3 * Copyright 1998-2000 The OpenLDAP Foundation, All Rights Reserved.
4 * COPYING RESTRICTIONS APPLY, see COPYRIGHT file
7 * Modified by Kurt D. Zeilenga for inclusion into OpenLDAP
8 * I hereby disclaim copyright in any changes I have made; this
9 * code remains in the public domain.
13 * This code implements the MD5 message-digest algorithm.
14 * The algorithm is due to Ron Rivest. This code was
15 * written by Colin Plumb in 1993, no copyright is claimed.
16 * This code is in the public domain; do with it what you wish.
18 * Equivalent code is available from RSA Data Security, Inc.
19 * This code has been tested against that, and is equivalent,
20 * except that you don't need to include two pages of legalese
23 * To compute the message digest of a chunk of bytes, declare an
24 * MD5Context structure, pass it to MD5Init, call MD5Update as
25 * needed on buffers full of bytes, and then call MD5Final, which
26 * will fill a supplied 16-byte array with the digest.
29 /* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
30 not require an integer type which is exactly 32 bits. This work
31 draws on the changes for the same purpose by Tatu Ylonen
32 <ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
33 that code, there is no copyright issue. I hereby disclaim
34 copyright in any changes I have made; this code remains in the
39 #include <ac/string.h>
41 /* include socket.h to get sys/types.h and/or winsock2.h */
42 #include <ac/socket.h>
44 #include <lutil_md5.h>
46 /* Little-endian byte-swapping routines. Note that these do not
47 depend on the size of datatypes such as ber_uint_t, nor do they require
48 us to detect the endianness of the machine we are running on. It
49 is possible they should be macros for speed, but I would be
50 surprised if they were a performance bottleneck for MD5. */
53 getu32( const unsigned char *addr )
55 return (((((unsigned long)addr[3] << 8) | addr[2]) << 8)
56 | addr[1]) << 8 | addr[0];
60 putu32( ber_uint_t data, unsigned char *addr )
62 addr[0] = (unsigned char)data;
63 addr[1] = (unsigned char)(data >> 8);
64 addr[2] = (unsigned char)(data >> 16);
65 addr[3] = (unsigned char)(data >> 24);
69 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
70 * initialization constants.
73 lutil_MD5Init( struct lutil_MD5Context *ctx )
75 ctx->buf[0] = 0x67452301;
76 ctx->buf[1] = 0xefcdab89;
77 ctx->buf[2] = 0x98badcfe;
78 ctx->buf[3] = 0x10325476;
85 * Update context to reflect the concatenation of another buffer full
90 struct lutil_MD5Context *ctx,
91 const unsigned char *buf,
100 if ((ctx->bits[0] = (t + ((ber_uint_t)len << 3)) & 0xffffffff) < t)
101 ctx->bits[1]++; /* Carry from low to high */
102 ctx->bits[1] += len >> 29;
104 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
106 /* Handle any leading odd-sized chunks */
109 unsigned char *p = ctx->in + t;
113 AC_MEMCPY(p, buf, len);
116 AC_MEMCPY(p, buf, t);
117 lutil_MD5Transform(ctx->buf, ctx->in);
122 /* Process data in 64-byte chunks */
125 AC_MEMCPY(ctx->in, buf, 64);
126 lutil_MD5Transform(ctx->buf, ctx->in);
131 /* Handle any remaining bytes of data. */
133 AC_MEMCPY(ctx->in, buf, len);
137 * Final wrapup - pad to 64-byte boundary with the bit pattern
138 * 1 0* (64-bit count of bits processed, MSB-first)
141 lutil_MD5Final( unsigned char *digest, struct lutil_MD5Context *ctx )
146 /* Compute number of bytes mod 64 */
147 count = (ctx->bits[0] >> 3) & 0x3F;
149 /* Set the first char of padding to 0x80. This is safe since there is
150 always at least one byte free */
154 /* Bytes of padding needed to make 64 bytes */
155 count = 64 - 1 - count;
157 /* Pad out to 56 mod 64 */
159 /* Two lots of padding: Pad the first block to 64 bytes */
160 memset(p, '\0', count);
161 lutil_MD5Transform(ctx->buf, ctx->in);
163 /* Now fill the next block with 56 bytes */
164 memset(ctx->in, '\0', 56);
166 /* Pad block to 56 bytes */
167 memset(p, '\0', count-8);
170 /* Append length in bits and transform */
171 putu32(ctx->bits[0], ctx->in + 56);
172 putu32(ctx->bits[1], ctx->in + 60);
174 lutil_MD5Transform(ctx->buf, ctx->in);
175 putu32(ctx->buf[0], digest);
176 putu32(ctx->buf[1], digest + 4);
177 putu32(ctx->buf[2], digest + 8);
178 putu32(ctx->buf[3], digest + 12);
179 memset(ctx, '\0', sizeof(ctx)); /* In case it's sensitive */
184 /* The four core functions - F1 is optimized somewhat */
186 /* #define F1(x, y, z) (x & y | ~x & z) */
187 #define F1(x, y, z) (z ^ (x & (y ^ z)))
188 #define F2(x, y, z) F1(z, x, y)
189 #define F3(x, y, z) (x ^ y ^ z)
190 #define F4(x, y, z) (y ^ (x | ~z))
192 /* This is the central step in the MD5 algorithm. */
193 #define MD5STEP(f, w, x, y, z, data, s) \
194 ( w += f(x, y, z) + data, w &= 0xffffffff, w = w<<s | w>>(32-s), w += x )
197 * The core of the MD5 algorithm, this alters an existing MD5 hash to
198 * reflect the addition of 16 longwords of new data. MD5Update blocks
199 * the data and converts bytes into longwords for this routine.
202 lutil_MD5Transform( ber_uint_t *buf, const unsigned char *inraw )
204 register ber_uint_t a, b, c, d;
208 for (i = 0; i < 16; ++i)
209 in[i] = getu32 (inraw + 4 * i);
216 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
217 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
218 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
219 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
220 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
221 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
222 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
223 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
224 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
225 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
226 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
227 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
228 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
229 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
230 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
231 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
233 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
234 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
235 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
236 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
237 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
238 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
239 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
240 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
241 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
242 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
243 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
244 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
245 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
246 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
247 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
248 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
250 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
251 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
252 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
253 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
254 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
255 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
256 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
257 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
258 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
259 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
260 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
261 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
262 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
263 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
264 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
265 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
267 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
268 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
269 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
270 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
271 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
272 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
273 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
274 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
275 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
276 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
277 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
278 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
279 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
280 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
281 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
282 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
292 /* Simple test program. Can use it to manually run the tests from
293 RFC1321 for example. */
297 main (int argc, char **argv )
299 struct lutil_MD5Context context;
300 unsigned char checksum[LUTIL_MD5_BYTES];
306 fprintf (stderr, "usage: %s string-to-hash\n", argv[0]);
309 for (j = 1; j < argc; ++j)
311 printf ("MD5 (\"%s\") = ", argv[j]);
312 lutil_MD5Init (&context);
313 lutil_MD5Update (&context, argv[j], strlen (argv[j]));
314 lutil_MD5Final (checksum, &context);
315 for (i = 0; i < LUTIL_MD5_BYTES; i++)
317 printf ("%02x", (unsigned int) checksum[i]);