]> git.sur5r.net Git - u-boot/blob - drivers/mtd/nand/nand_base.c
ca026286f20ac562bfe249ebca14aa629998b7fb
[u-boot] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 /* XXX U-BOOT XXX */
36 #if 0
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 #include <linux/types.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/compatmac.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/leds.h>
51 #include <asm/io.h>
52
53 #ifdef CONFIG_MTD_PARTITIONS
54 #include <linux/mtd/partitions.h>
55 #endif
56
57 #endif
58
59 #include <common.h>
60
61 #define ENOTSUPP        524     /* Operation is not supported */
62
63 #include <malloc.h>
64 #include <watchdog.h>
65 #include <linux/err.h>
66 #include <linux/mtd/compat.h>
67 #include <linux/mtd/mtd.h>
68 #include <linux/mtd/nand.h>
69 #include <linux/mtd/nand_ecc.h>
70
71 #ifdef CONFIG_MTD_PARTITIONS
72 #include <linux/mtd/partitions.h>
73 #endif
74
75 #include <asm/io.h>
76 #include <asm/errno.h>
77
78 #ifdef CONFIG_JFFS2_NAND
79 #include <jffs2/jffs2.h>
80 #endif
81
82 /*
83  * CONFIG_SYS_NAND_RESET_CNT is used as a timeout mechanism when resetting
84  * a flash.  NAND flash is initialized prior to interrupts so standard timers
85  * can't be used.  CONFIG_SYS_NAND_RESET_CNT should be set to a value
86  * which is greater than (max NAND reset time / NAND status read time).
87  * A conservative default of 200000 (500 us / 25 ns) is used as a default.
88  */
89 #ifndef CONFIG_SYS_NAND_RESET_CNT
90 #define CONFIG_SYS_NAND_RESET_CNT 200000
91 #endif
92
93 /* Define default oob placement schemes for large and small page devices */
94 static struct nand_ecclayout nand_oob_8 = {
95         .eccbytes = 3,
96         .eccpos = {0, 1, 2},
97         .oobfree = {
98                 {.offset = 3,
99                  .length = 2},
100                 {.offset = 6,
101                  .length = 2}}
102 };
103
104 static struct nand_ecclayout nand_oob_16 = {
105         .eccbytes = 6,
106         .eccpos = {0, 1, 2, 3, 6, 7},
107         .oobfree = {
108                 {.offset = 8,
109                  . length = 8}}
110 };
111
112 static struct nand_ecclayout nand_oob_64 = {
113         .eccbytes = 24,
114         .eccpos = {
115                    40, 41, 42, 43, 44, 45, 46, 47,
116                    48, 49, 50, 51, 52, 53, 54, 55,
117                    56, 57, 58, 59, 60, 61, 62, 63},
118         .oobfree = {
119                 {.offset = 2,
120                  .length = 38}}
121 };
122
123 static struct nand_ecclayout nand_oob_128 = {
124         .eccbytes = 48,
125         .eccpos = {
126                     80,  81,  82,  83,  84,  85,  86,  87,
127                     88,  89,  90,  91,  92,  93,  94,  95,
128                     96,  97,  98,  99, 100, 101, 102, 103,
129                    104, 105, 106, 107, 108, 109, 110, 111,
130                    112, 113, 114, 115, 116, 117, 118, 119,
131                    120, 121, 122, 123, 124, 125, 126, 127},
132         .oobfree = {
133                 {.offset = 2,
134                  .length = 78}}
135 };
136
137
138 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
139                            int new_state);
140
141 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
142                              struct mtd_oob_ops *ops);
143
144 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this);
145
146 /*
147  * For devices which display every fart in the system on a separate LED. Is
148  * compiled away when LED support is disabled.
149  */
150 /* XXX U-BOOT XXX */
151 #if 0
152 DEFINE_LED_TRIGGER(nand_led_trigger);
153 #endif
154
155 /**
156  * nand_release_device - [GENERIC] release chip
157  * @mtd:        MTD device structure
158  *
159  * Deselect, release chip lock and wake up anyone waiting on the device
160  */
161 /* XXX U-BOOT XXX */
162 #if 0
163 static void nand_release_device(struct mtd_info *mtd)
164 {
165         struct nand_chip *chip = mtd->priv;
166
167         /* De-select the NAND device */
168         chip->select_chip(mtd, -1);
169
170         /* Release the controller and the chip */
171         spin_lock(&chip->controller->lock);
172         chip->controller->active = NULL;
173         chip->state = FL_READY;
174         wake_up(&chip->controller->wq);
175         spin_unlock(&chip->controller->lock);
176 }
177 #else
178 static void nand_release_device (struct mtd_info *mtd)
179 {
180         struct nand_chip *this = mtd->priv;
181         this->select_chip(mtd, -1);     /* De-select the NAND device */
182 }
183 #endif
184
185 /**
186  * nand_read_byte - [DEFAULT] read one byte from the chip
187  * @mtd:        MTD device structure
188  *
189  * Default read function for 8bit buswith
190  */
191 static uint8_t nand_read_byte(struct mtd_info *mtd)
192 {
193         struct nand_chip *chip = mtd->priv;
194         return readb(chip->IO_ADDR_R);
195 }
196
197 /**
198  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
199  * @mtd:        MTD device structure
200  *
201  * Default read function for 16bit buswith with
202  * endianess conversion
203  */
204 static uint8_t nand_read_byte16(struct mtd_info *mtd)
205 {
206         struct nand_chip *chip = mtd->priv;
207         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
208 }
209
210 /**
211  * nand_read_word - [DEFAULT] read one word from the chip
212  * @mtd:        MTD device structure
213  *
214  * Default read function for 16bit buswith without
215  * endianess conversion
216  */
217 static u16 nand_read_word(struct mtd_info *mtd)
218 {
219         struct nand_chip *chip = mtd->priv;
220         return readw(chip->IO_ADDR_R);
221 }
222
223 /**
224  * nand_select_chip - [DEFAULT] control CE line
225  * @mtd:        MTD device structure
226  * @chipnr:     chipnumber to select, -1 for deselect
227  *
228  * Default select function for 1 chip devices.
229  */
230 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
231 {
232         struct nand_chip *chip = mtd->priv;
233
234         switch (chipnr) {
235         case -1:
236                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
237                 break;
238         case 0:
239                 break;
240
241         default:
242                 BUG();
243         }
244 }
245
246 /**
247  * nand_write_buf - [DEFAULT] write buffer to chip
248  * @mtd:        MTD device structure
249  * @buf:        data buffer
250  * @len:        number of bytes to write
251  *
252  * Default write function for 8bit buswith
253  */
254 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
255 {
256         int i;
257         struct nand_chip *chip = mtd->priv;
258
259         for (i = 0; i < len; i++)
260                 writeb(buf[i], chip->IO_ADDR_W);
261 }
262
263 /**
264  * nand_read_buf - [DEFAULT] read chip data into buffer
265  * @mtd:        MTD device structure
266  * @buf:        buffer to store date
267  * @len:        number of bytes to read
268  *
269  * Default read function for 8bit buswith
270  */
271 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
272 {
273         int i;
274         struct nand_chip *chip = mtd->priv;
275
276         for (i = 0; i < len; i++)
277                 buf[i] = readb(chip->IO_ADDR_R);
278 }
279
280 /**
281  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
282  * @mtd:        MTD device structure
283  * @buf:        buffer containing the data to compare
284  * @len:        number of bytes to compare
285  *
286  * Default verify function for 8bit buswith
287  */
288 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290         int i;
291         struct nand_chip *chip = mtd->priv;
292
293         for (i = 0; i < len; i++)
294                 if (buf[i] != readb(chip->IO_ADDR_R))
295                         return -EFAULT;
296         return 0;
297 }
298
299 /**
300  * nand_write_buf16 - [DEFAULT] write buffer to chip
301  * @mtd:        MTD device structure
302  * @buf:        data buffer
303  * @len:        number of bytes to write
304  *
305  * Default write function for 16bit buswith
306  */
307 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
308 {
309         int i;
310         struct nand_chip *chip = mtd->priv;
311         u16 *p = (u16 *) buf;
312         len >>= 1;
313
314         for (i = 0; i < len; i++)
315                 writew(p[i], chip->IO_ADDR_W);
316
317 }
318
319 /**
320  * nand_read_buf16 - [DEFAULT] read chip data into buffer
321  * @mtd:        MTD device structure
322  * @buf:        buffer to store date
323  * @len:        number of bytes to read
324  *
325  * Default read function for 16bit buswith
326  */
327 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
328 {
329         int i;
330         struct nand_chip *chip = mtd->priv;
331         u16 *p = (u16 *) buf;
332         len >>= 1;
333
334         for (i = 0; i < len; i++)
335                 p[i] = readw(chip->IO_ADDR_R);
336 }
337
338 /**
339  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
340  * @mtd:        MTD device structure
341  * @buf:        buffer containing the data to compare
342  * @len:        number of bytes to compare
343  *
344  * Default verify function for 16bit buswith
345  */
346 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
347 {
348         int i;
349         struct nand_chip *chip = mtd->priv;
350         u16 *p = (u16 *) buf;
351         len >>= 1;
352
353         for (i = 0; i < len; i++)
354                 if (p[i] != readw(chip->IO_ADDR_R))
355                         return -EFAULT;
356
357         return 0;
358 }
359
360 /**
361  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
362  * @mtd:        MTD device structure
363  * @ofs:        offset from device start
364  * @getchip:    0, if the chip is already selected
365  *
366  * Check, if the block is bad.
367  */
368 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
369 {
370         int page, chipnr, res = 0;
371         struct nand_chip *chip = mtd->priv;
372         u16 bad;
373
374         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
375
376         if (getchip) {
377                 chipnr = (int)(ofs >> chip->chip_shift);
378
379                 nand_get_device(chip, mtd, FL_READING);
380
381                 /* Select the NAND device */
382                 chip->select_chip(mtd, chipnr);
383         }
384
385         if (chip->options & NAND_BUSWIDTH_16) {
386                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
387                               page);
388                 bad = cpu_to_le16(chip->read_word(mtd));
389                 if (chip->badblockpos & 0x1)
390                         bad >>= 8;
391                 if ((bad & 0xFF) != 0xff)
392                         res = 1;
393         } else {
394                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
395                 if (chip->read_byte(mtd) != 0xff)
396                         res = 1;
397         }
398
399         if (getchip)
400                 nand_release_device(mtd);
401
402         return res;
403 }
404
405 /**
406  * nand_default_block_markbad - [DEFAULT] mark a block bad
407  * @mtd:        MTD device structure
408  * @ofs:        offset from device start
409  *
410  * This is the default implementation, which can be overridden by
411  * a hardware specific driver.
412 */
413 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
414 {
415         struct nand_chip *chip = mtd->priv;
416         uint8_t buf[2] = { 0, 0 };
417         int block, ret;
418
419         /* Get block number */
420         block = (int)(ofs >> chip->bbt_erase_shift);
421         if (chip->bbt)
422                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
423
424         /* Do we have a flash based bad block table ? */
425         if (chip->options & NAND_USE_FLASH_BBT)
426                 ret = nand_update_bbt(mtd, ofs);
427         else {
428                 /* We write two bytes, so we dont have to mess with 16 bit
429                  * access
430                  */
431                 nand_get_device(chip, mtd, FL_WRITING);
432                 ofs += mtd->oobsize;
433                 chip->ops.len = chip->ops.ooblen = 2;
434                 chip->ops.datbuf = NULL;
435                 chip->ops.oobbuf = buf;
436                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
437
438                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
439                 nand_release_device(mtd);
440         }
441         if (!ret)
442                 mtd->ecc_stats.badblocks++;
443
444         return ret;
445 }
446
447 /**
448  * nand_check_wp - [GENERIC] check if the chip is write protected
449  * @mtd:        MTD device structure
450  * Check, if the device is write protected
451  *
452  * The function expects, that the device is already selected
453  */
454 static int nand_check_wp(struct mtd_info *mtd)
455 {
456         struct nand_chip *chip = mtd->priv;
457         /* Check the WP bit */
458         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
459         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
460 }
461
462 /**
463  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
464  * @mtd:        MTD device structure
465  * @ofs:        offset from device start
466  * @getchip:    0, if the chip is already selected
467  * @allowbbt:   1, if its allowed to access the bbt area
468  *
469  * Check, if the block is bad. Either by reading the bad block table or
470  * calling of the scan function.
471  */
472 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
473                                int allowbbt)
474 {
475         struct nand_chip *chip = mtd->priv;
476
477         if (!(chip->options & NAND_BBT_SCANNED)) {
478                 chip->options |= NAND_BBT_SCANNED;
479                 chip->scan_bbt(mtd);
480         }
481
482         if (!chip->bbt)
483                 return chip->block_bad(mtd, ofs, getchip);
484
485         /* Return info from the table */
486         return nand_isbad_bbt(mtd, ofs, allowbbt);
487 }
488
489 /*
490  * Wait for the ready pin, after a command
491  * The timeout is catched later.
492  */
493 /* XXX U-BOOT XXX */
494 #if 0
495 void nand_wait_ready(struct mtd_info *mtd)
496 {
497         struct nand_chip *chip = mtd->priv;
498         unsigned long timeo = jiffies + 2;
499
500         led_trigger_event(nand_led_trigger, LED_FULL);
501         /* wait until command is processed or timeout occures */
502         do {
503                 if (chip->dev_ready(mtd))
504                         break;
505                 touch_softlockup_watchdog();
506         } while (time_before(jiffies, timeo));
507         led_trigger_event(nand_led_trigger, LED_OFF);
508 }
509 EXPORT_SYMBOL_GPL(nand_wait_ready);
510 #else
511 void nand_wait_ready(struct mtd_info *mtd)
512 {
513         struct nand_chip *chip = mtd->priv;
514         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
515
516         reset_timer();
517
518         /* wait until command is processed or timeout occures */
519         while (get_timer(0) < timeo) {
520                 if (chip->dev_ready)
521                         if (chip->dev_ready(mtd))
522                                 break;
523         }
524 }
525 #endif
526
527 /**
528  * nand_command - [DEFAULT] Send command to NAND device
529  * @mtd:        MTD device structure
530  * @command:    the command to be sent
531  * @column:     the column address for this command, -1 if none
532  * @page_addr:  the page address for this command, -1 if none
533  *
534  * Send command to NAND device. This function is used for small page
535  * devices (256/512 Bytes per page)
536  */
537 static void nand_command(struct mtd_info *mtd, unsigned int command,
538                          int column, int page_addr)
539 {
540         register struct nand_chip *chip = mtd->priv;
541         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
542         uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
543
544         /*
545          * Write out the command to the device.
546          */
547         if (command == NAND_CMD_SEQIN) {
548                 int readcmd;
549
550                 if (column >= mtd->writesize) {
551                         /* OOB area */
552                         column -= mtd->writesize;
553                         readcmd = NAND_CMD_READOOB;
554                 } else if (column < 256) {
555                         /* First 256 bytes --> READ0 */
556                         readcmd = NAND_CMD_READ0;
557                 } else {
558                         column -= 256;
559                         readcmd = NAND_CMD_READ1;
560                 }
561                 chip->cmd_ctrl(mtd, readcmd, ctrl);
562                 ctrl &= ~NAND_CTRL_CHANGE;
563         }
564         chip->cmd_ctrl(mtd, command, ctrl);
565
566         /*
567          * Address cycle, when necessary
568          */
569         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
570         /* Serially input address */
571         if (column != -1) {
572                 /* Adjust columns for 16 bit buswidth */
573                 if (chip->options & NAND_BUSWIDTH_16)
574                         column >>= 1;
575                 chip->cmd_ctrl(mtd, column, ctrl);
576                 ctrl &= ~NAND_CTRL_CHANGE;
577         }
578         if (page_addr != -1) {
579                 chip->cmd_ctrl(mtd, page_addr, ctrl);
580                 ctrl &= ~NAND_CTRL_CHANGE;
581                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
582                 /* One more address cycle for devices > 32MiB */
583                 if (chip->chipsize > (32 << 20))
584                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
585         }
586         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587
588         /*
589          * program and erase have their own busy handlers
590          * status and sequential in needs no delay
591          */
592         switch (command) {
593
594         case NAND_CMD_PAGEPROG:
595         case NAND_CMD_ERASE1:
596         case NAND_CMD_ERASE2:
597         case NAND_CMD_SEQIN:
598         case NAND_CMD_STATUS:
599                 return;
600
601         case NAND_CMD_RESET:
602                 if (chip->dev_ready)
603                         break;
604                 udelay(chip->chip_delay);
605                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
606                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
607                 chip->cmd_ctrl(mtd,
608                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
609                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
610                         (rst_sts_cnt--));
611                 return;
612
613                 /* This applies to read commands */
614         default:
615                 /*
616                  * If we don't have access to the busy pin, we apply the given
617                  * command delay
618                  */
619                 if (!chip->dev_ready) {
620                         udelay(chip->chip_delay);
621                         return;
622                 }
623         }
624         /* Apply this short delay always to ensure that we do wait tWB in
625          * any case on any machine. */
626         ndelay(100);
627
628         nand_wait_ready(mtd);
629 }
630
631 /**
632  * nand_command_lp - [DEFAULT] Send command to NAND large page device
633  * @mtd:        MTD device structure
634  * @command:    the command to be sent
635  * @column:     the column address for this command, -1 if none
636  * @page_addr:  the page address for this command, -1 if none
637  *
638  * Send command to NAND device. This is the version for the new large page
639  * devices We dont have the separate regions as we have in the small page
640  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
641  */
642 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
643                             int column, int page_addr)
644 {
645         register struct nand_chip *chip = mtd->priv;
646         uint32_t rst_sts_cnt = CONFIG_SYS_NAND_RESET_CNT;
647
648         /* Emulate NAND_CMD_READOOB */
649         if (command == NAND_CMD_READOOB) {
650                 column += mtd->writesize;
651                 command = NAND_CMD_READ0;
652         }
653
654         /* Command latch cycle */
655         chip->cmd_ctrl(mtd, command & 0xff,
656                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
657
658         if (column != -1 || page_addr != -1) {
659                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
660
661                 /* Serially input address */
662                 if (column != -1) {
663                         /* Adjust columns for 16 bit buswidth */
664                         if (chip->options & NAND_BUSWIDTH_16)
665                                 column >>= 1;
666                         chip->cmd_ctrl(mtd, column, ctrl);
667                         ctrl &= ~NAND_CTRL_CHANGE;
668                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
669                 }
670                 if (page_addr != -1) {
671                         chip->cmd_ctrl(mtd, page_addr, ctrl);
672                         chip->cmd_ctrl(mtd, page_addr >> 8,
673                                        NAND_NCE | NAND_ALE);
674                         /* One more address cycle for devices > 128MiB */
675                         if (chip->chipsize > (128 << 20))
676                                 chip->cmd_ctrl(mtd, page_addr >> 16,
677                                                NAND_NCE | NAND_ALE);
678                 }
679         }
680         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
681
682         /*
683          * program and erase have their own busy handlers
684          * status, sequential in, and deplete1 need no delay
685          */
686         switch (command) {
687
688         case NAND_CMD_CACHEDPROG:
689         case NAND_CMD_PAGEPROG:
690         case NAND_CMD_ERASE1:
691         case NAND_CMD_ERASE2:
692         case NAND_CMD_SEQIN:
693         case NAND_CMD_RNDIN:
694         case NAND_CMD_STATUS:
695         case NAND_CMD_DEPLETE1:
696                 return;
697
698                 /*
699                  * read error status commands require only a short delay
700                  */
701         case NAND_CMD_STATUS_ERROR:
702         case NAND_CMD_STATUS_ERROR0:
703         case NAND_CMD_STATUS_ERROR1:
704         case NAND_CMD_STATUS_ERROR2:
705         case NAND_CMD_STATUS_ERROR3:
706                 udelay(chip->chip_delay);
707                 return;
708
709         case NAND_CMD_RESET:
710                 if (chip->dev_ready)
711                         break;
712                 udelay(chip->chip_delay);
713                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
714                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
716                                NAND_NCE | NAND_CTRL_CHANGE);
717                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY) &&
718                         (rst_sts_cnt--));
719                 return;
720
721         case NAND_CMD_RNDOUT:
722                 /* No ready / busy check necessary */
723                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
724                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
725                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
726                                NAND_NCE | NAND_CTRL_CHANGE);
727                 return;
728
729         case NAND_CMD_READ0:
730                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
731                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
732                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
733                                NAND_NCE | NAND_CTRL_CHANGE);
734
735                 /* This applies to read commands */
736         default:
737                 /*
738                  * If we don't have access to the busy pin, we apply the given
739                  * command delay
740                  */
741                 if (!chip->dev_ready) {
742                         udelay(chip->chip_delay);
743                         return;
744                 }
745         }
746
747         /* Apply this short delay always to ensure that we do wait tWB in
748          * any case on any machine. */
749         ndelay(100);
750
751         nand_wait_ready(mtd);
752 }
753
754 /**
755  * nand_get_device - [GENERIC] Get chip for selected access
756  * @chip:       the nand chip descriptor
757  * @mtd:        MTD device structure
758  * @new_state:  the state which is requested
759  *
760  * Get the device and lock it for exclusive access
761  */
762 /* XXX U-BOOT XXX */
763 #if 0
764 static int
765 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
766 {
767         spinlock_t *lock = &chip->controller->lock;
768         wait_queue_head_t *wq = &chip->controller->wq;
769         DECLARE_WAITQUEUE(wait, current);
770  retry:
771         spin_lock(lock);
772
773         /* Hardware controller shared among independend devices */
774         /* Hardware controller shared among independend devices */
775         if (!chip->controller->active)
776                 chip->controller->active = chip;
777
778         if (chip->controller->active == chip && chip->state == FL_READY) {
779                 chip->state = new_state;
780                 spin_unlock(lock);
781                 return 0;
782         }
783         if (new_state == FL_PM_SUSPENDED) {
784                 spin_unlock(lock);
785                 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
786         }
787         set_current_state(TASK_UNINTERRUPTIBLE);
788         add_wait_queue(wq, &wait);
789         spin_unlock(lock);
790         schedule();
791         remove_wait_queue(wq, &wait);
792         goto retry;
793 }
794 #else
795 static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
796 {
797         this->state = new_state;
798         return 0;
799 }
800 #endif
801
802 /**
803  * nand_wait - [DEFAULT]  wait until the command is done
804  * @mtd:        MTD device structure
805  * @chip:       NAND chip structure
806  *
807  * Wait for command done. This applies to erase and program only
808  * Erase can take up to 400ms and program up to 20ms according to
809  * general NAND and SmartMedia specs
810  */
811 /* XXX U-BOOT XXX */
812 #if 0
813 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
814 {
815
816         unsigned long timeo = jiffies;
817         int status, state = chip->state;
818
819         if (state == FL_ERASING)
820                 timeo += (HZ * 400) / 1000;
821         else
822                 timeo += (HZ * 20) / 1000;
823
824         led_trigger_event(nand_led_trigger, LED_FULL);
825
826         /* Apply this short delay always to ensure that we do wait tWB in
827          * any case on any machine. */
828         ndelay(100);
829
830         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
831                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
832         else
833                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
834
835         while (time_before(jiffies, timeo)) {
836                 if (chip->dev_ready) {
837                         if (chip->dev_ready(mtd))
838                                 break;
839                 } else {
840                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
841                                 break;
842                 }
843                 cond_resched();
844         }
845         led_trigger_event(nand_led_trigger, LED_OFF);
846
847         status = (int)chip->read_byte(mtd);
848         return status;
849 }
850 #else
851 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this)
852 {
853         unsigned long   timeo;
854         int state = this->state;
855
856         if (state == FL_ERASING)
857                 timeo = (CONFIG_SYS_HZ * 400) / 1000;
858         else
859                 timeo = (CONFIG_SYS_HZ * 20) / 1000;
860
861         if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
862                 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
863         else
864                 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
865
866         reset_timer();
867
868         while (1) {
869                 if (get_timer(0) > timeo) {
870                         printf("Timeout!");
871                         return 0x01;
872                 }
873
874                 if (this->dev_ready) {
875                         if (this->dev_ready(mtd))
876                                 break;
877                 } else {
878                         if (this->read_byte(mtd) & NAND_STATUS_READY)
879                                 break;
880                 }
881         }
882 #ifdef PPCHAMELON_NAND_TIMER_HACK
883         reset_timer();
884         while (get_timer(0) < 10);
885 #endif /*  PPCHAMELON_NAND_TIMER_HACK */
886
887         return this->read_byte(mtd);
888 }
889 #endif
890
891 /**
892  * nand_read_page_raw - [Intern] read raw page data without ecc
893  * @mtd:        mtd info structure
894  * @chip:       nand chip info structure
895  * @buf:        buffer to store read data
896  */
897 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
898                               uint8_t *buf, int page)
899 {
900         chip->read_buf(mtd, buf, mtd->writesize);
901         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
902         return 0;
903 }
904
905 /**
906  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
907  * @mtd:        mtd info structure
908  * @chip:       nand chip info structure
909  * @buf:        buffer to store read data
910  */
911 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
912                                 uint8_t *buf, int page)
913 {
914         int i, eccsize = chip->ecc.size;
915         int eccbytes = chip->ecc.bytes;
916         int eccsteps = chip->ecc.steps;
917         uint8_t *p = buf;
918         uint8_t *ecc_calc = chip->buffers->ecccalc;
919         uint8_t *ecc_code = chip->buffers->ecccode;
920         uint32_t *eccpos = chip->ecc.layout->eccpos;
921
922         chip->ecc.read_page_raw(mtd, chip, buf, page);
923
924         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
925                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
926
927         for (i = 0; i < chip->ecc.total; i++)
928                 ecc_code[i] = chip->oob_poi[eccpos[i]];
929
930         eccsteps = chip->ecc.steps;
931         p = buf;
932
933         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
934                 int stat;
935
936                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
937                 if (stat < 0)
938                         mtd->ecc_stats.failed++;
939                 else
940                         mtd->ecc_stats.corrected += stat;
941         }
942         return 0;
943 }
944
945 /**
946  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
947  * @mtd:        mtd info structure
948  * @chip:       nand chip info structure
949  * @dataofs     offset of requested data within the page
950  * @readlen     data length
951  * @buf:        buffer to store read data
952  */
953 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
954 {
955         int start_step, end_step, num_steps;
956         uint32_t *eccpos = chip->ecc.layout->eccpos;
957         uint8_t *p;
958         int data_col_addr, i, gaps = 0;
959         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
960         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
961
962         /* Column address wihin the page aligned to ECC size (256bytes). */
963         start_step = data_offs / chip->ecc.size;
964         end_step = (data_offs + readlen - 1) / chip->ecc.size;
965         num_steps = end_step - start_step + 1;
966
967         /* Data size aligned to ECC ecc.size*/
968         datafrag_len = num_steps * chip->ecc.size;
969         eccfrag_len = num_steps * chip->ecc.bytes;
970
971         data_col_addr = start_step * chip->ecc.size;
972         /* If we read not a page aligned data */
973         if (data_col_addr != 0)
974                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
975
976         p = bufpoi + data_col_addr;
977         chip->read_buf(mtd, p, datafrag_len);
978
979         /* Calculate  ECC */
980         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
981                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
982
983         /* The performance is faster if to position offsets
984            according to ecc.pos. Let make sure here that
985            there are no gaps in ecc positions */
986         for (i = 0; i < eccfrag_len - 1; i++) {
987                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
988                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
989                         gaps = 1;
990                         break;
991                 }
992         }
993         if (gaps) {
994                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
995                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
996         } else {
997                 /* send the command to read the particular ecc bytes */
998                 /* take care about buswidth alignment in read_buf */
999                 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1000                 aligned_len = eccfrag_len;
1001                 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1002                         aligned_len++;
1003                 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1004                         aligned_len++;
1005
1006                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1007                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1008         }
1009
1010         for (i = 0; i < eccfrag_len; i++)
1011                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1012
1013         p = bufpoi + data_col_addr;
1014         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1015                 int stat;
1016
1017                 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1018                 if (stat < 0)
1019                         mtd->ecc_stats.failed++;
1020                 else
1021                         mtd->ecc_stats.corrected += stat;
1022         }
1023         return 0;
1024 }
1025
1026 /**
1027  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1028  * @mtd:        mtd info structure
1029  * @chip:       nand chip info structure
1030  * @buf:        buffer to store read data
1031  *
1032  * Not for syndrome calculating ecc controllers which need a special oob layout
1033  */
1034 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1035                                 uint8_t *buf, int page)
1036 {
1037         int i, eccsize = chip->ecc.size;
1038         int eccbytes = chip->ecc.bytes;
1039         int eccsteps = chip->ecc.steps;
1040         uint8_t *p = buf;
1041         uint8_t *ecc_calc = chip->buffers->ecccalc;
1042         uint8_t *ecc_code = chip->buffers->ecccode;
1043         uint32_t *eccpos = chip->ecc.layout->eccpos;
1044
1045         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1046                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1047                 chip->read_buf(mtd, p, eccsize);
1048                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1049         }
1050         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1051
1052         for (i = 0; i < chip->ecc.total; i++)
1053                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1054
1055         eccsteps = chip->ecc.steps;
1056         p = buf;
1057
1058         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1059                 int stat;
1060
1061                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1062                 if (stat == -1)
1063                         mtd->ecc_stats.failed++;
1064                 else
1065                         mtd->ecc_stats.corrected += stat;
1066         }
1067         return 0;
1068 }
1069
1070 /**
1071  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1072  * @mtd:        mtd info structure
1073  * @chip:       nand chip info structure
1074  * @buf:        buffer to store read data
1075  *
1076  * The hw generator calculates the error syndrome automatically. Therefor
1077  * we need a special oob layout and handling.
1078  */
1079 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1080                                    uint8_t *buf, int page)
1081 {
1082         int i, eccsize = chip->ecc.size;
1083         int eccbytes = chip->ecc.bytes;
1084         int eccsteps = chip->ecc.steps;
1085         uint8_t *p = buf;
1086         uint8_t *oob = chip->oob_poi;
1087
1088         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1089                 int stat;
1090
1091                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1092                 chip->read_buf(mtd, p, eccsize);
1093
1094                 if (chip->ecc.prepad) {
1095                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1096                         oob += chip->ecc.prepad;
1097                 }
1098
1099                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1100                 chip->read_buf(mtd, oob, eccbytes);
1101                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1102
1103                 if (stat < 0)
1104                         mtd->ecc_stats.failed++;
1105                 else
1106                         mtd->ecc_stats.corrected += stat;
1107
1108                 oob += eccbytes;
1109
1110                 if (chip->ecc.postpad) {
1111                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1112                         oob += chip->ecc.postpad;
1113                 }
1114         }
1115
1116         /* Calculate remaining oob bytes */
1117         i = mtd->oobsize - (oob - chip->oob_poi);
1118         if (i)
1119                 chip->read_buf(mtd, oob, i);
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1126  * @chip:       nand chip structure
1127  * @oob:        oob destination address
1128  * @ops:        oob ops structure
1129  * @len:        size of oob to transfer
1130  */
1131 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1132                                   struct mtd_oob_ops *ops, size_t len)
1133 {
1134         switch(ops->mode) {
1135
1136         case MTD_OOB_PLACE:
1137         case MTD_OOB_RAW:
1138                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1139                 return oob + len;
1140
1141         case MTD_OOB_AUTO: {
1142                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1143                 uint32_t boffs = 0, roffs = ops->ooboffs;
1144                 size_t bytes = 0;
1145
1146                 for(; free->length && len; free++, len -= bytes) {
1147                         /* Read request not from offset 0 ? */
1148                         if (unlikely(roffs)) {
1149                                 if (roffs >= free->length) {
1150                                         roffs -= free->length;
1151                                         continue;
1152                                 }
1153                                 boffs = free->offset + roffs;
1154                                 bytes = min_t(size_t, len,
1155                                               (free->length - roffs));
1156                                 roffs = 0;
1157                         } else {
1158                                 bytes = min_t(size_t, len, free->length);
1159                                 boffs = free->offset;
1160                         }
1161                         memcpy(oob, chip->oob_poi + boffs, bytes);
1162                         oob += bytes;
1163                 }
1164                 return oob;
1165         }
1166         default:
1167                 BUG();
1168         }
1169         return NULL;
1170 }
1171
1172 /**
1173  * nand_do_read_ops - [Internal] Read data with ECC
1174  *
1175  * @mtd:        MTD device structure
1176  * @from:       offset to read from
1177  * @ops:        oob ops structure
1178  *
1179  * Internal function. Called with chip held.
1180  */
1181 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1182                             struct mtd_oob_ops *ops)
1183 {
1184         int chipnr, page, realpage, col, bytes, aligned;
1185         struct nand_chip *chip = mtd->priv;
1186         struct mtd_ecc_stats stats;
1187         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1188         int sndcmd = 1;
1189         int ret = 0;
1190         uint32_t readlen = ops->len;
1191         uint32_t oobreadlen = ops->ooblen;
1192         uint8_t *bufpoi, *oob, *buf;
1193
1194         stats = mtd->ecc_stats;
1195
1196         chipnr = (int)(from >> chip->chip_shift);
1197         chip->select_chip(mtd, chipnr);
1198
1199         realpage = (int)(from >> chip->page_shift);
1200         page = realpage & chip->pagemask;
1201
1202         col = (int)(from & (mtd->writesize - 1));
1203
1204         buf = ops->datbuf;
1205         oob = ops->oobbuf;
1206
1207         while(1) {
1208                 bytes = min(mtd->writesize - col, readlen);
1209                 aligned = (bytes == mtd->writesize);
1210
1211                 /* Is the current page in the buffer ? */
1212                 if (realpage != chip->pagebuf || oob) {
1213                         bufpoi = aligned ? buf : chip->buffers->databuf;
1214
1215                         if (likely(sndcmd)) {
1216                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1217                                 sndcmd = 0;
1218                         }
1219
1220                         /* Now read the page into the buffer */
1221                         if (unlikely(ops->mode == MTD_OOB_RAW))
1222                                 ret = chip->ecc.read_page_raw(mtd, chip,
1223                                                 bufpoi, page);
1224                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1225                                 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1226                         else
1227                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1228                                                 page);
1229                         if (ret < 0)
1230                                 break;
1231
1232                         /* Transfer not aligned data */
1233                         if (!aligned) {
1234                                 if (!NAND_SUBPAGE_READ(chip) && !oob)
1235                                         chip->pagebuf = realpage;
1236                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1237                         }
1238
1239                         buf += bytes;
1240
1241                         if (unlikely(oob)) {
1242                                 /* Raw mode does data:oob:data:oob */
1243                                 if (ops->mode != MTD_OOB_RAW) {
1244                                         int toread = min(oobreadlen,
1245                                                 chip->ecc.layout->oobavail);
1246                                         if (toread) {
1247                                                 oob = nand_transfer_oob(chip,
1248                                                         oob, ops, toread);
1249                                                 oobreadlen -= toread;
1250                                         }
1251                                 } else
1252                                         buf = nand_transfer_oob(chip,
1253                                                 buf, ops, mtd->oobsize);
1254                         }
1255
1256                         if (!(chip->options & NAND_NO_READRDY)) {
1257                                 /*
1258                                  * Apply delay or wait for ready/busy pin. Do
1259                                  * this before the AUTOINCR check, so no
1260                                  * problems arise if a chip which does auto
1261                                  * increment is marked as NOAUTOINCR by the
1262                                  * board driver.
1263                                  */
1264                                 if (!chip->dev_ready)
1265                                         udelay(chip->chip_delay);
1266                                 else
1267                                         nand_wait_ready(mtd);
1268                         }
1269                 } else {
1270                         memcpy(buf, chip->buffers->databuf + col, bytes);
1271                         buf += bytes;
1272                 }
1273
1274                 readlen -= bytes;
1275
1276                 if (!readlen)
1277                         break;
1278
1279                 /* For subsequent reads align to page boundary. */
1280                 col = 0;
1281                 /* Increment page address */
1282                 realpage++;
1283
1284                 page = realpage & chip->pagemask;
1285                 /* Check, if we cross a chip boundary */
1286                 if (!page) {
1287                         chipnr++;
1288                         chip->select_chip(mtd, -1);
1289                         chip->select_chip(mtd, chipnr);
1290                 }
1291
1292                 /* Check, if the chip supports auto page increment
1293                  * or if we have hit a block boundary.
1294                  */
1295                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1296                         sndcmd = 1;
1297         }
1298
1299         ops->retlen = ops->len - (size_t) readlen;
1300         if (oob)
1301                 ops->oobretlen = ops->ooblen - oobreadlen;
1302
1303         if (ret)
1304                 return ret;
1305
1306         if (mtd->ecc_stats.failed - stats.failed)
1307                 return -EBADMSG;
1308
1309         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1310 }
1311
1312 /**
1313  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1314  * @mtd:        MTD device structure
1315  * @from:       offset to read from
1316  * @len:        number of bytes to read
1317  * @retlen:     pointer to variable to store the number of read bytes
1318  * @buf:        the databuffer to put data
1319  *
1320  * Get hold of the chip and call nand_do_read
1321  */
1322 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1323                      size_t *retlen, uint8_t *buf)
1324 {
1325         struct nand_chip *chip = mtd->priv;
1326         int ret;
1327
1328         /* Do not allow reads past end of device */
1329         if ((from + len) > mtd->size)
1330                 return -EINVAL;
1331         if (!len)
1332                 return 0;
1333
1334         nand_get_device(chip, mtd, FL_READING);
1335
1336         chip->ops.len = len;
1337         chip->ops.datbuf = buf;
1338         chip->ops.oobbuf = NULL;
1339
1340         ret = nand_do_read_ops(mtd, from, &chip->ops);
1341
1342         *retlen = chip->ops.retlen;
1343
1344         nand_release_device(mtd);
1345
1346         return ret;
1347 }
1348
1349 /**
1350  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1351  * @mtd:        mtd info structure
1352  * @chip:       nand chip info structure
1353  * @page:       page number to read
1354  * @sndcmd:     flag whether to issue read command or not
1355  */
1356 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1357                              int page, int sndcmd)
1358 {
1359         if (sndcmd) {
1360                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1361                 sndcmd = 0;
1362         }
1363         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1364         return sndcmd;
1365 }
1366
1367 /**
1368  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1369  *                          with syndromes
1370  * @mtd:        mtd info structure
1371  * @chip:       nand chip info structure
1372  * @page:       page number to read
1373  * @sndcmd:     flag whether to issue read command or not
1374  */
1375 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1376                                   int page, int sndcmd)
1377 {
1378         uint8_t *buf = chip->oob_poi;
1379         int length = mtd->oobsize;
1380         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1381         int eccsize = chip->ecc.size;
1382         uint8_t *bufpoi = buf;
1383         int i, toread, sndrnd = 0, pos;
1384
1385         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1386         for (i = 0; i < chip->ecc.steps; i++) {
1387                 if (sndrnd) {
1388                         pos = eccsize + i * (eccsize + chunk);
1389                         if (mtd->writesize > 512)
1390                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1391                         else
1392                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1393                 } else
1394                         sndrnd = 1;
1395                 toread = min_t(int, length, chunk);
1396                 chip->read_buf(mtd, bufpoi, toread);
1397                 bufpoi += toread;
1398                 length -= toread;
1399         }
1400         if (length > 0)
1401                 chip->read_buf(mtd, bufpoi, length);
1402
1403         return 1;
1404 }
1405
1406 /**
1407  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1408  * @mtd:        mtd info structure
1409  * @chip:       nand chip info structure
1410  * @page:       page number to write
1411  */
1412 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1413                               int page)
1414 {
1415         int status = 0;
1416         const uint8_t *buf = chip->oob_poi;
1417         int length = mtd->oobsize;
1418
1419         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1420         chip->write_buf(mtd, buf, length);
1421         /* Send command to program the OOB data */
1422         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1423
1424         status = chip->waitfunc(mtd, chip);
1425
1426         return status & NAND_STATUS_FAIL ? -EIO : 0;
1427 }
1428
1429 /**
1430  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1431  *                           with syndrome - only for large page flash !
1432  * @mtd:        mtd info structure
1433  * @chip:       nand chip info structure
1434  * @page:       page number to write
1435  */
1436 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1437                                    struct nand_chip *chip, int page)
1438 {
1439         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1440         int eccsize = chip->ecc.size, length = mtd->oobsize;
1441         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1442         const uint8_t *bufpoi = chip->oob_poi;
1443
1444         /*
1445          * data-ecc-data-ecc ... ecc-oob
1446          * or
1447          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1448          */
1449         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1450                 pos = steps * (eccsize + chunk);
1451                 steps = 0;
1452         } else
1453                 pos = eccsize;
1454
1455         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1456         for (i = 0; i < steps; i++) {
1457                 if (sndcmd) {
1458                         if (mtd->writesize <= 512) {
1459                                 uint32_t fill = 0xFFFFFFFF;
1460
1461                                 len = eccsize;
1462                                 while (len > 0) {
1463                                         int num = min_t(int, len, 4);
1464                                         chip->write_buf(mtd, (uint8_t *)&fill,
1465                                                         num);
1466                                         len -= num;
1467                                 }
1468                         } else {
1469                                 pos = eccsize + i * (eccsize + chunk);
1470                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1471                         }
1472                 } else
1473                         sndcmd = 1;
1474                 len = min_t(int, length, chunk);
1475                 chip->write_buf(mtd, bufpoi, len);
1476                 bufpoi += len;
1477                 length -= len;
1478         }
1479         if (length > 0)
1480                 chip->write_buf(mtd, bufpoi, length);
1481
1482         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1483         status = chip->waitfunc(mtd, chip);
1484
1485         return status & NAND_STATUS_FAIL ? -EIO : 0;
1486 }
1487
1488 /**
1489  * nand_do_read_oob - [Intern] NAND read out-of-band
1490  * @mtd:        MTD device structure
1491  * @from:       offset to read from
1492  * @ops:        oob operations description structure
1493  *
1494  * NAND read out-of-band data from the spare area
1495  */
1496 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1497                             struct mtd_oob_ops *ops)
1498 {
1499         int page, realpage, chipnr, sndcmd = 1;
1500         struct nand_chip *chip = mtd->priv;
1501         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1502         int readlen = ops->ooblen;
1503         int len;
1504         uint8_t *buf = ops->oobbuf;
1505
1506         MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1507                   (unsigned long long)from, readlen);
1508
1509         if (ops->mode == MTD_OOB_AUTO)
1510                 len = chip->ecc.layout->oobavail;
1511         else
1512                 len = mtd->oobsize;
1513
1514         if (unlikely(ops->ooboffs >= len)) {
1515                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1516                           "Attempt to start read outside oob\n");
1517                 return -EINVAL;
1518         }
1519
1520         /* Do not allow reads past end of device */
1521         if (unlikely(from >= mtd->size ||
1522                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1523                                         (from >> chip->page_shift)) * len)) {
1524                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1525                           "Attempt read beyond end of device\n");
1526                 return -EINVAL;
1527         }
1528
1529         chipnr = (int)(from >> chip->chip_shift);
1530         chip->select_chip(mtd, chipnr);
1531
1532         /* Shift to get page */
1533         realpage = (int)(from >> chip->page_shift);
1534         page = realpage & chip->pagemask;
1535
1536         while(1) {
1537                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1538
1539                 len = min(len, readlen);
1540                 buf = nand_transfer_oob(chip, buf, ops, len);
1541
1542                 if (!(chip->options & NAND_NO_READRDY)) {
1543                         /*
1544                          * Apply delay or wait for ready/busy pin. Do this
1545                          * before the AUTOINCR check, so no problems arise if a
1546                          * chip which does auto increment is marked as
1547                          * NOAUTOINCR by the board driver.
1548                          */
1549                         if (!chip->dev_ready)
1550                                 udelay(chip->chip_delay);
1551                         else
1552                                 nand_wait_ready(mtd);
1553                 }
1554
1555                 readlen -= len;
1556                 if (!readlen)
1557                         break;
1558
1559                 /* Increment page address */
1560                 realpage++;
1561
1562                 page = realpage & chip->pagemask;
1563                 /* Check, if we cross a chip boundary */
1564                 if (!page) {
1565                         chipnr++;
1566                         chip->select_chip(mtd, -1);
1567                         chip->select_chip(mtd, chipnr);
1568                 }
1569
1570                 /* Check, if the chip supports auto page increment
1571                  * or if we have hit a block boundary.
1572                  */
1573                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1574                         sndcmd = 1;
1575         }
1576
1577         ops->oobretlen = ops->ooblen;
1578         return 0;
1579 }
1580
1581 /**
1582  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1583  * @mtd:        MTD device structure
1584  * @from:       offset to read from
1585  * @ops:        oob operation description structure
1586  *
1587  * NAND read data and/or out-of-band data
1588  */
1589 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1590                          struct mtd_oob_ops *ops)
1591 {
1592         struct nand_chip *chip = mtd->priv;
1593         int ret = -ENOTSUPP;
1594
1595         ops->retlen = 0;
1596
1597         /* Do not allow reads past end of device */
1598         if (ops->datbuf && (from + ops->len) > mtd->size) {
1599                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
1600                           "Attempt read beyond end of device\n");
1601                 return -EINVAL;
1602         }
1603
1604         nand_get_device(chip, mtd, FL_READING);
1605
1606         switch(ops->mode) {
1607         case MTD_OOB_PLACE:
1608         case MTD_OOB_AUTO:
1609         case MTD_OOB_RAW:
1610                 break;
1611
1612         default:
1613                 goto out;
1614         }
1615
1616         if (!ops->datbuf)
1617                 ret = nand_do_read_oob(mtd, from, ops);
1618         else
1619                 ret = nand_do_read_ops(mtd, from, ops);
1620
1621  out:
1622         nand_release_device(mtd);
1623         return ret;
1624 }
1625
1626
1627 /**
1628  * nand_write_page_raw - [Intern] raw page write function
1629  * @mtd:        mtd info structure
1630  * @chip:       nand chip info structure
1631  * @buf:        data buffer
1632  */
1633 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1634                                 const uint8_t *buf)
1635 {
1636         chip->write_buf(mtd, buf, mtd->writesize);
1637         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1638 }
1639
1640 /**
1641  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1642  * @mtd:        mtd info structure
1643  * @chip:       nand chip info structure
1644  * @buf:        data buffer
1645  */
1646 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1647                                   const uint8_t *buf)
1648 {
1649         int i, eccsize = chip->ecc.size;
1650         int eccbytes = chip->ecc.bytes;
1651         int eccsteps = chip->ecc.steps;
1652         uint8_t *ecc_calc = chip->buffers->ecccalc;
1653         const uint8_t *p = buf;
1654         uint32_t *eccpos = chip->ecc.layout->eccpos;
1655
1656         /* Software ecc calculation */
1657         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1658                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1659
1660         for (i = 0; i < chip->ecc.total; i++)
1661                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1662
1663         chip->ecc.write_page_raw(mtd, chip, buf);
1664 }
1665
1666 /**
1667  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1668  * @mtd:        mtd info structure
1669  * @chip:       nand chip info structure
1670  * @buf:        data buffer
1671  */
1672 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1673                                   const uint8_t *buf)
1674 {
1675         int i, eccsize = chip->ecc.size;
1676         int eccbytes = chip->ecc.bytes;
1677         int eccsteps = chip->ecc.steps;
1678         uint8_t *ecc_calc = chip->buffers->ecccalc;
1679         const uint8_t *p = buf;
1680         uint32_t *eccpos = chip->ecc.layout->eccpos;
1681
1682         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1683                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1684                 chip->write_buf(mtd, p, eccsize);
1685                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1686         }
1687
1688         for (i = 0; i < chip->ecc.total; i++)
1689                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1690
1691         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1692 }
1693
1694 /**
1695  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1696  * @mtd:        mtd info structure
1697  * @chip:       nand chip info structure
1698  * @buf:        data buffer
1699  *
1700  * The hw generator calculates the error syndrome automatically. Therefor
1701  * we need a special oob layout and handling.
1702  */
1703 static void nand_write_page_syndrome(struct mtd_info *mtd,
1704                                     struct nand_chip *chip, const uint8_t *buf)
1705 {
1706         int i, eccsize = chip->ecc.size;
1707         int eccbytes = chip->ecc.bytes;
1708         int eccsteps = chip->ecc.steps;
1709         const uint8_t *p = buf;
1710         uint8_t *oob = chip->oob_poi;
1711
1712         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1713
1714                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1715                 chip->write_buf(mtd, p, eccsize);
1716
1717                 if (chip->ecc.prepad) {
1718                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1719                         oob += chip->ecc.prepad;
1720                 }
1721
1722                 chip->ecc.calculate(mtd, p, oob);
1723                 chip->write_buf(mtd, oob, eccbytes);
1724                 oob += eccbytes;
1725
1726                 if (chip->ecc.postpad) {
1727                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1728                         oob += chip->ecc.postpad;
1729                 }
1730         }
1731
1732         /* Calculate remaining oob bytes */
1733         i = mtd->oobsize - (oob - chip->oob_poi);
1734         if (i)
1735                 chip->write_buf(mtd, oob, i);
1736 }
1737
1738 /**
1739  * nand_write_page - [REPLACEABLE] write one page
1740  * @mtd:        MTD device structure
1741  * @chip:       NAND chip descriptor
1742  * @buf:        the data to write
1743  * @page:       page number to write
1744  * @cached:     cached programming
1745  * @raw:        use _raw version of write_page
1746  */
1747 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1748                            const uint8_t *buf, int page, int cached, int raw)
1749 {
1750         int status;
1751
1752         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1753
1754         if (unlikely(raw))
1755                 chip->ecc.write_page_raw(mtd, chip, buf);
1756         else
1757                 chip->ecc.write_page(mtd, chip, buf);
1758
1759         /*
1760          * Cached progamming disabled for now, Not sure if its worth the
1761          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1762          */
1763         cached = 0;
1764
1765         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1766
1767                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1768                 status = chip->waitfunc(mtd, chip);
1769                 /*
1770                  * See if operation failed and additional status checks are
1771                  * available
1772                  */
1773                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1774                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1775                                                page);
1776
1777                 if (status & NAND_STATUS_FAIL)
1778                         return -EIO;
1779         } else {
1780                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1781                 status = chip->waitfunc(mtd, chip);
1782         }
1783
1784 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1785         /* Send command to read back the data */
1786         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1787
1788         if (chip->verify_buf(mtd, buf, mtd->writesize))
1789                 return -EIO;
1790 #endif
1791         return 0;
1792 }
1793
1794 /**
1795  * nand_fill_oob - [Internal] Transfer client buffer to oob
1796  * @chip:       nand chip structure
1797  * @oob:        oob data buffer
1798  * @ops:        oob ops structure
1799  */
1800 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1801                                   struct mtd_oob_ops *ops)
1802 {
1803         size_t len = ops->ooblen;
1804
1805         switch(ops->mode) {
1806
1807         case MTD_OOB_PLACE:
1808         case MTD_OOB_RAW:
1809                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1810                 return oob + len;
1811
1812         case MTD_OOB_AUTO: {
1813                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1814                 uint32_t boffs = 0, woffs = ops->ooboffs;
1815                 size_t bytes = 0;
1816
1817                 for(; free->length && len; free++, len -= bytes) {
1818                         /* Write request not from offset 0 ? */
1819                         if (unlikely(woffs)) {
1820                                 if (woffs >= free->length) {
1821                                         woffs -= free->length;
1822                                         continue;
1823                                 }
1824                                 boffs = free->offset + woffs;
1825                                 bytes = min_t(size_t, len,
1826                                               (free->length - woffs));
1827                                 woffs = 0;
1828                         } else {
1829                                 bytes = min_t(size_t, len, free->length);
1830                                 boffs = free->offset;
1831                         }
1832                         memcpy(chip->oob_poi + boffs, oob, bytes);
1833                         oob += bytes;
1834                 }
1835                 return oob;
1836         }
1837         default:
1838                 BUG();
1839         }
1840         return NULL;
1841 }
1842
1843 #define NOTALIGNED(x)   (x & (chip->subpagesize - 1)) != 0
1844
1845 /**
1846  * nand_do_write_ops - [Internal] NAND write with ECC
1847  * @mtd:        MTD device structure
1848  * @to:         offset to write to
1849  * @ops:        oob operations description structure
1850  *
1851  * NAND write with ECC
1852  */
1853 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1854                              struct mtd_oob_ops *ops)
1855 {
1856         int chipnr, realpage, page, blockmask, column;
1857         struct nand_chip *chip = mtd->priv;
1858         uint32_t writelen = ops->len;
1859         uint8_t *oob = ops->oobbuf;
1860         uint8_t *buf = ops->datbuf;
1861         int ret, subpage;
1862
1863         ops->retlen = 0;
1864         if (!writelen)
1865                 return 0;
1866
1867         /* reject writes, which are not page aligned */
1868         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1869                 printk(KERN_NOTICE "nand_write: "
1870                        "Attempt to write not page aligned data\n");
1871                 return -EINVAL;
1872         }
1873
1874         column = to & (mtd->writesize - 1);
1875         subpage = column || (writelen & (mtd->writesize - 1));
1876
1877         if (subpage && oob)
1878                 return -EINVAL;
1879
1880         chipnr = (int)(to >> chip->chip_shift);
1881         chip->select_chip(mtd, chipnr);
1882
1883         /* Check, if it is write protected */
1884         if (nand_check_wp(mtd)) {
1885                 printk (KERN_NOTICE "nand_do_write_ops: Device is write protected\n");
1886                 return -EIO;
1887         }
1888
1889         realpage = (int)(to >> chip->page_shift);
1890         page = realpage & chip->pagemask;
1891         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1892
1893         /* Invalidate the page cache, when we write to the cached page */
1894         if (to <= (chip->pagebuf << chip->page_shift) &&
1895             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1896                 chip->pagebuf = -1;
1897
1898         /* If we're not given explicit OOB data, let it be 0xFF */
1899         if (likely(!oob))
1900                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1901
1902         while(1) {
1903                 int bytes = mtd->writesize;
1904                 int cached = writelen > bytes && page != blockmask;
1905                 uint8_t *wbuf = buf;
1906
1907                 /* Partial page write ? */
1908                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1909                         cached = 0;
1910                         bytes = min_t(int, bytes - column, (int) writelen);
1911                         chip->pagebuf = -1;
1912                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
1913                         memcpy(&chip->buffers->databuf[column], buf, bytes);
1914                         wbuf = chip->buffers->databuf;
1915                 }
1916
1917                 if (unlikely(oob))
1918                         oob = nand_fill_oob(chip, oob, ops);
1919
1920                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1921                                        (ops->mode == MTD_OOB_RAW));
1922                 if (ret)
1923                         break;
1924
1925                 writelen -= bytes;
1926                 if (!writelen)
1927                         break;
1928
1929                 column = 0;
1930                 buf += bytes;
1931                 realpage++;
1932
1933                 page = realpage & chip->pagemask;
1934                 /* Check, if we cross a chip boundary */
1935                 if (!page) {
1936                         chipnr++;
1937                         chip->select_chip(mtd, -1);
1938                         chip->select_chip(mtd, chipnr);
1939                 }
1940         }
1941
1942         ops->retlen = ops->len - writelen;
1943         if (unlikely(oob))
1944                 ops->oobretlen = ops->ooblen;
1945         return ret;
1946 }
1947
1948 /**
1949  * nand_write - [MTD Interface] NAND write with ECC
1950  * @mtd:        MTD device structure
1951  * @to:         offset to write to
1952  * @len:        number of bytes to write
1953  * @retlen:     pointer to variable to store the number of written bytes
1954  * @buf:        the data to write
1955  *
1956  * NAND write with ECC
1957  */
1958 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1959                           size_t *retlen, const uint8_t *buf)
1960 {
1961         struct nand_chip *chip = mtd->priv;
1962         int ret;
1963
1964         /* Do not allow reads past end of device */
1965         if ((to + len) > mtd->size)
1966                 return -EINVAL;
1967         if (!len)
1968                 return 0;
1969
1970         nand_get_device(chip, mtd, FL_WRITING);
1971
1972         chip->ops.len = len;
1973         chip->ops.datbuf = (uint8_t *)buf;
1974         chip->ops.oobbuf = NULL;
1975
1976         ret = nand_do_write_ops(mtd, to, &chip->ops);
1977
1978         *retlen = chip->ops.retlen;
1979
1980         nand_release_device(mtd);
1981
1982         return ret;
1983 }
1984
1985 /**
1986  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1987  * @mtd:        MTD device structure
1988  * @to:         offset to write to
1989  * @ops:        oob operation description structure
1990  *
1991  * NAND write out-of-band
1992  */
1993 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1994                              struct mtd_oob_ops *ops)
1995 {
1996         int chipnr, page, status, len;
1997         struct nand_chip *chip = mtd->priv;
1998
1999         MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
2000                   (unsigned int)to, (int)ops->ooblen);
2001
2002         if (ops->mode == MTD_OOB_AUTO)
2003                 len = chip->ecc.layout->oobavail;
2004         else
2005                 len = mtd->oobsize;
2006
2007         /* Do not allow write past end of page */
2008         if ((ops->ooboffs + ops->ooblen) > len) {
2009                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: "
2010                           "Attempt to write past end of page\n");
2011                 return -EINVAL;
2012         }
2013
2014         if (unlikely(ops->ooboffs >= len)) {
2015                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2016                           "Attempt to start write outside oob\n");
2017                 return -EINVAL;
2018         }
2019
2020         /* Do not allow reads past end of device */
2021         if (unlikely(to >= mtd->size ||
2022                      ops->ooboffs + ops->ooblen >
2023                         ((mtd->size >> chip->page_shift) -
2024                          (to >> chip->page_shift)) * len)) {
2025                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2026                           "Attempt write beyond end of device\n");
2027                 return -EINVAL;
2028         }
2029
2030         chipnr = (int)(to >> chip->chip_shift);
2031         chip->select_chip(mtd, chipnr);
2032
2033         /* Shift to get page */
2034         page = (int)(to >> chip->page_shift);
2035
2036         /*
2037          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2038          * of my DiskOnChip 2000 test units) will clear the whole data page too
2039          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2040          * it in the doc2000 driver in August 1999.  dwmw2.
2041          */
2042         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2043
2044         /* Check, if it is write protected */
2045         if (nand_check_wp(mtd))
2046                 return -EROFS;
2047
2048         /* Invalidate the page cache, if we write to the cached page */
2049         if (page == chip->pagebuf)
2050                 chip->pagebuf = -1;
2051
2052         memset(chip->oob_poi, 0xff, mtd->oobsize);
2053         nand_fill_oob(chip, ops->oobbuf, ops);
2054         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2055         memset(chip->oob_poi, 0xff, mtd->oobsize);
2056
2057         if (status)
2058                 return status;
2059
2060         ops->oobretlen = ops->ooblen;
2061
2062         return 0;
2063 }
2064
2065 /**
2066  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2067  * @mtd:        MTD device structure
2068  * @to:         offset to write to
2069  * @ops:        oob operation description structure
2070  */
2071 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2072                           struct mtd_oob_ops *ops)
2073 {
2074         struct nand_chip *chip = mtd->priv;
2075         int ret = -ENOTSUPP;
2076
2077         ops->retlen = 0;
2078
2079         /* Do not allow writes past end of device */
2080         if (ops->datbuf && (to + ops->len) > mtd->size) {
2081                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: "
2082                           "Attempt read beyond end of device\n");
2083                 return -EINVAL;
2084         }
2085
2086         nand_get_device(chip, mtd, FL_WRITING);
2087
2088         switch(ops->mode) {
2089         case MTD_OOB_PLACE:
2090         case MTD_OOB_AUTO:
2091         case MTD_OOB_RAW:
2092                 break;
2093
2094         default:
2095                 goto out;
2096         }
2097
2098         if (!ops->datbuf)
2099                 ret = nand_do_write_oob(mtd, to, ops);
2100         else
2101                 ret = nand_do_write_ops(mtd, to, ops);
2102
2103  out:
2104         nand_release_device(mtd);
2105         return ret;
2106 }
2107
2108 /**
2109  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2110  * @mtd:        MTD device structure
2111  * @page:       the page address of the block which will be erased
2112  *
2113  * Standard erase command for NAND chips
2114  */
2115 static void single_erase_cmd(struct mtd_info *mtd, int page)
2116 {
2117         struct nand_chip *chip = mtd->priv;
2118         /* Send commands to erase a block */
2119         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2120         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2121 }
2122
2123 /**
2124  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2125  * @mtd:        MTD device structure
2126  * @page:       the page address of the block which will be erased
2127  *
2128  * AND multi block erase command function
2129  * Erase 4 consecutive blocks
2130  */
2131 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2132 {
2133         struct nand_chip *chip = mtd->priv;
2134         /* Send commands to erase a block */
2135         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2136         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2137         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2138         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2139         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2140 }
2141
2142 /**
2143  * nand_erase - [MTD Interface] erase block(s)
2144  * @mtd:        MTD device structure
2145  * @instr:      erase instruction
2146  *
2147  * Erase one ore more blocks
2148  */
2149 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2150 {
2151         return nand_erase_nand(mtd, instr, 0);
2152 }
2153
2154 #define BBT_PAGE_MASK   0xffffff3f
2155 /**
2156  * nand_erase_nand - [Internal] erase block(s)
2157  * @mtd:        MTD device structure
2158  * @instr:      erase instruction
2159  * @allowbbt:   allow erasing the bbt area
2160  *
2161  * Erase one ore more blocks
2162  */
2163 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2164                     int allowbbt)
2165 {
2166         int page, len, status, pages_per_block, ret, chipnr;
2167         struct nand_chip *chip = mtd->priv;
2168         int rewrite_bbt[CONFIG_SYS_NAND_MAX_CHIPS]={0};
2169         unsigned int bbt_masked_page = 0xffffffff;
2170
2171         MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
2172                   (unsigned int) instr->addr, (unsigned int) instr->len);
2173
2174         /* Start address must align on block boundary */
2175         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2176                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2177                 return -EINVAL;
2178         }
2179
2180         /* Length must align on block boundary */
2181         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2182                 MTDDEBUG (MTD_DEBUG_LEVEL0,
2183                           "nand_erase: Length not block aligned\n");
2184                 return -EINVAL;
2185         }
2186
2187         /* Do not allow erase past end of device */
2188         if ((instr->len + instr->addr) > mtd->size) {
2189                 MTDDEBUG (MTD_DEBUG_LEVEL0,
2190                           "nand_erase: Erase past end of device\n");
2191                 return -EINVAL;
2192         }
2193
2194         instr->fail_addr = 0xffffffff;
2195
2196         /* Grab the lock and see if the device is available */
2197         nand_get_device(chip, mtd, FL_ERASING);
2198
2199         /* Shift to get first page */
2200         page = (int)(instr->addr >> chip->page_shift);
2201         chipnr = (int)(instr->addr >> chip->chip_shift);
2202
2203         /* Calculate pages in each block */
2204         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2205
2206         /* Select the NAND device */
2207         chip->select_chip(mtd, chipnr);
2208
2209         /* Check, if it is write protected */
2210         if (nand_check_wp(mtd)) {
2211                 MTDDEBUG (MTD_DEBUG_LEVEL0,
2212                           "nand_erase: Device is write protected!!!\n");
2213                 instr->state = MTD_ERASE_FAILED;
2214                 goto erase_exit;
2215         }
2216
2217         /*
2218          * If BBT requires refresh, set the BBT page mask to see if the BBT
2219          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2220          * can not be matched. This is also done when the bbt is actually
2221          * erased to avoid recusrsive updates
2222          */
2223         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2224                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2225
2226         /* Loop through the pages */
2227         len = instr->len;
2228
2229         instr->state = MTD_ERASING;
2230
2231         while (len) {
2232                 /*
2233                  * heck if we have a bad block, we do not erase bad blocks !
2234                  */
2235                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2236                                         chip->page_shift, 0, allowbbt)) {
2237                         printk(KERN_WARNING "nand_erase: attempt to erase a "
2238                                "bad block at page 0x%08x\n", page);
2239                         instr->state = MTD_ERASE_FAILED;
2240                         goto erase_exit;
2241                 }
2242
2243                 /*
2244                  * Invalidate the page cache, if we erase the block which
2245                  * contains the current cached page
2246                  */
2247                 if (page <= chip->pagebuf && chip->pagebuf <
2248                     (page + pages_per_block))
2249                         chip->pagebuf = -1;
2250
2251                 chip->erase_cmd(mtd, page & chip->pagemask);
2252
2253                 status = chip->waitfunc(mtd, chip);
2254
2255                 /*
2256                  * See if operation failed and additional status checks are
2257                  * available
2258                  */
2259                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2260                         status = chip->errstat(mtd, chip, FL_ERASING,
2261                                                status, page);
2262
2263                 /* See if block erase succeeded */
2264                 if (status & NAND_STATUS_FAIL) {
2265                         MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase: "
2266                                   "Failed erase, page 0x%08x\n", page);
2267                         instr->state = MTD_ERASE_FAILED;
2268                         instr->fail_addr = (page << chip->page_shift);
2269                         goto erase_exit;
2270                 }
2271
2272                 /*
2273                  * If BBT requires refresh, set the BBT rewrite flag to the
2274                  * page being erased
2275                  */
2276                 if (bbt_masked_page != 0xffffffff &&
2277                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2278                             rewrite_bbt[chipnr] = (page << chip->page_shift);
2279
2280                 /* Increment page address and decrement length */
2281                 len -= (1 << chip->phys_erase_shift);
2282                 page += pages_per_block;
2283
2284                 /* Check, if we cross a chip boundary */
2285                 if (len && !(page & chip->pagemask)) {
2286                         chipnr++;
2287                         chip->select_chip(mtd, -1);
2288                         chip->select_chip(mtd, chipnr);
2289
2290                         /*
2291                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2292                          * page mask to see if this BBT should be rewritten
2293                          */
2294                         if (bbt_masked_page != 0xffffffff &&
2295                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2296                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2297                                         BBT_PAGE_MASK;
2298                 }
2299         }
2300         instr->state = MTD_ERASE_DONE;
2301
2302  erase_exit:
2303
2304         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2305
2306         /* Deselect and wake up anyone waiting on the device */
2307         nand_release_device(mtd);
2308
2309         /* Do call back function */
2310         if (!ret)
2311                 mtd_erase_callback(instr);
2312
2313         /*
2314          * If BBT requires refresh and erase was successful, rewrite any
2315          * selected bad block tables
2316          */
2317         if (bbt_masked_page == 0xffffffff || ret)
2318                 return ret;
2319
2320         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2321                 if (!rewrite_bbt[chipnr])
2322                         continue;
2323                 /* update the BBT for chip */
2324                 MTDDEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2325                           "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2326                           chip->bbt_td->pages[chipnr]);
2327                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2328         }
2329
2330         /* Return more or less happy */
2331         return ret;
2332 }
2333
2334 /**
2335  * nand_sync - [MTD Interface] sync
2336  * @mtd:        MTD device structure
2337  *
2338  * Sync is actually a wait for chip ready function
2339  */
2340 static void nand_sync(struct mtd_info *mtd)
2341 {
2342         struct nand_chip *chip = mtd->priv;
2343
2344         MTDDEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2345
2346         /* Grab the lock and see if the device is available */
2347         nand_get_device(chip, mtd, FL_SYNCING);
2348         /* Release it and go back */
2349         nand_release_device(mtd);
2350 }
2351
2352 /**
2353  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2354  * @mtd:        MTD device structure
2355  * @offs:       offset relative to mtd start
2356  */
2357 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2358 {
2359         /* Check for invalid offset */
2360         if (offs > mtd->size)
2361                 return -EINVAL;
2362
2363         return nand_block_checkbad(mtd, offs, 1, 0);
2364 }
2365
2366 /**
2367  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2368  * @mtd:        MTD device structure
2369  * @ofs:        offset relative to mtd start
2370  */
2371 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2372 {
2373         struct nand_chip *chip = mtd->priv;
2374         int ret;
2375
2376         if ((ret = nand_block_isbad(mtd, ofs))) {
2377                 /* If it was bad already, return success and do nothing. */
2378                 if (ret > 0)
2379                         return 0;
2380                 return ret;
2381         }
2382
2383         return chip->block_markbad(mtd, ofs);
2384 }
2385
2386 /**
2387  * nand_suspend - [MTD Interface] Suspend the NAND flash
2388  * @mtd:        MTD device structure
2389  */
2390 static int nand_suspend(struct mtd_info *mtd)
2391 {
2392         struct nand_chip *chip = mtd->priv;
2393
2394         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2395 }
2396
2397 /**
2398  * nand_resume - [MTD Interface] Resume the NAND flash
2399  * @mtd:        MTD device structure
2400  */
2401 static void nand_resume(struct mtd_info *mtd)
2402 {
2403         struct nand_chip *chip = mtd->priv;
2404
2405         if (chip->state == FL_PM_SUSPENDED)
2406                 nand_release_device(mtd);
2407         else
2408                 printk(KERN_ERR "nand_resume() called for a chip which is not "
2409                        "in suspended state\n");
2410 }
2411
2412 /*
2413  * Set default functions
2414  */
2415 static void nand_set_defaults(struct nand_chip *chip, int busw)
2416 {
2417         /* check for proper chip_delay setup, set 20us if not */
2418         if (!chip->chip_delay)
2419                 chip->chip_delay = 20;
2420
2421         /* check, if a user supplied command function given */
2422         if (chip->cmdfunc == NULL)
2423                 chip->cmdfunc = nand_command;
2424
2425         /* check, if a user supplied wait function given */
2426         if (chip->waitfunc == NULL)
2427                 chip->waitfunc = nand_wait;
2428
2429         if (!chip->select_chip)
2430                 chip->select_chip = nand_select_chip;
2431         if (!chip->read_byte)
2432                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2433         if (!chip->read_word)
2434                 chip->read_word = nand_read_word;
2435         if (!chip->block_bad)
2436                 chip->block_bad = nand_block_bad;
2437         if (!chip->block_markbad)
2438                 chip->block_markbad = nand_default_block_markbad;
2439         if (!chip->write_buf)
2440                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2441         if (!chip->read_buf)
2442                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2443         if (!chip->verify_buf)
2444                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2445         if (!chip->scan_bbt)
2446                 chip->scan_bbt = nand_default_bbt;
2447
2448         if (!chip->controller) {
2449                 chip->controller = &chip->hwcontrol;
2450
2451                 /* XXX U-BOOT XXX */
2452 #if 0
2453                 spin_lock_init(&chip->controller->lock);
2454                 init_waitqueue_head(&chip->controller->wq);
2455 #endif
2456         }
2457
2458 }
2459
2460 /*
2461  * Get the flash and manufacturer id and lookup if the type is supported
2462  */
2463 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2464                                                   struct nand_chip *chip,
2465                                                   int busw, int *maf_id)
2466 {
2467         struct nand_flash_dev *type = NULL;
2468         int i, dev_id, maf_idx;
2469         int tmp_id, tmp_manf;
2470
2471         /* Select the device */
2472         chip->select_chip(mtd, 0);
2473
2474         /*
2475          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2476          * after power-up
2477          */
2478         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2479
2480         /* Send the command for reading device ID */
2481         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2482
2483         /* Read manufacturer and device IDs */
2484         *maf_id = chip->read_byte(mtd);
2485         dev_id = chip->read_byte(mtd);
2486
2487         /* Try again to make sure, as some systems the bus-hold or other
2488          * interface concerns can cause random data which looks like a
2489          * possibly credible NAND flash to appear. If the two results do
2490          * not match, ignore the device completely.
2491          */
2492
2493         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2494
2495         /* Read manufacturer and device IDs */
2496
2497         tmp_manf = chip->read_byte(mtd);
2498         tmp_id = chip->read_byte(mtd);
2499
2500         if (tmp_manf != *maf_id || tmp_id != dev_id) {
2501                 printk(KERN_INFO "%s: second ID read did not match "
2502                        "%02x,%02x against %02x,%02x\n", __func__,
2503                        *maf_id, dev_id, tmp_manf, tmp_id);
2504                 return ERR_PTR(-ENODEV);
2505         }
2506
2507         /* Lookup the flash id */
2508         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2509                 if (dev_id == nand_flash_ids[i].id) {
2510                         type =  &nand_flash_ids[i];
2511                         break;
2512                 }
2513         }
2514
2515         if (!type)
2516                 return ERR_PTR(-ENODEV);
2517
2518         if (!mtd->name)
2519                 mtd->name = type->name;
2520
2521         chip->chipsize = type->chipsize << 20;
2522
2523         /* Newer devices have all the information in additional id bytes */
2524         if (!type->pagesize) {
2525                 int extid;
2526                 /* The 3rd id byte holds MLC / multichip data */
2527                 chip->cellinfo = chip->read_byte(mtd);
2528                 /* The 4th id byte is the important one */
2529                 extid = chip->read_byte(mtd);
2530                 /* Calc pagesize */
2531                 mtd->writesize = 1024 << (extid & 0x3);
2532                 extid >>= 2;
2533                 /* Calc oobsize */
2534                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2535                 extid >>= 2;
2536                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2537                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2538                 extid >>= 2;
2539                 /* Get buswidth information */
2540                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2541
2542         } else {
2543                 /*
2544                  * Old devices have chip data hardcoded in the device id table
2545                  */
2546                 mtd->erasesize = type->erasesize;
2547                 mtd->writesize = type->pagesize;
2548                 mtd->oobsize = mtd->writesize / 32;
2549                 busw = type->options & NAND_BUSWIDTH_16;
2550         }
2551
2552         /* Try to identify manufacturer */
2553         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2554                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2555                         break;
2556         }
2557
2558         /*
2559          * Check, if buswidth is correct. Hardware drivers should set
2560          * chip correct !
2561          */
2562         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2563                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2564                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2565                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2566                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2567                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2568                        busw ? 16 : 8);
2569                 return ERR_PTR(-EINVAL);
2570         }
2571
2572         /* Calculate the address shift from the page size */
2573         chip->page_shift = ffs(mtd->writesize) - 1;
2574         /* Convert chipsize to number of pages per chip -1. */
2575         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2576
2577         chip->bbt_erase_shift = chip->phys_erase_shift =
2578                 ffs(mtd->erasesize) - 1;
2579         chip->chip_shift = ffs(chip->chipsize) - 1;
2580
2581         /* Set the bad block position */
2582         chip->badblockpos = mtd->writesize > 512 ?
2583                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2584
2585         /* Get chip options, preserve non chip based options */
2586         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2587         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2588
2589         /*
2590          * Set chip as a default. Board drivers can override it, if necessary
2591          */
2592         chip->options |= NAND_NO_AUTOINCR;
2593
2594         /* Check if chip is a not a samsung device. Do not clear the
2595          * options for chips which are not having an extended id.
2596          */
2597         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2598                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2599
2600         /* Check for AND chips with 4 page planes */
2601         if (chip->options & NAND_4PAGE_ARRAY)
2602                 chip->erase_cmd = multi_erase_cmd;
2603         else
2604                 chip->erase_cmd = single_erase_cmd;
2605
2606         /* Do not replace user supplied command function ! */
2607         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2608                 chip->cmdfunc = nand_command_lp;
2609
2610         MTDDEBUG (MTD_DEBUG_LEVEL0, "NAND device: Manufacturer ID:"
2611                   " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2612                   nand_manuf_ids[maf_idx].name, type->name);
2613
2614         return type;
2615 }
2616
2617 /**
2618  * nand_scan_ident - [NAND Interface] Scan for the NAND device
2619  * @mtd:             MTD device structure
2620  * @maxchips:        Number of chips to scan for
2621  *
2622  * This is the first phase of the normal nand_scan() function. It
2623  * reads the flash ID and sets up MTD fields accordingly.
2624  *
2625  * The mtd->owner field must be set to the module of the caller.
2626  */
2627 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2628 {
2629         int i, busw, nand_maf_id;
2630         struct nand_chip *chip = mtd->priv;
2631         struct nand_flash_dev *type;
2632
2633         /* Get buswidth to select the correct functions */
2634         busw = chip->options & NAND_BUSWIDTH_16;
2635         /* Set the default functions */
2636         nand_set_defaults(chip, busw);
2637
2638         /* Read the flash type */
2639         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2640
2641         if (IS_ERR(type)) {
2642 #ifndef CONFIG_SYS_NAND_QUIET_TEST
2643                 printk(KERN_WARNING "No NAND device found!!!\n");
2644 #endif
2645                 chip->select_chip(mtd, -1);
2646                 return PTR_ERR(type);
2647         }
2648
2649         /* Check for a chip array */
2650         for (i = 1; i < maxchips; i++) {
2651                 chip->select_chip(mtd, i);
2652                 /* See comment in nand_get_flash_type for reset */
2653                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2654                 /* Send the command for reading device ID */
2655                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2656                 /* Read manufacturer and device IDs */
2657                 if (nand_maf_id != chip->read_byte(mtd) ||
2658                     type->id != chip->read_byte(mtd))
2659                         break;
2660         }
2661 #ifdef DEBUG
2662         if (i > 1)
2663                 printk(KERN_INFO "%d NAND chips detected\n", i);
2664 #endif
2665
2666         /* Store the number of chips and calc total size for mtd */
2667         chip->numchips = i;
2668         mtd->size = i * chip->chipsize;
2669
2670         return 0;
2671 }
2672
2673
2674 /**
2675  * nand_scan_tail - [NAND Interface] Scan for the NAND device
2676  * @mtd:            MTD device structure
2677  * @maxchips:       Number of chips to scan for
2678  *
2679  * This is the second phase of the normal nand_scan() function. It
2680  * fills out all the uninitialized function pointers with the defaults
2681  * and scans for a bad block table if appropriate.
2682  */
2683 int nand_scan_tail(struct mtd_info *mtd)
2684 {
2685         int i;
2686         struct nand_chip *chip = mtd->priv;
2687
2688         if (!(chip->options & NAND_OWN_BUFFERS))
2689                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2690         if (!chip->buffers)
2691                 return -ENOMEM;
2692
2693         /* Set the internal oob buffer location, just after the page data */
2694         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2695
2696         /*
2697          * If no default placement scheme is given, select an appropriate one
2698          */
2699         if (!chip->ecc.layout) {
2700                 switch (mtd->oobsize) {
2701                 case 8:
2702                         chip->ecc.layout = &nand_oob_8;
2703                         break;
2704                 case 16:
2705                         chip->ecc.layout = &nand_oob_16;
2706                         break;
2707                 case 64:
2708                         chip->ecc.layout = &nand_oob_64;
2709                         break;
2710                 case 128:
2711                         chip->ecc.layout = &nand_oob_128;
2712                         break;
2713                 default:
2714                         printk(KERN_WARNING "No oob scheme defined for "
2715                                "oobsize %d\n", mtd->oobsize);
2716 /*                      BUG(); */
2717                 }
2718         }
2719
2720         if (!chip->write_page)
2721                 chip->write_page = nand_write_page;
2722
2723         /*
2724          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2725          * selected and we have 256 byte pagesize fallback to software ECC
2726          */
2727         if (!chip->ecc.read_page_raw)
2728                 chip->ecc.read_page_raw = nand_read_page_raw;
2729         if (!chip->ecc.write_page_raw)
2730                 chip->ecc.write_page_raw = nand_write_page_raw;
2731
2732         switch (chip->ecc.mode) {
2733         case NAND_ECC_HW:
2734                 /* Use standard hwecc read page function ? */
2735                 if (!chip->ecc.read_page)
2736                         chip->ecc.read_page = nand_read_page_hwecc;
2737                 if (!chip->ecc.write_page)
2738                         chip->ecc.write_page = nand_write_page_hwecc;
2739                 if (!chip->ecc.read_oob)
2740                         chip->ecc.read_oob = nand_read_oob_std;
2741                 if (!chip->ecc.write_oob)
2742                         chip->ecc.write_oob = nand_write_oob_std;
2743
2744         case NAND_ECC_HW_SYNDROME:
2745                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2746                      !chip->ecc.hwctl) &&
2747                     (!chip->ecc.read_page ||
2748                      chip->ecc.read_page == nand_read_page_hwecc ||
2749                      !chip->ecc.write_page ||
2750                      chip->ecc.write_page == nand_write_page_hwecc)) {
2751                         printk(KERN_WARNING "No ECC functions supplied, "
2752                                "Hardware ECC not possible\n");
2753                         BUG();
2754                 }
2755                 /* Use standard syndrome read/write page function ? */
2756                 if (!chip->ecc.read_page)
2757                         chip->ecc.read_page = nand_read_page_syndrome;
2758                 if (!chip->ecc.write_page)
2759                         chip->ecc.write_page = nand_write_page_syndrome;
2760                 if (!chip->ecc.read_oob)
2761                         chip->ecc.read_oob = nand_read_oob_syndrome;
2762                 if (!chip->ecc.write_oob)
2763                         chip->ecc.write_oob = nand_write_oob_syndrome;
2764
2765                 if (mtd->writesize >= chip->ecc.size)
2766                         break;
2767                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2768                        "%d byte page size, fallback to SW ECC\n",
2769                        chip->ecc.size, mtd->writesize);
2770                 chip->ecc.mode = NAND_ECC_SOFT;
2771
2772         case NAND_ECC_SOFT:
2773                 chip->ecc.calculate = nand_calculate_ecc;
2774                 chip->ecc.correct = nand_correct_data;
2775                 chip->ecc.read_page = nand_read_page_swecc;
2776                 chip->ecc.read_subpage = nand_read_subpage;
2777                 chip->ecc.write_page = nand_write_page_swecc;
2778                 chip->ecc.read_oob = nand_read_oob_std;
2779                 chip->ecc.write_oob = nand_write_oob_std;
2780                 chip->ecc.size = 256;
2781                 chip->ecc.bytes = 3;
2782                 break;
2783
2784         case NAND_ECC_NONE:
2785                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2786                        "This is not recommended !!\n");
2787                 chip->ecc.read_page = nand_read_page_raw;
2788                 chip->ecc.write_page = nand_write_page_raw;
2789                 chip->ecc.read_oob = nand_read_oob_std;
2790                 chip->ecc.write_oob = nand_write_oob_std;
2791                 chip->ecc.size = mtd->writesize;
2792                 chip->ecc.bytes = 0;
2793                 break;
2794
2795         default:
2796                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2797                        chip->ecc.mode);
2798                 BUG();
2799         }
2800
2801         /*
2802          * The number of bytes available for a client to place data into
2803          * the out of band area
2804          */
2805         chip->ecc.layout->oobavail = 0;
2806         for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2807                 chip->ecc.layout->oobavail +=
2808                         chip->ecc.layout->oobfree[i].length;
2809         mtd->oobavail = chip->ecc.layout->oobavail;
2810
2811         /*
2812          * Set the number of read / write steps for one page depending on ECC
2813          * mode
2814          */
2815         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2816         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2817                 printk(KERN_WARNING "Invalid ecc parameters\n");
2818                 BUG();
2819         }
2820         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2821
2822         /*
2823          * Allow subpage writes up to ecc.steps. Not possible for MLC
2824          * FLASH.
2825          */
2826         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2827             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2828                 switch(chip->ecc.steps) {
2829                 case 2:
2830                         mtd->subpage_sft = 1;
2831                         break;
2832                 case 4:
2833                 case 8:
2834                         mtd->subpage_sft = 2;
2835                         break;
2836                 }
2837         }
2838         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2839
2840         /* Initialize state */
2841         chip->state = FL_READY;
2842
2843         /* De-select the device */
2844         chip->select_chip(mtd, -1);
2845
2846         /* Invalidate the pagebuffer reference */
2847         chip->pagebuf = -1;
2848
2849         /* Fill in remaining MTD driver data */
2850         mtd->type = MTD_NANDFLASH;
2851         mtd->flags = MTD_CAP_NANDFLASH;
2852         mtd->erase = nand_erase;
2853         mtd->point = NULL;
2854         mtd->unpoint = NULL;
2855         mtd->read = nand_read;
2856         mtd->write = nand_write;
2857         mtd->read_oob = nand_read_oob;
2858         mtd->write_oob = nand_write_oob;
2859         mtd->sync = nand_sync;
2860         mtd->lock = NULL;
2861         mtd->unlock = NULL;
2862         mtd->suspend = nand_suspend;
2863         mtd->resume = nand_resume;
2864         mtd->block_isbad = nand_block_isbad;
2865         mtd->block_markbad = nand_block_markbad;
2866
2867         /* propagate ecc.layout to mtd_info */
2868         mtd->ecclayout = chip->ecc.layout;
2869
2870         /* Check, if we should skip the bad block table scan */
2871         if (chip->options & NAND_SKIP_BBTSCAN)
2872                 chip->options |= NAND_BBT_SCANNED;
2873
2874         return 0;
2875 }
2876
2877 /* module_text_address() isn't exported, and it's mostly a pointless
2878    test if this is a module _anyway_ -- they'd have to try _really_ hard
2879    to call us from in-kernel code if the core NAND support is modular. */
2880 #ifdef MODULE
2881 #define caller_is_module() (1)
2882 #else
2883 #define caller_is_module() \
2884         module_text_address((unsigned long)__builtin_return_address(0))
2885 #endif
2886
2887 /**
2888  * nand_scan - [NAND Interface] Scan for the NAND device
2889  * @mtd:        MTD device structure
2890  * @maxchips:   Number of chips to scan for
2891  *
2892  * This fills out all the uninitialized function pointers
2893  * with the defaults.
2894  * The flash ID is read and the mtd/chip structures are
2895  * filled with the appropriate values.
2896  * The mtd->owner field must be set to the module of the caller
2897  *
2898  */
2899 int nand_scan(struct mtd_info *mtd, int maxchips)
2900 {
2901         int ret;
2902
2903         /* Many callers got this wrong, so check for it for a while... */
2904         /* XXX U-BOOT XXX */
2905 #if 0
2906         if (!mtd->owner && caller_is_module()) {
2907                 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2908                 BUG();
2909         }
2910 #endif
2911
2912         ret = nand_scan_ident(mtd, maxchips);
2913         if (!ret)
2914                 ret = nand_scan_tail(mtd);
2915         return ret;
2916 }
2917
2918 /**
2919  * nand_release - [NAND Interface] Free resources held by the NAND device
2920  * @mtd:        MTD device structure
2921 */
2922 void nand_release(struct mtd_info *mtd)
2923 {
2924         struct nand_chip *chip = mtd->priv;
2925
2926 #ifdef CONFIG_MTD_PARTITIONS
2927         /* Deregister partitions */
2928         del_mtd_partitions(mtd);
2929 #endif
2930         /* Deregister the device */
2931         /* XXX U-BOOT XXX */
2932 #if 0
2933         del_mtd_device(mtd);
2934 #endif
2935
2936         /* Free bad block table memory */
2937         kfree(chip->bbt);
2938         if (!(chip->options & NAND_OWN_BUFFERS))
2939                 kfree(chip->buffers);
2940 }
2941
2942 /* XXX U-BOOT XXX */
2943 #if 0
2944 EXPORT_SYMBOL_GPL(nand_scan);
2945 EXPORT_SYMBOL_GPL(nand_scan_ident);
2946 EXPORT_SYMBOL_GPL(nand_scan_tail);
2947 EXPORT_SYMBOL_GPL(nand_release);
2948
2949 static int __init nand_base_init(void)
2950 {
2951         led_trigger_register_simple("nand-disk", &nand_led_trigger);
2952         return 0;
2953 }
2954
2955 static void __exit nand_base_exit(void)
2956 {
2957         led_trigger_unregister_simple(nand_led_trigger);
2958 }
2959
2960 module_init(nand_base_init);
2961 module_exit(nand_base_exit);
2962
2963 MODULE_LICENSE("GPL");
2964 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2965 MODULE_DESCRIPTION("Generic NAND flash driver code");
2966 #endif