi, toread);
429                 bufpoi += eccpitch;
430                 length -= eccpitch;
431                 host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
432         }
433         _mxc_nand_enable_hwecc(mtd, 1);
434         return 1;
435 }
436
437 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
438                                            struct nand_chip *chip,
439                                            uint8_t *buf,
440                                            int oob_required,
441                                            int page)
442 {
443         struct mxc_nand_host *host = nand_get_controller_data(chip);
444         int eccsize = chip->ecc.size;
445         int eccbytes = chip->ecc.bytes;
446         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
447         uint8_t *oob = chip->oob_poi;
448         int steps, size;
449         int n;
450
451         _mxc_nand_enable_hwecc(mtd, 0);
452         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
453
454         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
455                 host->col_addr = n * eccsize;
456                 chip->read_buf(mtd, buf, eccsize);
457                 buf += eccsize;
458
459                 host->col_addr = mtd->writesize + n * eccpitch;
460                 if (chip->ecc.prepad) {
461                         chip->read_buf(mtd, oob, chip->ecc.prepad);
462                         oob += chip->ecc.prepad;
463                 }
464
465                 chip->read_buf(mtd, oob, eccbytes);
466                 oob += eccbytes;
467
468                 if (chip->ecc.postpad) {
469                         chip->read_buf(mtd, oob, chip->ecc.postpad);
470                         oob += chip->ecc.postpad;
471                 }
472         }
473
474         size = mtd->oobsize - (oob - chip->oob_poi);
475         if (size)
476                 chip->read_buf(mtd, oob, size);
477         _mxc_nand_enable_hwecc(mtd, 1);
478
479         return 0;
480 }
481
482 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
483                                        struct nand_chip *chip,
484                                        uint8_t *buf,
485                                        int oob_required,
486                                        int page)
487 {
488         struct mxc_nand_host *host = nand_get_controller_data(chip);
489         int n, eccsize = chip->ecc.size;
490         int eccbytes = chip->ecc.bytes;
491         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
492         int eccsteps = chip->ecc.steps;
493         uint8_t *p = buf;
494         uint8_t *oob = chip->oob_poi;
495
496         MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
497               page, buf, oob);
498
499         /* first read the data area and the available portion of OOB */
500         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
501                 int stat;
502
503                 host->col_addr = n * eccsize;
504
505                 chip->read_buf(mtd, p, eccsize);
506
507                 host->col_addr = mtd->writesize + n * eccpitch;
508
509                 if (chip->ecc.prepad) {
510                         chip->read_buf(mtd, oob, chip->ecc.prepad);
511                         oob += chip->ecc.prepad;
512                 }
513
514                 stat = chip->ecc.correct(mtd, p, oob, NULL);
515
516                 if (stat < 0)
517                         mtd->ecc_stats.failed++;
518                 else
519                         mtd->ecc_stats.corrected += stat;
520                 oob += eccbytes;
521
522                 if (chip->ecc.postpad) {
523                         chip->read_buf(mtd, oob, chip->ecc.postpad);
524                         oob += chip->ecc.postpad;
525                 }
526         }
527
528         /* Calculate remaining oob bytes */
529         n = mtd->oobsize - (oob - chip->oob_poi);
530         if (n)
531                 chip->read_buf(mtd, oob, n);
532
533         /* Then switch ECC off and read the OOB area to get the ECC code */
534         _mxc_nand_enable_hwecc(mtd, 0);
535         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
536         eccsteps = chip->ecc.steps;
537         oob = chip->oob_poi + chip->ecc.prepad;
538         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
539                 host->col_addr = mtd->writesize +
540                                  n * eccpitch +
541                                  chip->ecc.prepad;
542                 chip->read_buf(mtd, oob, eccbytes);
543                 oob += eccbytes + chip->ecc.postpad;
544         }
545         _mxc_nand_enable_hwecc(mtd, 1);
546         return 0;
547 }
548
549 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
550                                        struct nand_chip *chip, int page)
551 {
552         struct mxc_nand_host *host = nand_get_controller_data(chip);
553         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
554         int length = mtd->oobsize;
555         int i, len, status, steps = chip->ecc.steps;
556         const uint8_t *bufpoi = chip->oob_poi;
557
558         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
559         for (i = 0; i < steps; i++) {
560                 len = min_t(int, length, eccpitch);
561
562                 chip->write_buf(mtd, bufpoi, len);
563                 bufpoi += len;
564                 length -= len;
565                 host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
566         }
567         if (length > 0)
568                 chip->write_buf(mtd, bufpoi, length);
569
570         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
571         status = chip->waitfunc(mtd, chip);
572         return status & NAND_STATUS_FAIL ? -EIO : 0;
573 }
574
575 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
576                                              struct nand_chip *chip,
577                                              const uint8_t *buf,
578                                              int oob_required, int page)
579 {
580         struct mxc_nand_host *host = nand_get_controller_data(chip);
581         int eccsize = chip->ecc.size;
582         int eccbytes = chip->ecc.bytes;
583         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
584         uint8_t *oob = chip->oob_poi;
585         int steps, size;
586         int n;
587
588         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
589                 host->col_addr = n * eccsize;
590                 chip->write_buf(mtd, buf, eccsize);
591                 buf += eccsize;
592
593                 host->col_addr = mtd->writesize + n * eccpitch;
594
595                 if (chip->ecc.prepad) {
596                         chip->write_buf(mtd, oob, chip->ecc.prepad);
597                         oob += chip->ecc.prepad;
598                 }
599
600                 host->col_addr += eccbytes;
601                 oob += eccbytes;
602
603                 if (chip->ecc.postpad) {
604                         chip->write_buf(mtd, oob, chip->ecc.postpad);
605                         oob += chip->ecc.postpad;
606                 }
607         }
608
609         size = mtd->oobsize - (oob - chip->oob_poi);
610         if (size)
611                 chip->write_buf(mtd, oob, size);
612         return 0;
613 }
614
615 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
616                                          struct nand_chip *chip,
617                                          const uint8_t *buf,
618                                          int oob_required, int page)
619 {
620         struct mxc_nand_host *host = nand_get_controller_data(chip);
621         int i, n, eccsize = chip->ecc.size;
622         int eccbytes = chip->ecc.bytes;
623         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
624         int eccsteps = chip->ecc.steps;
625         const uint8_t *p = buf;
626         uint8_t *oob = chip->oob_poi;
627
628         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
629
630         for (i = n = 0;
631              eccsteps;
632              n++, eccsteps--, i += eccbytes, p += eccsize) {
633                 host->col_addr = n * eccsize;
634
635                 chip->write_buf(mtd, p, eccsize);
636
637                 host->col_addr = mtd->writesize + n * eccpitch;
638
639                 if (chip->ecc.prepad) {
640                         chip->write_buf(mtd, oob, chip->ecc.prepad);
641                         oob += chip->ecc.prepad;
642                 }
643
644                 chip->write_buf(mtd, oob, eccbytes);
645                 oob += eccbytes;
646
647                 if (chip->ecc.postpad) {
648                         chip->write_buf(mtd, oob, chip->ecc.postpad);
649                         oob += chip->ecc.postpad;
650                 }
651         }
652
653         /* Calculate remaining oob bytes */
654         i = mtd->oobsize - (oob - chip->oob_poi);
655         if (i)
656                 chip->write_buf(mtd, oob, i);
657         return 0;
658 }
659
660 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
661                                  u_char *read_ecc, u_char *calc_ecc)
662 {
663         struct nand_chip *nand_chip = mtd_to_nand(mtd);
664         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
665         uint32_t ecc_status = readl(&host->regs->ecc_status_result);
666         int subpages = mtd->writesize / nand_chip->subpagesize;
667         int pg2blk_shift = nand_chip->phys_erase_shift -
668                            nand_chip->page_shift;
669
670         do {
671                 if ((ecc_status & 0xf) > 4) {
672                         static int last_bad = -1;
673
674                         if (last_bad != host->page_addr >> pg2blk_shift) {
675                                 last_bad = host->page_addr >> pg2blk_shift;
676                                 printk(KERN_DEBUG
677                                        "MXC_NAND: HWECC uncorrectable ECC error"
678                                        " in block %u page %u subpage %d\n",
679                                        last_bad, host->page_addr,
680                                        mtd->writesize / nand_chip->subpagesize
681                                             - subpages);
682                         }
683                         return -EBADMSG;
684                 }
685                 ecc_status >>= 4;
686                 subpages--;
687         } while (subpages > 0);
688
689         return 0;
690 }
691 #else
692 #define mxc_nand_read_page_syndrome NULL
693 #define mxc_nand_read_page_raw_syndrome NULL
694 #define mxc_nand_read_oob_syndrome NULL
695 #define mxc_nand_write_page_syndrome NULL
696 #define mxc_nand_write_page_raw_syndrome NULL
697 #define mxc_nand_write_oob_syndrome NULL
698
699 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
700                                  u_char *read_ecc, u_char *calc_ecc)
701 {
702         struct nand_chip *nand_chip = mtd_to_nand(mtd);
703         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
704
705         /*
706          * 1-Bit errors are automatically corrected in HW.  No need for
707          * additional correction.  2-Bit errors cannot be corrected by
708          * HW ECC, so we need to return failure
709          */
710         uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
711
712         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
713                 MTDDEBUG(MTD_DEBUG_LEVEL0,
714                       "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
715                 return -EBADMSG;
716         }
717
718         return 0;
719 }
720 #endif
721
722 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
723                                   u_char *ecc_code)
724 {
725         return 0;
726 }
727 #endif
728
729 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
730 {
731         struct nand_chip *nand_chip = mtd_to_nand(mtd);
732         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
733         uint8_t ret = 0;
734         uint16_t col;
735         uint16_t __iomem *main_buf =
736                 (uint16_t __iomem *)host->regs->main_area[0];
737         uint16_t __iomem *spare_buf =
738                 (uint16_t __iomem *)host->regs->spare_area[0];
739         union {
740                 uint16_t word;
741                 uint8_t bytes[2];
742         } nfc_word;
743
744         /* Check for status request */
745         if (host->status_request)
746                 return get_dev_status(host) & 0xFF;
747
748         /* Get column for 16-bit access */
749         col = host->col_addr >> 1;
750
751         /* If we are accessing the spare region */
752         if (host->spare_only)
753                 nfc_word.word = readw(&spare_buf[col]);
754         else
755                 nfc_word.word = readw(&main_buf[col]);
756
757         /* Pick upper/lower byte of word from RAM buffer */
758         ret = nfc_word.bytes[host->col_addr & 0x1];
759
760         /* Update saved column address */
761         if (nand_chip->options & NAND_BUSWIDTH_16)
762                 host->col_addr += 2;
763         else
764                 host->col_addr++;
765
766         return ret;
767 }
768
769 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
770 {
771         struct nand_chip *nand_chip = mtd_to_nand(mtd);
772         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
773         uint16_t col, ret;
774         uint16_t __iomem *p;
775
776         MTDDEBUG(MTD_DEBUG_LEVEL3,
777               "mxc_nand_read_word(col = %d)\n", host->col_addr);
778
779         col = host->col_addr;
780         /* Adjust saved column address */
781         if (col < mtd->writesize && host->spare_only)
782                 col += mtd->writesize;
783
784         if (col < mtd->writesize) {
785                 p = (uint16_t __iomem *)(host->regs->main_area[0] +
786                                 (col >> 1));
787         } else {
788                 p = (uint16_t __iomem *)(host->regs->spare_area[0] +
789                                 ((col - mtd->writesize) >> 1));
790         }
791
792         if (col & 1) {
793                 union {
794                         uint16_t word;
795                         uint8_t bytes[2];
796                 } nfc_word[3];
797
798                 nfc_word[0].word = readw(p);
799                 nfc_word[1].word = readw(p + 1);
800
801                 nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
802                 nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
803
804                 ret = nfc_word[2].word;
805         } else {
806                 ret = readw(p);
807         }
808
809         /* Update saved column address */
810         host->col_addr = col + 2;
811
812         return ret;
813 }
814
815 /*
816  * Write data of length len to buffer buf. The data to be
817  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
818  * Operation by the NFC, the data is written to NAND Flash
819  */
820 static void mxc_nand_write_buf(struct mtd_info *mtd,
821                                 const u_char *buf, int len)
822 {
823         struct nand_chip *nand_chip = mtd_to_nand(mtd);
824         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
825         int n, col, i = 0;
826
827         MTDDEBUG(MTD_DEBUG_LEVEL3,
828               "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
829               len);
830
831         col = host->col_addr;
832
833         /* Adjust saved column address */
834         if (col < mtd->writesize && host->spare_only)
835                 col += mtd->writesize;
836
837         n = mtd->writesize + mtd->oobsize - col;
838         n = min(len, n);
839
840         MTDDEBUG(MTD_DEBUG_LEVEL3,
841               "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
842
843         while (n > 0) {
844                 void __iomem *p;
845
846                 if (col < mtd->writesize) {
847                         p = host->regs->main_area[0] + (col & ~3);
848                 } else {
849                         p = host->regs->spare_area[0] -
850                                                 mtd->writesize + (col & ~3);
851                 }
852
853                 MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
854                       __LINE__, p);
855
856                 if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
857                         union {
858                                 uint32_t word;
859                                 uint8_t bytes[4];
860                         } nfc_word;
861
862                         nfc_word.word = readl(p);
863                         nfc_word.bytes[col & 3] = buf[i++];
864                         n--;
865                         col++;
866
867                         writel(nfc_word.word, p);
868                 } else {
869                         int m = mtd->writesize - col;
870
871                         if (col >= mtd->writesize)
872                                 m += mtd->oobsize;
873
874                         m = min(n, m) & ~3;
875
876                         MTDDEBUG(MTD_DEBUG_LEVEL3,
877                               "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
878                               __func__,  __LINE__, n, m, i, col);
879
880                         mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
881                         col += m;
882                         i += m;
883                         n -= m;
884                 }
885         }
886         /* Update saved column address */
887         host->col_addr = col;
888 }
889
890 /*
891  * Read the data buffer from the NAND Flash. To read the data from NAND
892  * Flash first the data output cycle is initiated by the NFC, which copies
893  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
894  */
895 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
896 {
897         struct nand_chip *nand_chip = mtd_to_nand(mtd);
898         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
899         int n, col, i = 0;
900
901         MTDDEBUG(MTD_DEBUG_LEVEL3,
902               "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
903
904         col = host->col_addr;
905
906         /* Adjust saved column address */
907         if (col < mtd->writesize && host->spare_only)
908                 col += mtd->writesize;
909
910         n = mtd->writesize + mtd->oobsize - col;
911         n = min(len, n);
912
913         while (n > 0) {
914                 void __iomem *p;
915
916                 if (col < mtd->writesize) {
917                         p = host->regs->main_area[0] + (col & ~3);
918                 } else {
919                         p = host->regs->spare_area[0] -
920                                         mtd->writesize + (col & ~3);
921                 }
922
923                 if (((col | (int)&buf[i]) & 3) || n < 4) {
924                         union {
925                                 uint32_t word;
926                                 uint8_t bytes[4];
927                         } nfc_word;
928
929                         nfc_word.word = readl(p);
930                         buf[i++] = nfc_word.bytes[col & 3];
931                         n--;
932                         col++;
933                 } else {
934                         int m = mtd->writesize - col;
935
936                         if (col >= mtd->writesize)
937                                 m += mtd->oobsize;
938
939                         m = min(n, m) & ~3;
940                         mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
941
942                         col += m;
943                         i += m;
944                         n -= m;
945                 }
946         }
947         /* Update saved column address */
948         host->col_addr = col;
949 }
950
951 /*
952  * This function is used by upper layer for select and
953  * deselect of the NAND chip
954  */
955 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
956 {
957         struct nand_chip *nand_chip = mtd_to_nand(mtd);
958         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
959
960         switch (chip) {
961         case -1:
962                 /* TODO: Disable the NFC clock */
963                 if (host->clk_act)
964                         host->clk_act = 0;
965                 break;
966         case 0:
967                 /* TODO: Enable the NFC clock */
968                 if (!host->clk_act)
969                         host->clk_act = 1;
970                 break;
971
972         default:
973                 break;
974         }
975 }
976
977 /*
978  * Used by the upper layer to write command to NAND Flash for
979  * different operations to be carried out on NAND Flash
980  */
981 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
982                                 int column, int page_addr)
983 {
984         struct nand_chip *nand_chip = mtd_to_nand(mtd);
985         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
986
987         MTDDEBUG(MTD_DEBUG_LEVEL3,
988               "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
989               command, column, page_addr);
990
991         /* Reset command state information */
992         host->status_request = false;
993
994         /* Command pre-processing step */
995         switch (command) {
996
997         case NAND_CMD_STATUS:
998                 host->col_addr = 0;
999                 host->status_request = true;
1000                 break;
1001
1002         case NAND_CMD_READ0:
1003                 host->page_addr = page_addr;
1004                 host->col_addr = column;
1005                 host->spare_only = false;
1006                 break;
1007
1008         case NAND_CMD_READOOB:
1009                 host->col_addr = column;
1010                 host->spare_only = true;
1011                 if (host->pagesize_2k)
1012                         command = NAND_CMD_READ0; /* only READ0 is valid */
1013                 break;
1014
1015         case NAND_CMD_SEQIN:
1016                 if (column >= mtd->writesize) {
1017                         /*
1018                          * before sending SEQIN command for partial write,
1019                          * we need read one page out. FSL NFC does not support
1020                          * partial write. It always sends out 512+ecc+512+ecc
1021                          * for large page nand flash. But for small page nand
1022                          * flash, it does support SPARE ONLY operation.
1023                          */
1024                         if (host->pagesize_2k) {
1025                                 /* call ourself to read a page */
1026                                 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1027                                                 page_addr);
1028                         }
1029
1030                         host->col_addr = column - mtd->writesize;
1031                         host->spare_only = true;
1032
1033                         /* Set program pointer to spare region */
1034                         if (!host->pagesize_2k)
1035                                 send_cmd(host, NAND_CMD_READOOB);
1036                 } else {
1037                         host->spare_only = false;
1038                         host->col_addr = column;
1039
1040                         /* Set program pointer to page start */
1041                         if (!host->pagesize_2k)
1042                                 send_cmd(host, NAND_CMD_READ0);
1043                 }
1044                 break;
1045
1046         case NAND_CMD_PAGEPROG:
1047                 send_prog_page(host, 0, host->spare_only);
1048
1049                 if (host->pagesize_2k && is_mxc_nfc_1()) {
1050                         /* data in 4 areas */
1051                         send_prog_page(host, 1, host->spare_only);
1052                         send_prog_page(host, 2, host->spare_only);
1053                         send_prog_page(host, 3, host->spare_only);
1054                 }
1055
1056                 break;
1057         }
1058
1059         /* Write out the command to the device. */
1060         send_cmd(host, command);
1061
1062         /* Write out column address, if necessary */
1063         if (column != -1) {
1064                 /*
1065                  * MXC NANDFC can only perform full page+spare or
1066                  * spare-only read/write. When the upper layers perform
1067                  * a read/write buffer operation, we will use the saved
1068                  * column address to index into the full page.
1069                  */
1070                 send_addr(host, 0);
1071                 if (host->pagesize_2k)
1072                         /* another col addr cycle for 2k page */
1073                         send_addr(host, 0);
1074         }
1075
1076         /* Write out page address, if necessary */
1077         if (page_addr != -1) {
1078                 u32 page_mask = nand_chip->pagemask;
1079                 do {
1080                         send_addr(host, page_addr & 0xFF);
1081                         page_addr >>= 8;
1082                         page_mask >>= 8;
1083                 } while (page_mask);
1084         }
1085
1086         /* Command post-processing step */
1087         switch (command) {
1088
1089         case NAND_CMD_RESET:
1090                 break;
1091
1092         case NAND_CMD_READOOB:
1093         case NAND_CMD_READ0:
1094                 if (host->pagesize_2k) {
1095                         /* send read confirm command */
1096                         send_cmd(host, NAND_CMD_READSTART);
1097                         /* read for each AREA */
1098                         send_read_page(host, 0, host->spare_only);
1099                         if (is_mxc_nfc_1()) {
1100                                 send_read_page(host, 1, host->spare_only);
1101                                 send_read_page(host, 2, host->spare_only);
1102                                 send_read_page(host, 3, host->spare_only);
1103                         }
1104                 } else {
1105                         send_read_page(host, 0, host->spare_only);
1106                 }
1107                 break;
1108
1109         case NAND_CMD_READID:
1110                 host->col_addr = 0;
1111                 send_read_id(host);
1112                 break;
1113
1114         case NAND_CMD_PAGEPROG:
1115                 break;
1116
1117         case NAND_CMD_STATUS:
1118                 break;
1119
1120         case NAND_CMD_ERASE2:
1121                 break;
1122         }
1123 }
1124
1125 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1126
1127 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1128 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1129
1130 static struct nand_bbt_descr bbt_main_descr = {
1131         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1132                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1133         .offs = 0,
1134         .len = 4,
1135         .veroffs = 4,
1136         .maxblocks = 4,
1137         .pattern = bbt_pattern,
1138 };
1139
1140 static struct nand_bbt_descr bbt_mirror_descr = {
1141         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1142                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1143         .offs = 0,
1144         .len = 4,
1145         .veroffs = 4,
1146         .maxblocks = 4,
1147         .pattern = mirror_pattern,
1148 };
1149
1150 #endif
1151
1152 int board_nand_init(struct nand_chip *this)
1153 {
1154         struct mtd_info *mtd;
1155 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1156         uint32_t tmp;
1157 #endif
1158
1159 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1160         this->bbt_options |= NAND_BBT_USE_FLASH;
1161         this->bbt_td = &bbt_main_descr;
1162         this->bbt_md = &bbt_mirror_descr;
1163 #endif
1164
1165         /* structures must be linked */
1166         mtd = &this->mtd;
1167         host->nand = this;
1168
1169         /* 5 us command delay time */
1170         this->chip_delay = 5;
1171
1172         nand_set_controller_data(this, host);
1173         this->dev_ready = mxc_nand_dev_ready;
1174         this->cmdfunc = mxc_nand_command;
1175         this->select_chip = mxc_nand_select_chip;
1176         this->read_byte = mxc_nand_read_byte;
1177         this->read_word = mxc_nand_read_word;
1178         this->write_buf = mxc_nand_write_buf;
1179         this->read_buf = mxc_nand_read_buf;
1180
1181         host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1182 #ifdef MXC_NFC_V3_2
1183         host->ip_regs =
1184                 (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1185 #endif
1186         host->clk_act = 1;
1187
1188 #ifdef CONFIG_MXC_NAND_HWECC
1189         this->ecc.calculate = mxc_nand_calculate_ecc;
1190         this->ecc.hwctl = mxc_nand_enable_hwecc;
1191         this->ecc.correct = mxc_nand_correct_data;
1192         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1193                 this->ecc.mode = NAND_ECC_HW_SYNDROME;
1194                 this->ecc.read_page = mxc_nand_read_page_syndrome;
1195                 this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1196                 this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1197                 this->ecc.write_page = mxc_nand_write_page_syndrome;
1198                 this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1199                 this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1200                 this->ecc.bytes = 9;
1201                 this->ecc.prepad = 7;
1202         } else {
1203                 this->ecc.mode = NAND_ECC_HW;
1204         }
1205
1206         if (is_mxc_nfc_1())
1207                 this->ecc.strength = 1;
1208         else
1209                 this->ecc.strength = 4;
1210
1211         host->pagesize_2k = 0;
1212
1213         this->ecc.size = 512;
1214         _mxc_nand_enable_hwecc(mtd, 1);
1215 #else
1216         this->ecc.layout = &nand_soft_eccoob;
1217         this->ecc.mode = NAND_ECC_SOFT;
1218         _mxc_nand_enable_hwecc(mtd, 0);
1219 #endif
1220         /* Reset NAND */
1221         this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1222
1223         /* NAND bus width determines access functions used by upper layer */
1224         if (is_16bit_nand())
1225                 this->options |= NAND_BUSWIDTH_16;
1226
1227 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1228         host->pagesize_2k = 1;
1229         this->ecc.layout = &nand_hw_eccoob2k;
1230 #else
1231         host->pagesize_2k = 0;
1232         this->ecc.layout = &nand_hw_eccoob;
1233 #endif
1234
1235 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1236 #ifdef MXC_NFC_V2_1
1237         tmp = readnfc(&host->regs->config1);
1238         tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1239         tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1240         writenfc(tmp, &host->regs->config1);
1241         if (host->pagesize_2k)
1242                 writenfc(64/2, &host->regs->spare_area_size);
1243         else
1244                 writenfc(16/2, &host->regs->spare_area_size);
1245 #endif
1246
1247         /*
1248          * preset operation
1249          * Unlock the internal RAM Buffer
1250          */
1251         writenfc(0x2, &host->regs->config);
1252
1253         /* Blocks to be unlocked */
1254         writenfc(0x0, &host->regs->unlockstart_blkaddr);
1255         /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1256          * unlockend_blkaddr, but the magic 0x4000 does not always work
1257          * when writing more than some 32 megabytes (on 2k page nands)
1258          * However 0xFFFF doesn't seem to have this kind
1259          * of limitation (tried it back and forth several times).
1260          * The linux kernel driver sets this to 0xFFFF for the v2 controller
1261          * only, but probably this was not tested there for v1.
1262          * The very same limitation seems to apply to this kernel driver.
1263          * This might be NAND chip specific and the i.MX31 datasheet is
1264          * extremely vague about the semantics of this register.
1265          */
1266         writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1267
1268         /* Unlock Block Command for given address range */
1269         writenfc(0x4, &host->regs->wrprot);
1270 #elif defined(MXC_NFC_V3_2)
1271         writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1272         writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1273
1274         /* Unlock the internal RAM Buffer */
1275         writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1276                         &host->ip_regs->wrprot);
1277
1278         /* Blocks to be unlocked */
1279         for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1280                 writenfc(0x0 | 0xFFFF << 16,
1281                                 &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1282
1283         writenfc(0, &host->ip_regs->ipc);
1284
1285         tmp = readnfc(&host->ip_regs->config2);
1286         tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1287                         NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1288         tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1289
1290         if (host->pagesize_2k) {
1291                 tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1292                 tmp |= NFC_V3_CONFIG2_PS_2048;
1293         } else {
1294                 tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1295                 tmp |= NFC_V3_CONFIG2_PS_512;
1296         }
1297
1298         writenfc(tmp, &host->ip_regs->config2);
1299
1300         tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1301                         NFC_V3_CONFIG3_NO_SDMA |
1302                         NFC_V3_CONFIG3_RBB_MODE |
1303                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1304                         NFC_V3_CONFIG3_ADD_OP(0);
1305
1306         if (!(this->options & NAND_BUSWIDTH_16))
1307                 tmp |= NFC_V3_CONFIG3_FW8;
1308
1309         writenfc(tmp, &host->ip_regs->config3);
1310
1311         writenfc(0, &host->ip_regs->delay_line);
1312 #endif
1313
1314         return 0;
1315 }