]> git.sur5r.net Git - u-boot/blob - drivers/timer/tsc_timer.c
b242e7488a3b9479adb7e2bd80cba9739a7d3551
[u-boot] / drivers / timer / tsc_timer.c
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * TSC calibration codes are adapted from Linux kernel
5  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <dm.h>
12 #include <malloc.h>
13 #include <timer.h>
14 #include <asm/cpu.h>
15 #include <asm/io.h>
16 #include <asm/i8254.h>
17 #include <asm/ibmpc.h>
18 #include <asm/msr.h>
19 #include <asm/u-boot-x86.h>
20
21 #define MAX_NUM_FREQS   8
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 /*
26  * According to Intel 64 and IA-32 System Programming Guide,
27  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
28  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
29  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
30  * so we need manually differentiate SoC families. This is what the
31  * field msr_plat does.
32  */
33 struct freq_desc {
34         u8 x86_family;  /* CPU family */
35         u8 x86_model;   /* model */
36         /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
37         u8 msr_plat;
38         u32 freqs[MAX_NUM_FREQS];
39 };
40
41 static struct freq_desc freq_desc_tables[] = {
42         /* PNW */
43         { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200 } },
44         /* CLV+ */
45         { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200 } },
46         /* TNG - Intel Atom processor Z3400 series */
47         { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0 } },
48         /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
49         { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0 } },
50         /* ANN - Intel Atom processor Z3500 series */
51         { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0 } },
52         /* Ivybridge */
53         { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
54 };
55
56 static int match_cpu(u8 family, u8 model)
57 {
58         int i;
59
60         for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
61                 if ((family == freq_desc_tables[i].x86_family) &&
62                     (model == freq_desc_tables[i].x86_model))
63                         return i;
64         }
65
66         return -1;
67 }
68
69 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
70 #define id_to_freq(cpu_index, freq_id) \
71         (freq_desc_tables[cpu_index].freqs[freq_id])
72
73 /*
74  * Do MSR calibration only for known/supported CPUs.
75  *
76  * Returns the calibration value or 0 if MSR calibration failed.
77  */
78 static unsigned long __maybe_unused try_msr_calibrate_tsc(void)
79 {
80         u32 lo, hi, ratio, freq_id, freq;
81         unsigned long res;
82         int cpu_index;
83
84         if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
85                 return 0;
86
87         cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
88         if (cpu_index < 0)
89                 return 0;
90
91         if (freq_desc_tables[cpu_index].msr_plat) {
92                 rdmsr(MSR_PLATFORM_INFO, lo, hi);
93                 ratio = (lo >> 8) & 0xff;
94         } else {
95                 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
96                 ratio = (hi >> 8) & 0x1f;
97         }
98         debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
99
100         if (freq_desc_tables[cpu_index].msr_plat == 2) {
101                 /* TODO: Figure out how best to deal with this */
102                 freq = 100000;
103                 debug("Using frequency: %u KHz\n", freq);
104         } else {
105                 /* Get FSB FREQ ID */
106                 rdmsr(MSR_FSB_FREQ, lo, hi);
107                 freq_id = lo & 0x7;
108                 freq = id_to_freq(cpu_index, freq_id);
109                 debug("Resolved frequency ID: %u, frequency: %u KHz\n",
110                       freq_id, freq);
111         }
112
113         /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
114         res = freq * ratio / 1000;
115         debug("TSC runs at %lu MHz\n", res);
116
117         return res;
118 }
119
120 /*
121  * This reads the current MSB of the PIT counter, and
122  * checks if we are running on sufficiently fast and
123  * non-virtualized hardware.
124  *
125  * Our expectations are:
126  *
127  *  - the PIT is running at roughly 1.19MHz
128  *
129  *  - each IO is going to take about 1us on real hardware,
130  *    but we allow it to be much faster (by a factor of 10) or
131  *    _slightly_ slower (ie we allow up to a 2us read+counter
132  *    update - anything else implies a unacceptably slow CPU
133  *    or PIT for the fast calibration to work.
134  *
135  *  - with 256 PIT ticks to read the value, we have 214us to
136  *    see the same MSB (and overhead like doing a single TSC
137  *    read per MSB value etc).
138  *
139  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
140  *    them each to take about a microsecond on real hardware.
141  *    So we expect a count value of around 100. But we'll be
142  *    generous, and accept anything over 50.
143  *
144  *  - if the PIT is stuck, and we see *many* more reads, we
145  *    return early (and the next caller of pit_expect_msb()
146  *    then consider it a failure when they don't see the
147  *    next expected value).
148  *
149  * These expectations mean that we know that we have seen the
150  * transition from one expected value to another with a fairly
151  * high accuracy, and we didn't miss any events. We can thus
152  * use the TSC value at the transitions to calculate a pretty
153  * good value for the TSC frequencty.
154  */
155 static inline int pit_verify_msb(unsigned char val)
156 {
157         /* Ignore LSB */
158         inb(0x42);
159         return inb(0x42) == val;
160 }
161
162 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
163                                  unsigned long *deltap)
164 {
165         int count;
166         u64 tsc = 0, prev_tsc = 0;
167
168         for (count = 0; count < 50000; count++) {
169                 if (!pit_verify_msb(val))
170                         break;
171                 prev_tsc = tsc;
172                 tsc = rdtsc();
173         }
174         *deltap = rdtsc() - prev_tsc;
175         *tscp = tsc;
176
177         /*
178          * We require _some_ success, but the quality control
179          * will be based on the error terms on the TSC values.
180          */
181         return count > 5;
182 }
183
184 /*
185  * How many MSB values do we want to see? We aim for
186  * a maximum error rate of 500ppm (in practice the
187  * real error is much smaller), but refuse to spend
188  * more than 50ms on it.
189  */
190 #define MAX_QUICK_PIT_MS 50
191 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
192
193 static unsigned long __maybe_unused quick_pit_calibrate(void)
194 {
195         int i;
196         u64 tsc, delta;
197         unsigned long d1, d2;
198
199         /* Set the Gate high, disable speaker */
200         outb((inb(0x61) & ~0x02) | 0x01, 0x61);
201
202         /*
203          * Counter 2, mode 0 (one-shot), binary count
204          *
205          * NOTE! Mode 2 decrements by two (and then the
206          * output is flipped each time, giving the same
207          * final output frequency as a decrement-by-one),
208          * so mode 0 is much better when looking at the
209          * individual counts.
210          */
211         outb(0xb0, 0x43);
212
213         /* Start at 0xffff */
214         outb(0xff, 0x42);
215         outb(0xff, 0x42);
216
217         /*
218          * The PIT starts counting at the next edge, so we
219          * need to delay for a microsecond. The easiest way
220          * to do that is to just read back the 16-bit counter
221          * once from the PIT.
222          */
223         pit_verify_msb(0);
224
225         if (pit_expect_msb(0xff, &tsc, &d1)) {
226                 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
227                         if (!pit_expect_msb(0xff-i, &delta, &d2))
228                                 break;
229
230                         /*
231                          * Iterate until the error is less than 500 ppm
232                          */
233                         delta -= tsc;
234                         if (d1+d2 >= delta >> 11)
235                                 continue;
236
237                         /*
238                          * Check the PIT one more time to verify that
239                          * all TSC reads were stable wrt the PIT.
240                          *
241                          * This also guarantees serialization of the
242                          * last cycle read ('d2') in pit_expect_msb.
243                          */
244                         if (!pit_verify_msb(0xfe - i))
245                                 break;
246                         goto success;
247                 }
248         }
249         debug("Fast TSC calibration failed\n");
250         return 0;
251
252 success:
253         /*
254          * Ok, if we get here, then we've seen the
255          * MSB of the PIT decrement 'i' times, and the
256          * error has shrunk to less than 500 ppm.
257          *
258          * As a result, we can depend on there not being
259          * any odd delays anywhere, and the TSC reads are
260          * reliable (within the error).
261          *
262          * kHz = ticks / time-in-seconds / 1000;
263          * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
264          * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
265          */
266         delta *= PIT_TICK_RATE;
267         delta /= (i*256*1000);
268         debug("Fast TSC calibration using PIT\n");
269         return delta / 1000;
270 }
271
272 /* Get the speed of the TSC timer in MHz */
273 unsigned notrace long get_tbclk_mhz(void)
274 {
275         return get_tbclk() / 1000000;
276 }
277
278 static ulong get_ms_timer(void)
279 {
280         return (get_ticks() * 1000) / get_tbclk();
281 }
282
283 ulong get_timer(ulong base)
284 {
285         return get_ms_timer() - base;
286 }
287
288 ulong notrace timer_get_us(void)
289 {
290         return get_ticks() / get_tbclk_mhz();
291 }
292
293 ulong timer_get_boot_us(void)
294 {
295         return timer_get_us();
296 }
297
298 void __udelay(unsigned long usec)
299 {
300         u64 now = get_ticks();
301         u64 stop;
302
303         stop = now + usec * get_tbclk_mhz();
304
305         while ((int64_t)(stop - get_ticks()) > 0)
306 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
307                 /*
308                  * Add a 'pause' instruction on qemu target,
309                  * to give other VCPUs a chance to run.
310                  */
311                 asm volatile("pause");
312 #else
313                 ;
314 #endif
315 }
316
317 static int tsc_timer_get_count(struct udevice *dev, u64 *count)
318 {
319         u64 now_tick = rdtsc();
320
321         *count = now_tick - gd->arch.tsc_base;
322
323         return 0;
324 }
325
326 static int tsc_timer_probe(struct udevice *dev)
327 {
328         struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
329
330         gd->arch.tsc_base = rdtsc();
331
332         /*
333          * If there is no clock frequency specified in the device tree,
334          * calibrate it by ourselves.
335          */
336         if (!uc_priv->clock_rate) {
337                 unsigned long fast_calibrate;
338
339                 fast_calibrate = try_msr_calibrate_tsc();
340                 if (!fast_calibrate) {
341                         fast_calibrate = quick_pit_calibrate();
342                         if (!fast_calibrate)
343                                 panic("TSC frequency is ZERO");
344                 }
345
346                 uc_priv->clock_rate = fast_calibrate * 1000000;
347         }
348
349         return 0;
350 }
351
352 static const struct timer_ops tsc_timer_ops = {
353         .get_count = tsc_timer_get_count,
354 };
355
356 static const struct udevice_id tsc_timer_ids[] = {
357         { .compatible = "x86,tsc-timer", },
358         { }
359 };
360
361 U_BOOT_DRIVER(tsc_timer) = {
362         .name   = "tsc_timer",
363         .id     = UCLASS_TIMER,
364         .of_match = tsc_timer_ids,
365         .probe = tsc_timer_probe,
366         .ops    = &tsc_timer_ops,
367         .flags = DM_FLAG_PRE_RELOC,
368 };