]> git.sur5r.net Git - u-boot/blob - drivers/mtd/onenand/onenand_base.c
8282f683a565d490c94f787103102a3d7ee030e4
[u-boot] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <watchdog.h>
24 #include <linux/compat.h>
25 #include <linux/mtd/mtd.h>
26 #include "linux/mtd/flashchip.h"
27 #include <linux/mtd/onenand.h>
28
29 #include <asm/io.h>
30 #include <linux/errno.h>
31 #include <malloc.h>
32
33 /* It should access 16-bit instead of 8-bit */
34 static void *memcpy_16(void *dst, const void *src, unsigned int len)
35 {
36         void *ret = dst;
37         short *d = dst;
38         const short *s = src;
39
40         len >>= 1;
41         while (len-- > 0)
42                 *d++ = *s++;
43         return ret;
44 }
45
46 /**
47  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
48  *  For now, we expose only 64 out of 80 ecc bytes
49  */
50 static struct nand_ecclayout onenand_oob_128 = {
51         .eccbytes       = 64,
52         .eccpos         = {
53                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
54                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
55                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
56                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
57                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
58                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
59                 102, 103, 104, 105
60                 },
61         .oobfree        = {
62                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
63                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
64         }
65 };
66
67 /**
68  * onenand_oob_64 - oob info for large (2KB) page
69  */
70 static struct nand_ecclayout onenand_oob_64 = {
71         .eccbytes       = 20,
72         .eccpos         = {
73                 8, 9, 10, 11, 12,
74                 24, 25, 26, 27, 28,
75                 40, 41, 42, 43, 44,
76                 56, 57, 58, 59, 60,
77                 },
78         .oobfree        = {
79                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
80                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
81         }
82 };
83
84 /**
85  * onenand_oob_32 - oob info for middle (1KB) page
86  */
87 static struct nand_ecclayout onenand_oob_32 = {
88         .eccbytes       = 10,
89         .eccpos         = {
90                 8, 9, 10, 11, 12,
91                 24, 25, 26, 27, 28,
92                 },
93         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
94 };
95
96 /*
97  * Warning! This array is used with the memcpy_16() function, thus
98  * it must be aligned to 2 bytes. GCC can make this array unaligned
99  * as the array is made of unsigned char, which memcpy16() doesn't
100  * like and will cause unaligned access.
101  */
102 static const unsigned char __aligned(2) ffchars[] = {
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
111         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
112         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
113         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
114         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
115         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
116         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
117         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
118         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
119 };
120
121 /**
122  * onenand_readw - [OneNAND Interface] Read OneNAND register
123  * @param addr          address to read
124  *
125  * Read OneNAND register
126  */
127 static unsigned short onenand_readw(void __iomem * addr)
128 {
129         return readw(addr);
130 }
131
132 /**
133  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
134  * @param value         value to write
135  * @param addr          address to write
136  *
137  * Write OneNAND register with value
138  */
139 static void onenand_writew(unsigned short value, void __iomem * addr)
140 {
141         writew(value, addr);
142 }
143
144 /**
145  * onenand_block_address - [DEFAULT] Get block address
146  * @param device        the device id
147  * @param block         the block
148  * @return              translated block address if DDP, otherwise same
149  *
150  * Setup Start Address 1 Register (F100h)
151  */
152 static int onenand_block_address(struct onenand_chip *this, int block)
153 {
154         /* Device Flash Core select, NAND Flash Block Address */
155         if (block & this->density_mask)
156                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
157
158         return block;
159 }
160
161 /**
162  * onenand_bufferram_address - [DEFAULT] Get bufferram address
163  * @param device        the device id
164  * @param block         the block
165  * @return              set DBS value if DDP, otherwise 0
166  *
167  * Setup Start Address 2 Register (F101h) for DDP
168  */
169 static int onenand_bufferram_address(struct onenand_chip *this, int block)
170 {
171         /* Device BufferRAM Select */
172         if (block & this->density_mask)
173                 return ONENAND_DDP_CHIP1;
174
175         return ONENAND_DDP_CHIP0;
176 }
177
178 /**
179  * onenand_page_address - [DEFAULT] Get page address
180  * @param page          the page address
181  * @param sector        the sector address
182  * @return              combined page and sector address
183  *
184  * Setup Start Address 8 Register (F107h)
185  */
186 static int onenand_page_address(int page, int sector)
187 {
188         /* Flash Page Address, Flash Sector Address */
189         int fpa, fsa;
190
191         fpa = page & ONENAND_FPA_MASK;
192         fsa = sector & ONENAND_FSA_MASK;
193
194         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
195 }
196
197 /**
198  * onenand_buffer_address - [DEFAULT] Get buffer address
199  * @param dataram1      DataRAM index
200  * @param sectors       the sector address
201  * @param count         the number of sectors
202  * @return              the start buffer value
203  *
204  * Setup Start Buffer Register (F200h)
205  */
206 static int onenand_buffer_address(int dataram1, int sectors, int count)
207 {
208         int bsa, bsc;
209
210         /* BufferRAM Sector Address */
211         bsa = sectors & ONENAND_BSA_MASK;
212
213         if (dataram1)
214                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
215         else
216                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
217
218         /* BufferRAM Sector Count */
219         bsc = count & ONENAND_BSC_MASK;
220
221         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
222 }
223
224 /**
225  * flexonenand_block - Return block number for flash address
226  * @param this          - OneNAND device structure
227  * @param addr          - Address for which block number is needed
228  */
229 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
230 {
231         unsigned int boundary, blk, die = 0;
232
233         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
234                 die = 1;
235                 addr -= this->diesize[0];
236         }
237
238         boundary = this->boundary[die];
239
240         blk = addr >> (this->erase_shift - 1);
241         if (blk > boundary)
242                 blk = (blk + boundary + 1) >> 1;
243
244         blk += die ? this->density_mask : 0;
245         return blk;
246 }
247
248 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
249 {
250         if (!FLEXONENAND(this))
251                 return addr >> this->erase_shift;
252         return flexonenand_block(this, addr);
253 }
254
255 /**
256  * flexonenand_addr - Return address of the block
257  * @this:               OneNAND device structure
258  * @block:              Block number on Flex-OneNAND
259  *
260  * Return address of the block
261  */
262 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
263 {
264         loff_t ofs = 0;
265         int die = 0, boundary;
266
267         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
268                 block -= this->density_mask;
269                 die = 1;
270                 ofs = this->diesize[0];
271         }
272
273         boundary = this->boundary[die];
274         ofs += (loff_t) block << (this->erase_shift - 1);
275         if (block > (boundary + 1))
276                 ofs += (loff_t) (block - boundary - 1)
277                         << (this->erase_shift - 1);
278         return ofs;
279 }
280
281 loff_t onenand_addr(struct onenand_chip *this, int block)
282 {
283         if (!FLEXONENAND(this))
284                 return (loff_t) block << this->erase_shift;
285         return flexonenand_addr(this, block);
286 }
287
288 /**
289  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
290  * @param mtd           MTD device structure
291  * @param addr          address whose erase region needs to be identified
292  */
293 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
294 {
295         int i;
296
297         for (i = 0; i < mtd->numeraseregions; i++)
298                 if (addr < mtd->eraseregions[i].offset)
299                         break;
300         return i - 1;
301 }
302
303 /**
304  * onenand_get_density - [DEFAULT] Get OneNAND density
305  * @param dev_id        OneNAND device ID
306  *
307  * Get OneNAND density from device ID
308  */
309 static inline int onenand_get_density(int dev_id)
310 {
311         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
312         return (density & ONENAND_DEVICE_DENSITY_MASK);
313 }
314
315 /**
316  * onenand_command - [DEFAULT] Send command to OneNAND device
317  * @param mtd           MTD device structure
318  * @param cmd           the command to be sent
319  * @param addr          offset to read from or write to
320  * @param len           number of bytes to read or write
321  *
322  * Send command to OneNAND device. This function is used for middle/large page
323  * devices (1KB/2KB Bytes per page)
324  */
325 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
326                            size_t len)
327 {
328         struct onenand_chip *this = mtd->priv;
329         int value;
330         int block, page;
331
332         /* Now we use page size operation */
333         int sectors = 0, count = 0;
334
335         /* Address translation */
336         switch (cmd) {
337         case ONENAND_CMD_UNLOCK:
338         case ONENAND_CMD_LOCK:
339         case ONENAND_CMD_LOCK_TIGHT:
340         case ONENAND_CMD_UNLOCK_ALL:
341                 block = -1;
342                 page = -1;
343                 break;
344
345         case FLEXONENAND_CMD_PI_ACCESS:
346                 /* addr contains die index */
347                 block = addr * this->density_mask;
348                 page = -1;
349                 break;
350
351         case ONENAND_CMD_ERASE:
352         case ONENAND_CMD_BUFFERRAM:
353                 block = onenand_block(this, addr);
354                 page = -1;
355                 break;
356
357         case FLEXONENAND_CMD_READ_PI:
358                 cmd = ONENAND_CMD_READ;
359                 block = addr * this->density_mask;
360                 page = 0;
361                 break;
362
363         default:
364                 block = onenand_block(this, addr);
365                 page = (int) (addr
366                         - onenand_addr(this, block)) >> this->page_shift;
367                 page &= this->page_mask;
368                 break;
369         }
370
371         /* NOTE: The setting order of the registers is very important! */
372         if (cmd == ONENAND_CMD_BUFFERRAM) {
373                 /* Select DataRAM for DDP */
374                 value = onenand_bufferram_address(this, block);
375                 this->write_word(value,
376                                  this->base + ONENAND_REG_START_ADDRESS2);
377
378                 if (ONENAND_IS_4KB_PAGE(this))
379                         ONENAND_SET_BUFFERRAM0(this);
380                 else
381                         /* Switch to the next data buffer */
382                         ONENAND_SET_NEXT_BUFFERRAM(this);
383
384                 return 0;
385         }
386
387         if (block != -1) {
388                 /* Write 'DFS, FBA' of Flash */
389                 value = onenand_block_address(this, block);
390                 this->write_word(value,
391                                  this->base + ONENAND_REG_START_ADDRESS1);
392
393                 /* Select DataRAM for DDP */
394                 value = onenand_bufferram_address(this, block);
395                 this->write_word(value,
396                                  this->base + ONENAND_REG_START_ADDRESS2);
397         }
398
399         if (page != -1) {
400                 int dataram;
401
402                 switch (cmd) {
403                 case FLEXONENAND_CMD_RECOVER_LSB:
404                 case ONENAND_CMD_READ:
405                 case ONENAND_CMD_READOOB:
406                         if (ONENAND_IS_4KB_PAGE(this))
407                                 dataram = ONENAND_SET_BUFFERRAM0(this);
408                         else
409                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
410
411                         break;
412
413                 default:
414                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
415                         break;
416                 }
417
418                 /* Write 'FPA, FSA' of Flash */
419                 value = onenand_page_address(page, sectors);
420                 this->write_word(value,
421                                  this->base + ONENAND_REG_START_ADDRESS8);
422
423                 /* Write 'BSA, BSC' of DataRAM */
424                 value = onenand_buffer_address(dataram, sectors, count);
425                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
426         }
427
428         /* Interrupt clear */
429         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
430         /* Write command */
431         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
432
433         return 0;
434 }
435
436 /**
437  * onenand_read_ecc - return ecc status
438  * @param this          onenand chip structure
439  */
440 static int onenand_read_ecc(struct onenand_chip *this)
441 {
442         int ecc, i;
443
444         if (!FLEXONENAND(this))
445                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
446
447         for (i = 0; i < 4; i++) {
448                 ecc = this->read_word(this->base
449                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
450                 if (likely(!ecc))
451                         continue;
452                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
453                         return ONENAND_ECC_2BIT_ALL;
454         }
455
456         return 0;
457 }
458
459 /**
460  * onenand_wait - [DEFAULT] wait until the command is done
461  * @param mtd           MTD device structure
462  * @param state         state to select the max. timeout value
463  *
464  * Wait for command done. This applies to all OneNAND command
465  * Read can take up to 30us, erase up to 2ms and program up to 350us
466  * according to general OneNAND specs
467  */
468 static int onenand_wait(struct mtd_info *mtd, int state)
469 {
470         struct onenand_chip *this = mtd->priv;
471         unsigned int interrupt = 0;
472         unsigned int ctrl;
473
474         /* Wait at most 20ms ... */
475         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
476         u32 time_start = get_timer(0);
477         do {
478                 WATCHDOG_RESET();
479                 if (get_timer(time_start) > timeo)
480                         return -EIO;
481                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
482         } while ((interrupt & ONENAND_INT_MASTER) == 0);
483
484         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
485
486         if (interrupt & ONENAND_INT_READ) {
487                 int ecc = onenand_read_ecc(this);
488                 if (ecc & ONENAND_ECC_2BIT_ALL) {
489                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
490                         return -EBADMSG;
491                 }
492         }
493
494         if (ctrl & ONENAND_CTRL_ERROR) {
495                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
496                 if (ctrl & ONENAND_CTRL_LOCK)
497                         printk("onenand_wait: it's locked error = 0x%04x\n",
498                                 ctrl);
499
500                 return -EIO;
501         }
502
503
504         return 0;
505 }
506
507 /**
508  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
509  * @param mtd           MTD data structure
510  * @param area          BufferRAM area
511  * @return              offset given area
512  *
513  * Return BufferRAM offset given area
514  */
515 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
516 {
517         struct onenand_chip *this = mtd->priv;
518
519         if (ONENAND_CURRENT_BUFFERRAM(this)) {
520                 if (area == ONENAND_DATARAM)
521                         return mtd->writesize;
522                 if (area == ONENAND_SPARERAM)
523                         return mtd->oobsize;
524         }
525
526         return 0;
527 }
528
529 /**
530  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
531  * @param mtd           MTD data structure
532  * @param area          BufferRAM area
533  * @param buffer        the databuffer to put/get data
534  * @param offset        offset to read from or write to
535  * @param count         number of bytes to read/write
536  *
537  * Read the BufferRAM area
538  */
539 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
540                                   unsigned char *buffer, int offset,
541                                   size_t count)
542 {
543         struct onenand_chip *this = mtd->priv;
544         void __iomem *bufferram;
545
546         bufferram = this->base + area;
547         bufferram += onenand_bufferram_offset(mtd, area);
548
549         memcpy_16(buffer, bufferram + offset, count);
550
551         return 0;
552 }
553
554 /**
555  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
556  * @param mtd           MTD data structure
557  * @param area          BufferRAM area
558  * @param buffer        the databuffer to put/get data
559  * @param offset        offset to read from or write to
560  * @param count         number of bytes to read/write
561  *
562  * Read the BufferRAM area with Sync. Burst Mode
563  */
564 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
565                                        unsigned char *buffer, int offset,
566                                        size_t count)
567 {
568         struct onenand_chip *this = mtd->priv;
569         void __iomem *bufferram;
570
571         bufferram = this->base + area;
572         bufferram += onenand_bufferram_offset(mtd, area);
573
574         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
575
576         memcpy_16(buffer, bufferram + offset, count);
577
578         this->mmcontrol(mtd, 0);
579
580         return 0;
581 }
582
583 /**
584  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
585  * @param mtd           MTD data structure
586  * @param area          BufferRAM area
587  * @param buffer        the databuffer to put/get data
588  * @param offset        offset to read from or write to
589  * @param count         number of bytes to read/write
590  *
591  * Write the BufferRAM area
592  */
593 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
594                                    const unsigned char *buffer, int offset,
595                                    size_t count)
596 {
597         struct onenand_chip *this = mtd->priv;
598         void __iomem *bufferram;
599
600         bufferram = this->base + area;
601         bufferram += onenand_bufferram_offset(mtd, area);
602
603         memcpy_16(bufferram + offset, buffer, count);
604
605         return 0;
606 }
607
608 /**
609  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
610  * @param mtd           MTD data structure
611  * @param addr          address to check
612  * @return              blockpage address
613  *
614  * Get blockpage address at 2x program mode
615  */
616 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
617 {
618         struct onenand_chip *this = mtd->priv;
619         int blockpage, block, page;
620
621         /* Calculate the even block number */
622         block = (int) (addr >> this->erase_shift) & ~1;
623         /* Is it the odd plane? */
624         if (addr & this->writesize)
625                 block++;
626         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
627         blockpage = (block << 7) | page;
628
629         return blockpage;
630 }
631
632 /**
633  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
634  * @param mtd           MTD data structure
635  * @param addr          address to check
636  * @return              1 if there are valid data, otherwise 0
637  *
638  * Check bufferram if there is data we required
639  */
640 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
641 {
642         struct onenand_chip *this = mtd->priv;
643         int blockpage, found = 0;
644         unsigned int i;
645
646         if (ONENAND_IS_2PLANE(this))
647                 blockpage = onenand_get_2x_blockpage(mtd, addr);
648         else
649                 blockpage = (int) (addr >> this->page_shift);
650
651         /* Is there valid data? */
652         i = ONENAND_CURRENT_BUFFERRAM(this);
653         if (this->bufferram[i].blockpage == blockpage)
654                 found = 1;
655         else {
656                 /* Check another BufferRAM */
657                 i = ONENAND_NEXT_BUFFERRAM(this);
658                 if (this->bufferram[i].blockpage == blockpage) {
659                         ONENAND_SET_NEXT_BUFFERRAM(this);
660                         found = 1;
661                 }
662         }
663
664         if (found && ONENAND_IS_DDP(this)) {
665                 /* Select DataRAM for DDP */
666                 int block = onenand_block(this, addr);
667                 int value = onenand_bufferram_address(this, block);
668                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
669         }
670
671         return found;
672 }
673
674 /**
675  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
676  * @param mtd           MTD data structure
677  * @param addr          address to update
678  * @param valid         valid flag
679  *
680  * Update BufferRAM information
681  */
682 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
683                                     int valid)
684 {
685         struct onenand_chip *this = mtd->priv;
686         int blockpage;
687         unsigned int i;
688
689         if (ONENAND_IS_2PLANE(this))
690                 blockpage = onenand_get_2x_blockpage(mtd, addr);
691         else
692                 blockpage = (int)(addr >> this->page_shift);
693
694         /* Invalidate another BufferRAM */
695         i = ONENAND_NEXT_BUFFERRAM(this);
696         if (this->bufferram[i].blockpage == blockpage)
697                 this->bufferram[i].blockpage = -1;
698
699         /* Update BufferRAM */
700         i = ONENAND_CURRENT_BUFFERRAM(this);
701         if (valid)
702                 this->bufferram[i].blockpage = blockpage;
703         else
704                 this->bufferram[i].blockpage = -1;
705
706         return 0;
707 }
708
709 /**
710  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
711  * @param mtd           MTD data structure
712  * @param addr          start address to invalidate
713  * @param len           length to invalidate
714  *
715  * Invalidate BufferRAM information
716  */
717 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
718                                          unsigned int len)
719 {
720         struct onenand_chip *this = mtd->priv;
721         int i;
722         loff_t end_addr = addr + len;
723
724         /* Invalidate BufferRAM */
725         for (i = 0; i < MAX_BUFFERRAM; i++) {
726                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
727
728                 if (buf_addr >= addr && buf_addr < end_addr)
729                         this->bufferram[i].blockpage = -1;
730         }
731 }
732
733 /**
734  * onenand_get_device - [GENERIC] Get chip for selected access
735  * @param mtd           MTD device structure
736  * @param new_state     the state which is requested
737  *
738  * Get the device and lock it for exclusive access
739  */
740 static void onenand_get_device(struct mtd_info *mtd, int new_state)
741 {
742         /* Do nothing */
743 }
744
745 /**
746  * onenand_release_device - [GENERIC] release chip
747  * @param mtd           MTD device structure
748  *
749  * Deselect, release chip lock and wake up anyone waiting on the device
750  */
751 static void onenand_release_device(struct mtd_info *mtd)
752 {
753         /* Do nothing */
754 }
755
756 /**
757  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
758  * @param mtd           MTD device structure
759  * @param buf           destination address
760  * @param column        oob offset to read from
761  * @param thislen       oob length to read
762  */
763 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
764                                         int column, int thislen)
765 {
766         struct onenand_chip *this = mtd->priv;
767         struct nand_oobfree *free;
768         int readcol = column;
769         int readend = column + thislen;
770         int lastgap = 0;
771         unsigned int i;
772         uint8_t *oob_buf = this->oob_buf;
773
774         free = this->ecclayout->oobfree;
775         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
776              i++, free++) {
777                 if (readcol >= lastgap)
778                         readcol += free->offset - lastgap;
779                 if (readend >= lastgap)
780                         readend += free->offset - lastgap;
781                 lastgap = free->offset + free->length;
782         }
783         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
784         free = this->ecclayout->oobfree;
785         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
786              i++, free++) {
787                 int free_end = free->offset + free->length;
788                 if (free->offset < readend && free_end > readcol) {
789                         int st = max_t(int,free->offset,readcol);
790                         int ed = min_t(int,free_end,readend);
791                         int n = ed - st;
792                         memcpy(buf, oob_buf + st, n);
793                         buf += n;
794                 } else if (column == 0)
795                         break;
796         }
797         return 0;
798 }
799
800 /**
801  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
802  * @param mtd           MTD device structure
803  * @param addr          address to recover
804  * @param status        return value from onenand_wait
805  *
806  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
807  * lower page address and MSB page has higher page address in paired pages.
808  * If power off occurs during MSB page program, the paired LSB page data can
809  * become corrupt. LSB page recovery read is a way to read LSB page though page
810  * data are corrupted. When uncorrectable error occurs as a result of LSB page
811  * read after power up, issue LSB page recovery read.
812  */
813 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
814 {
815         struct onenand_chip *this = mtd->priv;
816         int i;
817
818         /* Recovery is only for Flex-OneNAND */
819         if (!FLEXONENAND(this))
820                 return status;
821
822         /* check if we failed due to uncorrectable error */
823         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
824                 return status;
825
826         /* check if address lies in MLC region */
827         i = flexonenand_region(mtd, addr);
828         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
829                 return status;
830
831         printk("onenand_recover_lsb:"
832                 "Attempting to recover from uncorrectable read\n");
833
834         /* Issue the LSB page recovery command */
835         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
836         return this->wait(mtd, FL_READING);
837 }
838
839 /**
840  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
841  * @param mtd           MTD device structure
842  * @param from          offset to read from
843  * @param ops           oob operation description structure
844  *
845  * OneNAND read main and/or out-of-band data
846  */
847 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
848                 struct mtd_oob_ops *ops)
849 {
850         struct onenand_chip *this = mtd->priv;
851         struct mtd_ecc_stats stats;
852         size_t len = ops->len;
853         size_t ooblen = ops->ooblen;
854         u_char *buf = ops->datbuf;
855         u_char *oobbuf = ops->oobbuf;
856         int read = 0, column, thislen;
857         int oobread = 0, oobcolumn, thisooblen, oobsize;
858         int ret = 0, boundary = 0;
859         int writesize = this->writesize;
860
861         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
862
863         if (ops->mode == MTD_OPS_AUTO_OOB)
864                 oobsize = this->ecclayout->oobavail;
865         else
866                 oobsize = mtd->oobsize;
867
868         oobcolumn = from & (mtd->oobsize - 1);
869
870         /* Do not allow reads past end of device */
871         if ((from + len) > mtd->size) {
872                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
873                 ops->retlen = 0;
874                 ops->oobretlen = 0;
875                 return -EINVAL;
876         }
877
878         stats = mtd->ecc_stats;
879
880         /* Read-while-load method */
881         /* Note: We can't use this feature in MLC */
882
883         /* Do first load to bufferRAM */
884         if (read < len) {
885                 if (!onenand_check_bufferram(mtd, from)) {
886                         this->main_buf = buf;
887                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
888                         ret = this->wait(mtd, FL_READING);
889                         if (unlikely(ret))
890                                 ret = onenand_recover_lsb(mtd, from, ret);
891                         onenand_update_bufferram(mtd, from, !ret);
892                         if (ret == -EBADMSG)
893                                 ret = 0;
894                 }
895         }
896
897         thislen = min_t(int, writesize, len - read);
898         column = from & (writesize - 1);
899         if (column + thislen > writesize)
900                 thislen = writesize - column;
901
902         while (!ret) {
903                 /* If there is more to load then start next load */
904                 from += thislen;
905                 if (!ONENAND_IS_4KB_PAGE(this) && read + thislen < len) {
906                         this->main_buf = buf + thislen;
907                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
908                         /*
909                          * Chip boundary handling in DDP
910                          * Now we issued chip 1 read and pointed chip 1
911                          * bufferam so we have to point chip 0 bufferam.
912                          */
913                         if (ONENAND_IS_DDP(this) &&
914                                         unlikely(from == (this->chipsize >> 1))) {
915                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
916                                 boundary = 1;
917                         } else
918                                 boundary = 0;
919                         ONENAND_SET_PREV_BUFFERRAM(this);
920                 }
921
922                 /* While load is going, read from last bufferRAM */
923                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
924
925                 /* Read oob area if needed */
926                 if (oobbuf) {
927                         thisooblen = oobsize - oobcolumn;
928                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
929
930                         if (ops->mode == MTD_OPS_AUTO_OOB)
931                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
932                         else
933                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
934                         oobread += thisooblen;
935                         oobbuf += thisooblen;
936                         oobcolumn = 0;
937                 }
938
939                 if (ONENAND_IS_4KB_PAGE(this) && (read + thislen < len)) {
940                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
941                         ret = this->wait(mtd, FL_READING);
942                         if (unlikely(ret))
943                                 ret = onenand_recover_lsb(mtd, from, ret);
944                         onenand_update_bufferram(mtd, from, !ret);
945                         if (mtd_is_eccerr(ret))
946                                 ret = 0;
947                 }
948
949                 /* See if we are done */
950                 read += thislen;
951                 if (read == len)
952                         break;
953                 /* Set up for next read from bufferRAM */
954                 if (unlikely(boundary))
955                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
956                 if (!ONENAND_IS_4KB_PAGE(this))
957                         ONENAND_SET_NEXT_BUFFERRAM(this);
958                 buf += thislen;
959                 thislen = min_t(int, writesize, len - read);
960                 column = 0;
961
962                 if (!ONENAND_IS_4KB_PAGE(this)) {
963                         /* Now wait for load */
964                         ret = this->wait(mtd, FL_READING);
965                         onenand_update_bufferram(mtd, from, !ret);
966                         if (mtd_is_eccerr(ret))
967                                 ret = 0;
968                 }
969         }
970
971         /*
972          * Return success, if no ECC failures, else -EBADMSG
973          * fs driver will take care of that, because
974          * retlen == desired len and result == -EBADMSG
975          */
976         ops->retlen = read;
977         ops->oobretlen = oobread;
978
979         if (ret)
980                 return ret;
981
982         if (mtd->ecc_stats.failed - stats.failed)
983                 return -EBADMSG;
984
985         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
986         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
987 }
988
989 /**
990  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
991  * @param mtd           MTD device structure
992  * @param from          offset to read from
993  * @param ops           oob operation description structure
994  *
995  * OneNAND read out-of-band data from the spare area
996  */
997 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
998                 struct mtd_oob_ops *ops)
999 {
1000         struct onenand_chip *this = mtd->priv;
1001         struct mtd_ecc_stats stats;
1002         int read = 0, thislen, column, oobsize;
1003         size_t len = ops->ooblen;
1004         unsigned int mode = ops->mode;
1005         u_char *buf = ops->oobbuf;
1006         int ret = 0, readcmd;
1007
1008         from += ops->ooboffs;
1009
1010         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1011
1012         /* Initialize return length value */
1013         ops->oobretlen = 0;
1014
1015         if (mode == MTD_OPS_AUTO_OOB)
1016                 oobsize = this->ecclayout->oobavail;
1017         else
1018                 oobsize = mtd->oobsize;
1019
1020         column = from & (mtd->oobsize - 1);
1021
1022         if (unlikely(column >= oobsize)) {
1023                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1024                 return -EINVAL;
1025         }
1026
1027         /* Do not allow reads past end of device */
1028         if (unlikely(from >= mtd->size ||
1029                 column + len > ((mtd->size >> this->page_shift) -
1030                                 (from >> this->page_shift)) * oobsize)) {
1031                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1032                 return -EINVAL;
1033         }
1034
1035         stats = mtd->ecc_stats;
1036
1037         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1038                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1039
1040         while (read < len) {
1041                 thislen = oobsize - column;
1042                 thislen = min_t(int, thislen, len);
1043
1044                 this->spare_buf = buf;
1045                 this->command(mtd, readcmd, from, mtd->oobsize);
1046
1047                 onenand_update_bufferram(mtd, from, 0);
1048
1049                 ret = this->wait(mtd, FL_READING);
1050                 if (unlikely(ret))
1051                         ret = onenand_recover_lsb(mtd, from, ret);
1052
1053                 if (ret && ret != -EBADMSG) {
1054                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1055                         break;
1056                 }
1057
1058                 if (mode == MTD_OPS_AUTO_OOB)
1059                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1060                 else
1061                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1062
1063                 read += thislen;
1064
1065                 if (read == len)
1066                         break;
1067
1068                 buf += thislen;
1069
1070                 /* Read more? */
1071                 if (read < len) {
1072                         /* Page size */
1073                         from += mtd->writesize;
1074                         column = 0;
1075                 }
1076         }
1077
1078         ops->oobretlen = read;
1079
1080         if (ret)
1081                 return ret;
1082
1083         if (mtd->ecc_stats.failed - stats.failed)
1084                 return -EBADMSG;
1085
1086         return 0;
1087 }
1088
1089 /**
1090  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1091  * @param mtd           MTD device structure
1092  * @param from          offset to read from
1093  * @param len           number of bytes to read
1094  * @param retlen        pointer to variable to store the number of read bytes
1095  * @param buf           the databuffer to put data
1096  *
1097  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1098 */
1099 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1100                  size_t * retlen, u_char * buf)
1101 {
1102         struct mtd_oob_ops ops = {
1103                 .len    = len,
1104                 .ooblen = 0,
1105                 .datbuf = buf,
1106                 .oobbuf = NULL,
1107         };
1108         int ret;
1109
1110         onenand_get_device(mtd, FL_READING);
1111         ret = onenand_read_ops_nolock(mtd, from, &ops);
1112         onenand_release_device(mtd);
1113
1114         *retlen = ops.retlen;
1115         return ret;
1116 }
1117
1118 /**
1119  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1120  * @param mtd           MTD device structure
1121  * @param from          offset to read from
1122  * @param ops           oob operations description structure
1123  *
1124  * OneNAND main and/or out-of-band
1125  */
1126 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1127                         struct mtd_oob_ops *ops)
1128 {
1129         int ret;
1130
1131         switch (ops->mode) {
1132         case MTD_OPS_PLACE_OOB:
1133         case MTD_OPS_AUTO_OOB:
1134                 break;
1135         case MTD_OPS_RAW:
1136                 /* Not implemented yet */
1137         default:
1138                 return -EINVAL;
1139         }
1140
1141         onenand_get_device(mtd, FL_READING);
1142         if (ops->datbuf)
1143                 ret = onenand_read_ops_nolock(mtd, from, ops);
1144         else
1145                 ret = onenand_read_oob_nolock(mtd, from, ops);
1146         onenand_release_device(mtd);
1147
1148         return ret;
1149 }
1150
1151 /**
1152  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1153  * @param mtd           MTD device structure
1154  * @param state         state to select the max. timeout value
1155  *
1156  * Wait for command done.
1157  */
1158 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1159 {
1160         struct onenand_chip *this = mtd->priv;
1161         unsigned int interrupt;
1162         unsigned int ctrl;
1163
1164         /* Wait at most 20ms ... */
1165         u32 timeo = (CONFIG_SYS_HZ * 20) / 1000;
1166         u32 time_start = get_timer(0);
1167         do {
1168                 WATCHDOG_RESET();
1169                 if (get_timer(time_start) > timeo)
1170                         return ONENAND_BBT_READ_FATAL_ERROR;
1171                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1172         } while ((interrupt & ONENAND_INT_MASTER) == 0);
1173
1174         /* To get correct interrupt status in timeout case */
1175         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1176         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1177
1178         if (interrupt & ONENAND_INT_READ) {
1179                 int ecc = onenand_read_ecc(this);
1180                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1181                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1182                                 ", controller = 0x%04x\n", ecc, ctrl);
1183                         return ONENAND_BBT_READ_ERROR;
1184                 }
1185         } else {
1186                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1187                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1188                 return ONENAND_BBT_READ_FATAL_ERROR;
1189         }
1190
1191         /* Initial bad block case: 0x2400 or 0x0400 */
1192         if (ctrl & ONENAND_CTRL_ERROR) {
1193                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1194                 return ONENAND_BBT_READ_ERROR;
1195         }
1196
1197         return 0;
1198 }
1199
1200 /**
1201  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1202  * @param mtd           MTD device structure
1203  * @param from          offset to read from
1204  * @param ops           oob operation description structure
1205  *
1206  * OneNAND read out-of-band data from the spare area for bbt scan
1207  */
1208 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1209                 struct mtd_oob_ops *ops)
1210 {
1211         struct onenand_chip *this = mtd->priv;
1212         int read = 0, thislen, column;
1213         int ret = 0, readcmd;
1214         size_t len = ops->ooblen;
1215         u_char *buf = ops->oobbuf;
1216
1217         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1218
1219         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1220                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1221
1222         /* Initialize return value */
1223         ops->oobretlen = 0;
1224
1225         /* Do not allow reads past end of device */
1226         if (unlikely((from + len) > mtd->size)) {
1227                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1228                 return ONENAND_BBT_READ_FATAL_ERROR;
1229         }
1230
1231         /* Grab the lock and see if the device is available */
1232         onenand_get_device(mtd, FL_READING);
1233
1234         column = from & (mtd->oobsize - 1);
1235
1236         while (read < len) {
1237
1238                 thislen = mtd->oobsize - column;
1239                 thislen = min_t(int, thislen, len);
1240
1241                 this->spare_buf = buf;
1242                 this->command(mtd, readcmd, from, mtd->oobsize);
1243
1244                 onenand_update_bufferram(mtd, from, 0);
1245
1246                 ret = this->bbt_wait(mtd, FL_READING);
1247                 if (unlikely(ret))
1248                         ret = onenand_recover_lsb(mtd, from, ret);
1249
1250                 if (ret)
1251                         break;
1252
1253                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1254                 read += thislen;
1255                 if (read == len)
1256                         break;
1257
1258                 buf += thislen;
1259
1260                 /* Read more? */
1261                 if (read < len) {
1262                         /* Update Page size */
1263                         from += this->writesize;
1264                         column = 0;
1265                 }
1266         }
1267
1268         /* Deselect and wake up anyone waiting on the device */
1269         onenand_release_device(mtd);
1270
1271         ops->oobretlen = read;
1272         return ret;
1273 }
1274
1275
1276 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1277 /**
1278  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1279  * @param mtd           MTD device structure
1280  * @param buf           the databuffer to verify
1281  * @param to            offset to read from
1282  */
1283 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1284 {
1285         struct onenand_chip *this = mtd->priv;
1286         u_char *oob_buf = this->oob_buf;
1287         int status, i, readcmd;
1288
1289         readcmd = ONENAND_IS_4KB_PAGE(this) ?
1290                 ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1291
1292         this->command(mtd, readcmd, to, mtd->oobsize);
1293         onenand_update_bufferram(mtd, to, 0);
1294         status = this->wait(mtd, FL_READING);
1295         if (status)
1296                 return status;
1297
1298         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1299         for (i = 0; i < mtd->oobsize; i++)
1300                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1301                         return -EBADMSG;
1302
1303         return 0;
1304 }
1305
1306 /**
1307  * onenand_verify - [GENERIC] verify the chip contents after a write
1308  * @param mtd          MTD device structure
1309  * @param buf          the databuffer to verify
1310  * @param addr         offset to read from
1311  * @param len          number of bytes to read and compare
1312  */
1313 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1314 {
1315         struct onenand_chip *this = mtd->priv;
1316         void __iomem *dataram;
1317         int ret = 0;
1318         int thislen, column;
1319
1320         while (len != 0) {
1321                 thislen = min_t(int, this->writesize, len);
1322                 column = addr & (this->writesize - 1);
1323                 if (column + thislen > this->writesize)
1324                         thislen = this->writesize - column;
1325
1326                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1327
1328                 onenand_update_bufferram(mtd, addr, 0);
1329
1330                 ret = this->wait(mtd, FL_READING);
1331                 if (ret)
1332                         return ret;
1333
1334                 onenand_update_bufferram(mtd, addr, 1);
1335
1336                 dataram = this->base + ONENAND_DATARAM;
1337                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1338
1339                 if (memcmp(buf, dataram + column, thislen))
1340                         return -EBADMSG;
1341
1342                 len -= thislen;
1343                 buf += thislen;
1344                 addr += thislen;
1345         }
1346
1347         return 0;
1348 }
1349 #else
1350 #define onenand_verify(...)             (0)
1351 #define onenand_verify_oob(...)         (0)
1352 #endif
1353
1354 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1355
1356 /**
1357  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1358  * @param mtd           MTD device structure
1359  * @param oob_buf       oob buffer
1360  * @param buf           source address
1361  * @param column        oob offset to write to
1362  * @param thislen       oob length to write
1363  */
1364 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1365                 const u_char *buf, int column, int thislen)
1366 {
1367         struct onenand_chip *this = mtd->priv;
1368         struct nand_oobfree *free;
1369         int writecol = column;
1370         int writeend = column + thislen;
1371         int lastgap = 0;
1372         unsigned int i;
1373
1374         free = this->ecclayout->oobfree;
1375         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1376              i++, free++) {
1377                 if (writecol >= lastgap)
1378                         writecol += free->offset - lastgap;
1379                 if (writeend >= lastgap)
1380                         writeend += free->offset - lastgap;
1381                 lastgap = free->offset + free->length;
1382         }
1383         free = this->ecclayout->oobfree;
1384         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE && free->length;
1385              i++, free++) {
1386                 int free_end = free->offset + free->length;
1387                 if (free->offset < writeend && free_end > writecol) {
1388                         int st = max_t(int,free->offset,writecol);
1389                         int ed = min_t(int,free_end,writeend);
1390                         int n = ed - st;
1391                         memcpy(oob_buf + st, buf, n);
1392                         buf += n;
1393                 } else if (column == 0)
1394                         break;
1395         }
1396         return 0;
1397 }
1398
1399 /**
1400  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1401  * @param mtd           MTD device structure
1402  * @param to            offset to write to
1403  * @param ops           oob operation description structure
1404  *
1405  * Write main and/or oob with ECC
1406  */
1407 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1408                 struct mtd_oob_ops *ops)
1409 {
1410         struct onenand_chip *this = mtd->priv;
1411         int written = 0, column, thislen, subpage;
1412         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1413         size_t len = ops->len;
1414         size_t ooblen = ops->ooblen;
1415         const u_char *buf = ops->datbuf;
1416         const u_char *oob = ops->oobbuf;
1417         u_char *oobbuf;
1418         int ret = 0;
1419
1420         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1421
1422         /* Initialize retlen, in case of early exit */
1423         ops->retlen = 0;
1424         ops->oobretlen = 0;
1425
1426         /* Reject writes, which are not page aligned */
1427         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1428                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1429                 return -EINVAL;
1430         }
1431
1432         if (ops->mode == MTD_OPS_AUTO_OOB)
1433                 oobsize = this->ecclayout->oobavail;
1434         else
1435                 oobsize = mtd->oobsize;
1436
1437         oobcolumn = to & (mtd->oobsize - 1);
1438
1439         column = to & (mtd->writesize - 1);
1440
1441         /* Loop until all data write */
1442         while (written < len) {
1443                 u_char *wbuf = (u_char *) buf;
1444
1445                 thislen = min_t(int, mtd->writesize - column, len - written);
1446                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1447
1448                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1449
1450                 /* Partial page write */
1451                 subpage = thislen < mtd->writesize;
1452                 if (subpage) {
1453                         memset(this->page_buf, 0xff, mtd->writesize);
1454                         memcpy(this->page_buf + column, buf, thislen);
1455                         wbuf = this->page_buf;
1456                 }
1457
1458                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1459
1460                 if (oob) {
1461                         oobbuf = this->oob_buf;
1462
1463                         /* We send data to spare ram with oobsize
1464                          *                          * to prevent byte access */
1465                         memset(oobbuf, 0xff, mtd->oobsize);
1466                         if (ops->mode == MTD_OPS_AUTO_OOB)
1467                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1468                         else
1469                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1470
1471                         oobwritten += thisooblen;
1472                         oob += thisooblen;
1473                         oobcolumn = 0;
1474                 } else
1475                         oobbuf = (u_char *) ffchars;
1476
1477                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1478
1479                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1480
1481                 ret = this->wait(mtd, FL_WRITING);
1482
1483                 /* In partial page write we don't update bufferram */
1484                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1485                 if (ONENAND_IS_2PLANE(this)) {
1486                         ONENAND_SET_BUFFERRAM1(this);
1487                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1488                 }
1489
1490                 if (ret) {
1491                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1492                         break;
1493                 }
1494
1495                 /* Only check verify write turn on */
1496                 ret = onenand_verify(mtd, buf, to, thislen);
1497                 if (ret) {
1498                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1499                         break;
1500                 }
1501
1502                 written += thislen;
1503
1504                 if (written == len)
1505                         break;
1506
1507                 column = 0;
1508                 to += thislen;
1509                 buf += thislen;
1510         }
1511
1512         ops->retlen = written;
1513
1514         return ret;
1515 }
1516
1517 /**
1518  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1519  * @param mtd           MTD device structure
1520  * @param to            offset to write to
1521  * @param len           number of bytes to write
1522  * @param retlen        pointer to variable to store the number of written bytes
1523  * @param buf           the data to write
1524  * @param mode          operation mode
1525  *
1526  * OneNAND write out-of-band
1527  */
1528 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1529                 struct mtd_oob_ops *ops)
1530 {
1531         struct onenand_chip *this = mtd->priv;
1532         int column, ret = 0, oobsize;
1533         int written = 0, oobcmd;
1534         u_char *oobbuf;
1535         size_t len = ops->ooblen;
1536         const u_char *buf = ops->oobbuf;
1537         unsigned int mode = ops->mode;
1538
1539         to += ops->ooboffs;
1540
1541         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1542
1543         /* Initialize retlen, in case of early exit */
1544         ops->oobretlen = 0;
1545
1546         if (mode == MTD_OPS_AUTO_OOB)
1547                 oobsize = this->ecclayout->oobavail;
1548         else
1549                 oobsize = mtd->oobsize;
1550
1551         column = to & (mtd->oobsize - 1);
1552
1553         if (unlikely(column >= oobsize)) {
1554                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1555                 return -EINVAL;
1556         }
1557
1558         /* For compatibility with NAND: Do not allow write past end of page */
1559         if (unlikely(column + len > oobsize)) {
1560                 printk(KERN_ERR "onenand_write_oob_nolock: "
1561                                 "Attempt to write past end of page\n");
1562                 return -EINVAL;
1563         }
1564
1565         /* Do not allow reads past end of device */
1566         if (unlikely(to >= mtd->size ||
1567                                 column + len > ((mtd->size >> this->page_shift) -
1568                                         (to >> this->page_shift)) * oobsize)) {
1569                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1570                 return -EINVAL;
1571         }
1572
1573         oobbuf = this->oob_buf;
1574
1575         oobcmd = ONENAND_IS_4KB_PAGE(this) ?
1576                 ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1577
1578         /* Loop until all data write */
1579         while (written < len) {
1580                 int thislen = min_t(int, oobsize, len - written);
1581
1582                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1583
1584                 /* We send data to spare ram with oobsize
1585                  * to prevent byte access */
1586                 memset(oobbuf, 0xff, mtd->oobsize);
1587                 if (mode == MTD_OPS_AUTO_OOB)
1588                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1589                 else
1590                         memcpy(oobbuf + column, buf, thislen);
1591                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1592
1593                 if (ONENAND_IS_4KB_PAGE(this)) {
1594                         /* Set main area of DataRAM to 0xff*/
1595                         memset(this->page_buf, 0xff, mtd->writesize);
1596                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1597                                 this->page_buf, 0, mtd->writesize);
1598                 }
1599
1600                 this->command(mtd, oobcmd, to, mtd->oobsize);
1601
1602                 onenand_update_bufferram(mtd, to, 0);
1603                 if (ONENAND_IS_2PLANE(this)) {
1604                         ONENAND_SET_BUFFERRAM1(this);
1605                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1606                 }
1607
1608                 ret = this->wait(mtd, FL_WRITING);
1609                 if (ret) {
1610                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1611                         break;
1612                 }
1613
1614                 ret = onenand_verify_oob(mtd, oobbuf, to);
1615                 if (ret) {
1616                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1617                         break;
1618                 }
1619
1620                 written += thislen;
1621                 if (written == len)
1622                         break;
1623
1624                 to += mtd->writesize;
1625                 buf += thislen;
1626                 column = 0;
1627         }
1628
1629         ops->oobretlen = written;
1630
1631         return ret;
1632 }
1633
1634 /**
1635  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1636  * @param mtd           MTD device structure
1637  * @param to            offset to write to
1638  * @param len           number of bytes to write
1639  * @param retlen        pointer to variable to store the number of written bytes
1640  * @param buf           the data to write
1641  *
1642  * Write with ECC
1643  */
1644 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1645                   size_t * retlen, const u_char * buf)
1646 {
1647         struct mtd_oob_ops ops = {
1648                 .len    = len,
1649                 .ooblen = 0,
1650                 .datbuf = (u_char *) buf,
1651                 .oobbuf = NULL,
1652         };
1653         int ret;
1654
1655         onenand_get_device(mtd, FL_WRITING);
1656         ret = onenand_write_ops_nolock(mtd, to, &ops);
1657         onenand_release_device(mtd);
1658
1659         *retlen = ops.retlen;
1660         return ret;
1661 }
1662
1663 /**
1664  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1665  * @param mtd           MTD device structure
1666  * @param to            offset to write to
1667  * @param ops           oob operation description structure
1668  *
1669  * OneNAND write main and/or out-of-band
1670  */
1671 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1672                         struct mtd_oob_ops *ops)
1673 {
1674         int ret;
1675
1676         switch (ops->mode) {
1677         case MTD_OPS_PLACE_OOB:
1678         case MTD_OPS_AUTO_OOB:
1679                 break;
1680         case MTD_OPS_RAW:
1681                 /* Not implemented yet */
1682         default:
1683                 return -EINVAL;
1684         }
1685
1686         onenand_get_device(mtd, FL_WRITING);
1687         if (ops->datbuf)
1688                 ret = onenand_write_ops_nolock(mtd, to, ops);
1689         else
1690                 ret = onenand_write_oob_nolock(mtd, to, ops);
1691         onenand_release_device(mtd);
1692
1693         return ret;
1694
1695 }
1696
1697 /**
1698  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1699  * @param mtd           MTD device structure
1700  * @param ofs           offset from device start
1701  * @param allowbbt      1, if its allowed to access the bbt area
1702  *
1703  * Check, if the block is bad, Either by reading the bad block table or
1704  * calling of the scan function.
1705  */
1706 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1707 {
1708         struct onenand_chip *this = mtd->priv;
1709         struct bbm_info *bbm = this->bbm;
1710
1711         /* Return info from the table */
1712         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1713 }
1714
1715
1716 /**
1717  * onenand_erase - [MTD Interface] erase block(s)
1718  * @param mtd           MTD device structure
1719  * @param instr         erase instruction
1720  *
1721  * Erase one ore more blocks
1722  */
1723 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1724 {
1725         struct onenand_chip *this = mtd->priv;
1726         unsigned int block_size;
1727         loff_t addr = instr->addr;
1728         unsigned int len = instr->len;
1729         int ret = 0, i;
1730         struct mtd_erase_region_info *region = NULL;
1731         unsigned int region_end = 0;
1732
1733         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1734                         (unsigned int) addr, len);
1735
1736         if (FLEXONENAND(this)) {
1737                 /* Find the eraseregion of this address */
1738                 i = flexonenand_region(mtd, addr);
1739                 region = &mtd->eraseregions[i];
1740
1741                 block_size = region->erasesize;
1742                 region_end = region->offset
1743                         + region->erasesize * region->numblocks;
1744
1745                 /* Start address within region must align on block boundary.
1746                  * Erase region's start offset is always block start address.
1747                  */
1748                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1749                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1750                                 " Unaligned address\n");
1751                         return -EINVAL;
1752                 }
1753         } else {
1754                 block_size = 1 << this->erase_shift;
1755
1756                 /* Start address must align on block boundary */
1757                 if (unlikely(addr & (block_size - 1))) {
1758                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1759                                                 "Unaligned address\n");
1760                         return -EINVAL;
1761                 }
1762         }
1763
1764         /* Length must align on block boundary */
1765         if (unlikely(len & (block_size - 1))) {
1766                 MTDDEBUG (MTD_DEBUG_LEVEL0,
1767                          "onenand_erase: Length not block aligned\n");
1768                 return -EINVAL;
1769         }
1770
1771         /* Grab the lock and see if the device is available */
1772         onenand_get_device(mtd, FL_ERASING);
1773
1774         /* Loop throught the pages */
1775         instr->state = MTD_ERASING;
1776
1777         while (len) {
1778
1779                 /* Check if we have a bad block, we do not erase bad blocks */
1780                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1781                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1782                                 " a bad block at addr 0x%08x\n",
1783                                 (unsigned int) addr);
1784                         instr->state = MTD_ERASE_FAILED;
1785                         goto erase_exit;
1786                 }
1787
1788                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1789
1790                 onenand_invalidate_bufferram(mtd, addr, block_size);
1791
1792                 ret = this->wait(mtd, FL_ERASING);
1793                 /* Check, if it is write protected */
1794                 if (ret) {
1795                         if (ret == -EPERM)
1796                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1797                                           "Device is write protected!!!\n");
1798                         else
1799                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1800                                           "Failed erase, block %d\n",
1801                                         onenand_block(this, addr));
1802                         instr->state = MTD_ERASE_FAILED;
1803                         instr->fail_addr = addr;
1804
1805                         goto erase_exit;
1806                 }
1807
1808                 len -= block_size;
1809                 addr += block_size;
1810
1811                 if (addr == region_end) {
1812                         if (!len)
1813                                 break;
1814                         region++;
1815
1816                         block_size = region->erasesize;
1817                         region_end = region->offset
1818                                 + region->erasesize * region->numblocks;
1819
1820                         if (len & (block_size - 1)) {
1821                                 /* This has been checked at MTD
1822                                  * partitioning level. */
1823                                 printk("onenand_erase: Unaligned address\n");
1824                                 goto erase_exit;
1825                         }
1826                 }
1827         }
1828
1829         instr->state = MTD_ERASE_DONE;
1830
1831 erase_exit:
1832
1833         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1834         /* Do call back function */
1835         if (!ret)
1836                 mtd_erase_callback(instr);
1837
1838         /* Deselect and wake up anyone waiting on the device */
1839         onenand_release_device(mtd);
1840
1841         return ret;
1842 }
1843
1844 /**
1845  * onenand_sync - [MTD Interface] sync
1846  * @param mtd           MTD device structure
1847  *
1848  * Sync is actually a wait for chip ready function
1849  */
1850 void onenand_sync(struct mtd_info *mtd)
1851 {
1852         MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1853
1854         /* Grab the lock and see if the device is available */
1855         onenand_get_device(mtd, FL_SYNCING);
1856
1857         /* Release it and go back */
1858         onenand_release_device(mtd);
1859 }
1860
1861 /**
1862  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1863  * @param mtd           MTD device structure
1864  * @param ofs           offset relative to mtd start
1865  *
1866  * Check whether the block is bad
1867  */
1868 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1869 {
1870         int ret;
1871
1872         /* Check for invalid offset */
1873         if (ofs > mtd->size)
1874                 return -EINVAL;
1875
1876         onenand_get_device(mtd, FL_READING);
1877         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1878         onenand_release_device(mtd);
1879         return ret;
1880 }
1881
1882 /**
1883  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1884  * @param mtd           MTD device structure
1885  * @param ofs           offset from device start
1886  *
1887  * This is the default implementation, which can be overridden by
1888  * a hardware specific driver.
1889  */
1890 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1891 {
1892         struct onenand_chip *this = mtd->priv;
1893         struct bbm_info *bbm = this->bbm;
1894         u_char buf[2] = {0, 0};
1895         struct mtd_oob_ops ops = {
1896                 .mode = MTD_OPS_PLACE_OOB,
1897                 .ooblen = 2,
1898                 .oobbuf = buf,
1899                 .ooboffs = 0,
1900         };
1901         int block;
1902
1903         /* Get block number */
1904         block = onenand_block(this, ofs);
1905         if (bbm->bbt)
1906                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1907
1908         /* We write two bytes, so we dont have to mess with 16 bit access */
1909         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1910         return onenand_write_oob_nolock(mtd, ofs, &ops);
1911 }
1912
1913 /**
1914  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1915  * @param mtd           MTD device structure
1916  * @param ofs           offset relative to mtd start
1917  *
1918  * Mark the block as bad
1919  */
1920 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1921 {
1922         struct onenand_chip *this = mtd->priv;
1923         int ret;
1924
1925         ret = onenand_block_isbad(mtd, ofs);
1926         if (ret) {
1927                 /* If it was bad already, return success and do nothing */
1928                 if (ret > 0)
1929                         return 0;
1930                 return ret;
1931         }
1932
1933         onenand_get_device(mtd, FL_WRITING);
1934         ret = this->block_markbad(mtd, ofs);
1935         onenand_release_device(mtd);
1936
1937         return ret;
1938 }
1939
1940 /**
1941  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1942  * @param mtd           MTD device structure
1943  * @param ofs           offset relative to mtd start
1944  * @param len           number of bytes to lock or unlock
1945  * @param cmd           lock or unlock command
1946  *
1947  * Lock or unlock one or more blocks
1948  */
1949 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1950 {
1951         struct onenand_chip *this = mtd->priv;
1952         int start, end, block, value, status;
1953
1954         start = onenand_block(this, ofs);
1955         end = onenand_block(this, ofs + len);
1956
1957         /* Continuous lock scheme */
1958         if (this->options & ONENAND_HAS_CONT_LOCK) {
1959                 /* Set start block address */
1960                 this->write_word(start,
1961                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1962                 /* Set end block address */
1963                 this->write_word(end - 1,
1964                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1965                 /* Write unlock command */
1966                 this->command(mtd, cmd, 0, 0);
1967
1968                 /* There's no return value */
1969                 this->wait(mtd, FL_UNLOCKING);
1970
1971                 /* Sanity check */
1972                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1973                        & ONENAND_CTRL_ONGO)
1974                         continue;
1975
1976                 /* Check lock status */
1977                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1978                 if (!(status & ONENAND_WP_US))
1979                         printk(KERN_ERR "wp status = 0x%x\n", status);
1980
1981                 return 0;
1982         }
1983
1984         /* Block lock scheme */
1985         for (block = start; block < end; block++) {
1986                 /* Set block address */
1987                 value = onenand_block_address(this, block);
1988                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1989                 /* Select DataRAM for DDP */
1990                 value = onenand_bufferram_address(this, block);
1991                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1992
1993                 /* Set start block address */
1994                 this->write_word(block,
1995                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1996                 /* Write unlock command */
1997                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1998
1999                 /* There's no return value */
2000                 this->wait(mtd, FL_UNLOCKING);
2001
2002                 /* Sanity check */
2003                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2004                        & ONENAND_CTRL_ONGO)
2005                         continue;
2006
2007                 /* Check lock status */
2008                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2009                 if (!(status & ONENAND_WP_US))
2010                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2011                                block, status);
2012         }
2013
2014         return 0;
2015 }
2016
2017 #ifdef ONENAND_LINUX
2018 /**
2019  * onenand_lock - [MTD Interface] Lock block(s)
2020  * @param mtd           MTD device structure
2021  * @param ofs           offset relative to mtd start
2022  * @param len           number of bytes to unlock
2023  *
2024  * Lock one or more blocks
2025  */
2026 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2027 {
2028         int ret;
2029
2030         onenand_get_device(mtd, FL_LOCKING);
2031         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2032         onenand_release_device(mtd);
2033         return ret;
2034 }
2035
2036 /**
2037  * onenand_unlock - [MTD Interface] Unlock block(s)
2038  * @param mtd           MTD device structure
2039  * @param ofs           offset relative to mtd start
2040  * @param len           number of bytes to unlock
2041  *
2042  * Unlock one or more blocks
2043  */
2044 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2045 {
2046         int ret;
2047
2048         onenand_get_device(mtd, FL_LOCKING);
2049         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2050         onenand_release_device(mtd);
2051         return ret;
2052 }
2053 #endif
2054
2055 /**
2056  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2057  * @param this          onenand chip data structure
2058  *
2059  * Check lock status
2060  */
2061 static int onenand_check_lock_status(struct onenand_chip *this)
2062 {
2063         unsigned int value, block, status;
2064         unsigned int end;
2065
2066         end = this->chipsize >> this->erase_shift;
2067         for (block = 0; block < end; block++) {
2068                 /* Set block address */
2069                 value = onenand_block_address(this, block);
2070                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2071                 /* Select DataRAM for DDP */
2072                 value = onenand_bufferram_address(this, block);
2073                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2074                 /* Set start block address */
2075                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2076
2077                 /* Check lock status */
2078                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2079                 if (!(status & ONENAND_WP_US)) {
2080                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2081                         return 0;
2082                 }
2083         }
2084
2085         return 1;
2086 }
2087
2088 /**
2089  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2090  * @param mtd           MTD device structure
2091  *
2092  * Unlock all blocks
2093  */
2094 static void onenand_unlock_all(struct mtd_info *mtd)
2095 {
2096         struct onenand_chip *this = mtd->priv;
2097         loff_t ofs = 0;
2098         size_t len = mtd->size;
2099
2100         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2101                 /* Set start block address */
2102                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2103                 /* Write unlock command */
2104                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2105
2106                 /* There's no return value */
2107                 this->wait(mtd, FL_LOCKING);
2108
2109                 /* Sanity check */
2110                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2111                                 & ONENAND_CTRL_ONGO)
2112                         continue;
2113
2114                 /* Check lock status */
2115                 if (onenand_check_lock_status(this))
2116                         return;
2117
2118                 /* Workaround for all block unlock in DDP */
2119                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2120                         /* All blocks on another chip */
2121                         ofs = this->chipsize >> 1;
2122                         len = this->chipsize >> 1;
2123                 }
2124         }
2125
2126         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2127 }
2128
2129
2130 /**
2131  * onenand_check_features - Check and set OneNAND features
2132  * @param mtd           MTD data structure
2133  *
2134  * Check and set OneNAND features
2135  * - lock scheme
2136  * - two plane
2137  */
2138 static void onenand_check_features(struct mtd_info *mtd)
2139 {
2140         struct onenand_chip *this = mtd->priv;
2141         unsigned int density, process;
2142
2143         /* Lock scheme depends on density and process */
2144         density = onenand_get_density(this->device_id);
2145         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2146
2147         /* Lock scheme */
2148         switch (density) {
2149         case ONENAND_DEVICE_DENSITY_4Gb:
2150                 if (ONENAND_IS_DDP(this))
2151                         this->options |= ONENAND_HAS_2PLANE;
2152                 else
2153                         this->options |= ONENAND_HAS_4KB_PAGE;
2154
2155         case ONENAND_DEVICE_DENSITY_2Gb:
2156                 /* 2Gb DDP don't have 2 plane */
2157                 if (!ONENAND_IS_DDP(this))
2158                         this->options |= ONENAND_HAS_2PLANE;
2159                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2160
2161         case ONENAND_DEVICE_DENSITY_1Gb:
2162                 /* A-Die has all block unlock */
2163                 if (process)
2164                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2165                 break;
2166
2167         default:
2168                 /* Some OneNAND has continuous lock scheme */
2169                 if (!process)
2170                         this->options |= ONENAND_HAS_CONT_LOCK;
2171                 break;
2172         }
2173
2174         if (ONENAND_IS_MLC(this))
2175                 this->options |= ONENAND_HAS_4KB_PAGE;
2176
2177         if (ONENAND_IS_4KB_PAGE(this))
2178                 this->options &= ~ONENAND_HAS_2PLANE;
2179
2180         if (FLEXONENAND(this)) {
2181                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2182                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2183         }
2184
2185         if (this->options & ONENAND_HAS_CONT_LOCK)
2186                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2187         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2188                 printk(KERN_DEBUG "Chip support all block unlock\n");
2189         if (this->options & ONENAND_HAS_2PLANE)
2190                 printk(KERN_DEBUG "Chip has 2 plane\n");
2191         if (this->options & ONENAND_HAS_4KB_PAGE)
2192                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
2193
2194 }
2195
2196 /**
2197  * onenand_print_device_info - Print device ID
2198  * @param device        device ID
2199  *
2200  * Print device ID
2201  */
2202 char *onenand_print_device_info(int device, int version)
2203 {
2204         int vcc, demuxed, ddp, density, flexonenand;
2205         char *dev_info = malloc(80);
2206         char *p = dev_info;
2207
2208         vcc = device & ONENAND_DEVICE_VCC_MASK;
2209         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2210         ddp = device & ONENAND_DEVICE_IS_DDP;
2211         density = onenand_get_density(device);
2212         flexonenand = device & DEVICE_IS_FLEXONENAND;
2213         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2214                demuxed ? "" : "Muxed ",
2215                flexonenand ? "Flex-" : "",
2216                ddp ? "(DDP)" : "",
2217                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2218
2219         sprintf(p, "\nOneNAND version = 0x%04x", version);
2220         printk("%s\n", dev_info);
2221
2222         return dev_info;
2223 }
2224
2225 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2226         {ONENAND_MFR_NUMONYX, "Numonyx"},
2227         {ONENAND_MFR_SAMSUNG, "Samsung"},
2228 };
2229
2230 /**
2231  * onenand_check_maf - Check manufacturer ID
2232  * @param manuf         manufacturer ID
2233  *
2234  * Check manufacturer ID
2235  */
2236 static int onenand_check_maf(int manuf)
2237 {
2238         int size = ARRAY_SIZE(onenand_manuf_ids);
2239         int i;
2240 #ifdef ONENAND_DEBUG
2241         char *name;
2242 #endif
2243
2244         for (i = 0; i < size; i++)
2245                 if (manuf == onenand_manuf_ids[i].id)
2246                         break;
2247
2248 #ifdef ONENAND_DEBUG
2249         if (i < size)
2250                 name = onenand_manuf_ids[i].name;
2251         else
2252                 name = "Unknown";
2253
2254         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2255 #endif
2256
2257         return i == size;
2258 }
2259
2260 /**
2261 * flexonenand_get_boundary      - Reads the SLC boundary
2262 * @param onenand_info           - onenand info structure
2263 *
2264 * Fill up boundary[] field in onenand_chip
2265 **/
2266 static int flexonenand_get_boundary(struct mtd_info *mtd)
2267 {
2268         struct onenand_chip *this = mtd->priv;
2269         unsigned int die, bdry;
2270         int syscfg, locked;
2271
2272         /* Disable ECC */
2273         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2274         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2275
2276         for (die = 0; die < this->dies; die++) {
2277                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2278                 this->wait(mtd, FL_SYNCING);
2279
2280                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2281                 this->wait(mtd, FL_READING);
2282
2283                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2284                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2285                         locked = 0;
2286                 else
2287                         locked = 1;
2288                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2289
2290                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2291                 this->wait(mtd, FL_RESETING);
2292
2293                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2294                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2295         }
2296
2297         /* Enable ECC */
2298         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2299         return 0;
2300 }
2301
2302 /**
2303  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2304  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2305  *                        mtd->eraseregions
2306  * @param mtd           - MTD device structure
2307  */
2308 static void flexonenand_get_size(struct mtd_info *mtd)
2309 {
2310         struct onenand_chip *this = mtd->priv;
2311         int die, i, eraseshift, density;
2312         int blksperdie, maxbdry;
2313         loff_t ofs;
2314
2315         density = onenand_get_density(this->device_id);
2316         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2317         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2318         maxbdry = blksperdie - 1;
2319         eraseshift = this->erase_shift - 1;
2320
2321         mtd->numeraseregions = this->dies << 1;
2322
2323         /* This fills up the device boundary */
2324         flexonenand_get_boundary(mtd);
2325         die = 0;
2326         ofs = 0;
2327         i = -1;
2328         for (; die < this->dies; die++) {
2329                 if (!die || this->boundary[die-1] != maxbdry) {
2330                         i++;
2331                         mtd->eraseregions[i].offset = ofs;
2332                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2333                         mtd->eraseregions[i].numblocks =
2334                                                         this->boundary[die] + 1;
2335                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2336                         eraseshift++;
2337                 } else {
2338                         mtd->numeraseregions -= 1;
2339                         mtd->eraseregions[i].numblocks +=
2340                                                         this->boundary[die] + 1;
2341                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2342                 }
2343                 if (this->boundary[die] != maxbdry) {
2344                         i++;
2345                         mtd->eraseregions[i].offset = ofs;
2346                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2347                         mtd->eraseregions[i].numblocks = maxbdry ^
2348                                                          this->boundary[die];
2349                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2350                         eraseshift--;
2351                 } else
2352                         mtd->numeraseregions -= 1;
2353         }
2354
2355         /* Expose MLC erase size except when all blocks are SLC */
2356         mtd->erasesize = 1 << this->erase_shift;
2357         if (mtd->numeraseregions == 1)
2358                 mtd->erasesize >>= 1;
2359
2360         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2361         for (i = 0; i < mtd->numeraseregions; i++)
2362                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2363                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2364                         mtd->eraseregions[i].erasesize,
2365                         mtd->eraseregions[i].numblocks);
2366
2367         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2368                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2369                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2370                                                  << (this->erase_shift - 1);
2371                 mtd->size += this->diesize[die];
2372         }
2373 }
2374
2375 /**
2376  * flexonenand_check_blocks_erased - Check if blocks are erased
2377  * @param mtd_info      - mtd info structure
2378  * @param start         - first erase block to check
2379  * @param end           - last erase block to check
2380  *
2381  * Converting an unerased block from MLC to SLC
2382  * causes byte values to change. Since both data and its ECC
2383  * have changed, reads on the block give uncorrectable error.
2384  * This might lead to the block being detected as bad.
2385  *
2386  * Avoid this by ensuring that the block to be converted is
2387  * erased.
2388  */
2389 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2390                                         int start, int end)
2391 {
2392         struct onenand_chip *this = mtd->priv;
2393         int i, ret;
2394         int block;
2395         struct mtd_oob_ops ops = {
2396                 .mode = MTD_OPS_PLACE_OOB,
2397                 .ooboffs = 0,
2398                 .ooblen = mtd->oobsize,
2399                 .datbuf = NULL,
2400                 .oobbuf = this->oob_buf,
2401         };
2402         loff_t addr;
2403
2404         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2405
2406         for (block = start; block <= end; block++) {
2407                 addr = flexonenand_addr(this, block);
2408                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2409                         continue;
2410
2411                 /*
2412                  * Since main area write results in ECC write to spare,
2413                  * it is sufficient to check only ECC bytes for change.
2414                  */
2415                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2416                 if (ret)
2417                         return ret;
2418
2419                 for (i = 0; i < mtd->oobsize; i++)
2420                         if (this->oob_buf[i] != 0xff)
2421                                 break;
2422
2423                 if (i != mtd->oobsize) {
2424                         printk(KERN_WARNING "Block %d not erased.\n", block);
2425                         return 1;
2426                 }
2427         }
2428
2429         return 0;
2430 }
2431
2432 /**
2433  * flexonenand_set_boundary     - Writes the SLC boundary
2434  * @param mtd                   - mtd info structure
2435  */
2436 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2437                                     int boundary, int lock)
2438 {
2439         struct onenand_chip *this = mtd->priv;
2440         int ret, density, blksperdie, old, new, thisboundary;
2441         loff_t addr;
2442
2443         if (die >= this->dies)
2444                 return -EINVAL;
2445
2446         if (boundary == this->boundary[die])
2447                 return 0;
2448
2449         density = onenand_get_density(this->device_id);
2450         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2451         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2452
2453         if (boundary >= blksperdie) {
2454                 printk("flexonenand_set_boundary:"
2455                         "Invalid boundary value. "
2456                         "Boundary not changed.\n");
2457                 return -EINVAL;
2458         }
2459
2460         /* Check if converting blocks are erased */
2461         old = this->boundary[die] + (die * this->density_mask);
2462         new = boundary + (die * this->density_mask);
2463         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2464                                                 + 1, max(old, new));
2465         if (ret) {
2466                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2467                 return ret;
2468         }
2469
2470         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2471         this->wait(mtd, FL_SYNCING);
2472
2473         /* Check is boundary is locked */
2474         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2475         ret = this->wait(mtd, FL_READING);
2476
2477         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2478         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2479                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2480                 goto out;
2481         }
2482
2483         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2484                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2485
2486         boundary &= FLEXONENAND_PI_MASK;
2487         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2488
2489         addr = die ? this->diesize[0] : 0;
2490         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2491         ret = this->wait(mtd, FL_ERASING);
2492         if (ret) {
2493                 printk("flexonenand_set_boundary:"
2494                         "Failed PI erase for Die %d\n", die);
2495                 goto out;
2496         }
2497
2498         this->write_word(boundary, this->base + ONENAND_DATARAM);
2499         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2500         ret = this->wait(mtd, FL_WRITING);
2501         if (ret) {
2502                 printk("flexonenand_set_boundary:"
2503                         "Failed PI write for Die %d\n", die);
2504                 goto out;
2505         }
2506
2507         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2508         ret = this->wait(mtd, FL_WRITING);
2509 out:
2510         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2511         this->wait(mtd, FL_RESETING);
2512         if (!ret)
2513                 /* Recalculate device size on boundary change*/
2514                 flexonenand_get_size(mtd);
2515
2516         return ret;
2517 }
2518
2519 /**
2520  * onenand_chip_probe - [OneNAND Interface] Probe the OneNAND chip
2521  * @param mtd           MTD device structure
2522  *
2523  * OneNAND detection method:
2524  *   Compare the the values from command with ones from register
2525  */
2526 static int onenand_chip_probe(struct mtd_info *mtd)
2527 {
2528         struct onenand_chip *this = mtd->priv;
2529         int bram_maf_id, bram_dev_id, maf_id, dev_id;
2530         int syscfg;
2531
2532         /* Save system configuration 1 */
2533         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2534
2535         /* Clear Sync. Burst Read mode to read BootRAM */
2536         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ),
2537                          this->base + ONENAND_REG_SYS_CFG1);
2538
2539         /* Send the command for reading device ID from BootRAM */
2540         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2541
2542         /* Read manufacturer and device IDs from BootRAM */
2543         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2544         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2545
2546         /* Reset OneNAND to read default register values */
2547         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2548
2549         /* Wait reset */
2550         if (this->wait(mtd, FL_RESETING))
2551                 return -ENXIO;
2552
2553         /* Restore system configuration 1 */
2554         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2555
2556         /* Check manufacturer ID */
2557         if (onenand_check_maf(bram_maf_id))
2558                 return -ENXIO;
2559
2560         /* Read manufacturer and device IDs from Register */
2561         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2562         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2563
2564         /* Check OneNAND device */
2565         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2566                 return -ENXIO;
2567
2568         return 0;
2569 }
2570
2571 /**
2572  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2573  * @param mtd           MTD device structure
2574  *
2575  * OneNAND detection method:
2576  *   Compare the the values from command with ones from register
2577  */
2578 int onenand_probe(struct mtd_info *mtd)
2579 {
2580         struct onenand_chip *this = mtd->priv;
2581         int dev_id, ver_id;
2582         int density;
2583         int ret;
2584
2585         ret = this->chip_probe(mtd);
2586         if (ret)
2587                 return ret;
2588
2589         /* Read device IDs from Register */
2590         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2591         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2592         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2593
2594         /* Flash device information */
2595         mtd->name = onenand_print_device_info(dev_id, ver_id);
2596         this->device_id = dev_id;
2597         this->version_id = ver_id;
2598
2599         /* Check OneNAND features */
2600         onenand_check_features(mtd);
2601
2602         density = onenand_get_density(dev_id);
2603         if (FLEXONENAND(this)) {
2604                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2605                 /* Maximum possible erase regions */
2606                 mtd->numeraseregions = this->dies << 1;
2607                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2608                                         * (this->dies << 1));
2609                 if (!mtd->eraseregions)
2610                         return -ENOMEM;
2611         }
2612
2613         /*
2614          * For Flex-OneNAND, chipsize represents maximum possible device size.
2615          * mtd->size represents the actual device size.
2616          */
2617         this->chipsize = (16 << density) << 20;
2618
2619         /* OneNAND page size & block size */
2620         /* The data buffer size is equal to page size */
2621         mtd->writesize =
2622             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2623         /* We use the full BufferRAM */
2624         if (ONENAND_IS_4KB_PAGE(this))
2625                 mtd->writesize <<= 1;
2626
2627         mtd->oobsize = mtd->writesize >> 5;
2628         /* Pagers per block is always 64 in OneNAND */
2629         mtd->erasesize = mtd->writesize << 6;
2630         /*
2631          * Flex-OneNAND SLC area has 64 pages per block.
2632          * Flex-OneNAND MLC area has 128 pages per block.
2633          * Expose MLC erase size to find erase_shift and page_mask.
2634          */
2635         if (FLEXONENAND(this))
2636                 mtd->erasesize <<= 1;
2637
2638         this->erase_shift = ffs(mtd->erasesize) - 1;
2639         this->page_shift = ffs(mtd->writesize) - 1;
2640         this->ppb_shift = (this->erase_shift - this->page_shift);
2641         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2642         /* Set density mask. it is used for DDP */
2643         if (ONENAND_IS_DDP(this))
2644                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2645         /* It's real page size */
2646         this->writesize = mtd->writesize;
2647
2648         /* REVIST: Multichip handling */
2649
2650         if (FLEXONENAND(this))
2651                 flexonenand_get_size(mtd);
2652         else
2653                 mtd->size = this->chipsize;
2654
2655         mtd->flags = MTD_CAP_NANDFLASH;
2656         mtd->_erase = onenand_erase;
2657         mtd->_read = onenand_read;
2658         mtd->_write = onenand_write;
2659         mtd->_read_oob = onenand_read_oob;
2660         mtd->_write_oob = onenand_write_oob;
2661         mtd->_sync = onenand_sync;
2662         mtd->_block_isbad = onenand_block_isbad;
2663         mtd->_block_markbad = onenand_block_markbad;
2664         mtd->writebufsize = mtd->writesize;
2665
2666         return 0;
2667 }
2668
2669 /**
2670  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2671  * @param mtd           MTD device structure
2672  * @param maxchips      Number of chips to scan for
2673  *
2674  * This fills out all the not initialized function pointers
2675  * with the defaults.
2676  * The flash ID is read and the mtd/chip structures are
2677  * filled with the appropriate values.
2678  */
2679 int onenand_scan(struct mtd_info *mtd, int maxchips)
2680 {
2681         int i;
2682         struct onenand_chip *this = mtd->priv;
2683
2684         if (!this->read_word)
2685                 this->read_word = onenand_readw;
2686         if (!this->write_word)
2687                 this->write_word = onenand_writew;
2688
2689         if (!this->command)
2690                 this->command = onenand_command;
2691         if (!this->wait)
2692                 this->wait = onenand_wait;
2693         if (!this->bbt_wait)
2694                 this->bbt_wait = onenand_bbt_wait;
2695
2696         if (!this->read_bufferram)
2697                 this->read_bufferram = onenand_read_bufferram;
2698         if (!this->write_bufferram)
2699                 this->write_bufferram = onenand_write_bufferram;
2700
2701         if (!this->chip_probe)
2702                 this->chip_probe = onenand_chip_probe;
2703
2704         if (!this->block_markbad)
2705                 this->block_markbad = onenand_default_block_markbad;
2706         if (!this->scan_bbt)
2707                 this->scan_bbt = onenand_default_bbt;
2708
2709         if (onenand_probe(mtd))
2710                 return -ENXIO;
2711
2712         /* Set Sync. Burst Read after probing */
2713         if (this->mmcontrol) {
2714                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2715                 this->read_bufferram = onenand_sync_read_bufferram;
2716         }
2717
2718         /* Allocate buffers, if necessary */
2719         if (!this->page_buf) {
2720                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2721                 if (!this->page_buf) {
2722                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2723                         return -ENOMEM;
2724                 }
2725                 this->options |= ONENAND_PAGEBUF_ALLOC;
2726         }
2727         if (!this->oob_buf) {
2728                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2729                 if (!this->oob_buf) {
2730                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2731                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2732                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2733                                 kfree(this->page_buf);
2734                         }
2735                         return -ENOMEM;
2736                 }
2737                 this->options |= ONENAND_OOBBUF_ALLOC;
2738         }
2739
2740         this->state = FL_READY;
2741
2742         /*
2743          * Allow subpage writes up to oobsize.
2744          */
2745         switch (mtd->oobsize) {
2746         case 128:
2747                 this->ecclayout = &onenand_oob_128;
2748                 mtd->subpage_sft = 0;
2749                 break;
2750
2751         case 64:
2752                 this->ecclayout = &onenand_oob_64;
2753                 mtd->subpage_sft = 2;
2754                 break;
2755
2756         case 32:
2757                 this->ecclayout = &onenand_oob_32;
2758                 mtd->subpage_sft = 1;
2759                 break;
2760
2761         default:
2762                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2763                         mtd->oobsize);
2764                 mtd->subpage_sft = 0;
2765                 /* To prevent kernel oops */
2766                 this->ecclayout = &onenand_oob_32;
2767                 break;
2768         }
2769
2770         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2771
2772         /*
2773          * The number of bytes available for a client to place data into
2774          * the out of band area
2775          */
2776         this->ecclayout->oobavail = 0;
2777
2778         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES_LARGE &&
2779             this->ecclayout->oobfree[i].length; i++)
2780                 this->ecclayout->oobavail +=
2781                         this->ecclayout->oobfree[i].length;
2782         mtd->oobavail = this->ecclayout->oobavail;
2783
2784         mtd->ecclayout = this->ecclayout;
2785
2786         /* Unlock whole block */
2787         onenand_unlock_all(mtd);
2788
2789         return this->scan_bbt(mtd);
2790 }
2791
2792 /**
2793  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2794  * @param mtd           MTD device structure
2795  */
2796 void onenand_release(struct mtd_info *mtd)
2797 {
2798 }