]> git.sur5r.net Git - openocd/blob - src/jtag/zy1000/zy1000.c
3344e0ee99403884e5b678b6f3d9ffa3f0a87843
[openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #define ZYLIN_KHZ 60000
66 #else
67 #define ZYLIN_KHZ 64000
68 #endif
69
70 #define ZYLIN_VERSION GIT_ZY1000_VERSION
71 #define ZYLIN_DATE __DATE__
72 #define ZYLIN_TIME __TIME__
73 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
74 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
75
76 #else
77 /* Assume we're connecting to a revc w/60MHz clock. */
78 #define ZYLIN_KHZ 60000
79 #endif
80
81
82 /* The software needs to check if it's in RCLK mode or not */
83 static bool zy1000_rclk = false;
84
85 static int zy1000_khz(int khz, int *jtag_speed)
86 {
87         if (khz == 0)
88         {
89                 *jtag_speed = 0;
90         }
91         else
92         {
93                 int speed;
94                 /* Round speed up to nearest divisor.
95                  *
96                  * E.g. 16000kHz
97                  * (64000 + 15999) / 16000 = 4
98                  * (4 + 1) / 2 = 2
99                  * 2 * 2 = 4
100                  *
101                  * 64000 / 4 = 16000
102                  *
103                  * E.g. 15999
104                  * (64000 + 15998) / 15999 = 5
105                  * (5 + 1) / 2 = 3
106                  * 3 * 2 = 6
107                  *
108                  * 64000 / 6 = 10666
109                  *
110                  */
111                 speed = (ZYLIN_KHZ + (khz -1)) / khz;
112                 speed = (speed + 1 ) / 2;
113                 speed *= 2;
114                 if (speed > 8190)
115                 {
116                         /* maximum dividend */
117                         speed = 8190;
118                 }
119                 *jtag_speed = speed;
120         }
121         return ERROR_OK;
122 }
123
124 static int zy1000_speed_div(int speed, int *khz)
125 {
126         if (speed == 0)
127         {
128                 *khz = 0;
129         }
130         else
131         {
132                 *khz = ZYLIN_KHZ / speed;
133         }
134
135         return ERROR_OK;
136 }
137
138 static bool readPowerDropout(void)
139 {
140         uint32_t state;
141         // sample and clear power dropout
142         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
143         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
144         bool powerDropout;
145         powerDropout = (state & 0x80) != 0;
146         return powerDropout;
147 }
148
149
150 static bool readSRST(void)
151 {
152         uint32_t state;
153         // sample and clear SRST sensing
154         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
155         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
156         bool srstAsserted;
157         srstAsserted = (state & 0x40) != 0;
158         return srstAsserted;
159 }
160
161 static int zy1000_srst_asserted(int *srst_asserted)
162 {
163         *srst_asserted = readSRST();
164         return ERROR_OK;
165 }
166
167 static int zy1000_power_dropout(int *dropout)
168 {
169         *dropout = readPowerDropout();
170         return ERROR_OK;
171 }
172
173 void zy1000_reset(int trst, int srst)
174 {
175         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
176
177         /* flush the JTAG FIFO. Not flushing the queue before messing with
178          * reset has such interesting bugs as causing hard to reproduce
179          * RCLK bugs as RCLK will stop responding when TRST is asserted
180          */
181         waitIdle();
182
183         if (!srst)
184         {
185                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
186         }
187         else
188         {
189                 /* Danger!!! if clk != 0 when in
190                  * idle in TAP_IDLE, reset halt on str912 will fail.
191                  */
192                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
193         }
194
195         if (!trst)
196         {
197                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
198         }
199         else
200         {
201                 /* assert reset */
202                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
203         }
204
205         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
206         {
207                 /* we're now in the RESET state until trst is deasserted */
208                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
209         } else
210         {
211                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
212                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
213         }
214
215         /* wait for srst to float back up */
216         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
217                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
218         {
219                 bool first = true;
220                 long long start = 0;
221                 long total = 0;
222                 for (;;)
223                 {       
224                         // We don't want to sense our own reset, so we clear here.
225                         // There is of course a timing hole where we could loose
226                         // a "real" reset.
227                         if (!readSRST())
228                         {
229                                 if (total > 1)
230                                 {
231                                   LOG_USER("SRST took %dms to deassert", (int)total);
232                                 }
233                                 break;
234                         }
235
236                         if (first)
237                         {
238                             first = false;
239                             start = timeval_ms();
240                         }
241
242                         total = timeval_ms() - start;
243
244                         keep_alive();
245
246                         if (total > 5000)
247                         {
248                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
249                             break;
250                         }
251                 }
252
253         }
254 }
255
256 int zy1000_speed(int speed)
257 {
258         /* flush JTAG master FIFO before setting speed */
259         waitIdle();
260
261         zy1000_rclk = false;
262
263         if (speed == 0)
264         {
265                 /*0 means RCLK*/
266                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
267                 zy1000_rclk = true;
268                 LOG_DEBUG("jtag_speed using RCLK");
269         }
270         else
271         {
272                 if (speed > 8190 || speed < 2)
273                 {
274                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
275                                         ZYLIN_KHZ, (ZYLIN_KHZ * 1000) / 8190, ZYLIN_KHZ / (2 * 1000));
276                         return ERROR_INVALID_ARGUMENTS;
277                 }
278
279                 int khz;
280                 speed &= ~1;
281                 zy1000_speed_div(speed, &khz);
282                 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
283                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
284                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
285         }
286         return ERROR_OK;
287 }
288
289 static bool savePower;
290
291
292 static void setPower(bool power)
293 {
294         savePower = power;
295         if (power)
296         {
297                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
298         } else
299         {
300                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
301         }
302 }
303
304 COMMAND_HANDLER(handle_power_command)
305 {
306         switch (CMD_ARGC)
307         {
308         case 1: {
309                 bool enable;
310                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
311                 setPower(enable);
312                 // fall through
313         }
314         case 0:
315                 LOG_INFO("Target power %s", savePower ? "on" : "off");
316                 break;
317         default:
318                 return ERROR_INVALID_ARGUMENTS;
319         }
320
321         return ERROR_OK;
322 }
323
324 #if !BUILD_ZY1000_MASTER
325 static char *tcp_server = "notspecified";
326 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
327 {
328         if (argc != 2)
329                 return JIM_ERR;
330
331         tcp_server = strdup(Jim_GetString(argv[1], NULL));
332
333         return JIM_OK;
334 }
335 #endif
336
337 #if BUILD_ECOSBOARD
338 /* Give TELNET a way to find out what version this is */
339 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
340 {
341         if ((argc < 1) || (argc > 3))
342                 return JIM_ERR;
343         const char *version_str = NULL;
344
345         if (argc == 1)
346         {
347                 version_str = ZYLIN_OPENOCD_VERSION;
348         } else
349         {
350                 const char *str = Jim_GetString(argv[1], NULL);
351                 const char *str2 = NULL;
352                 if (argc > 2)
353                         str2 = Jim_GetString(argv[2], NULL);
354                 if (strcmp("openocd", str) == 0)
355                 {
356                         version_str = ZYLIN_OPENOCD;
357                 }
358                 else if (strcmp("zy1000", str) == 0)
359                 {
360                         version_str = ZYLIN_VERSION;
361                 }
362                 else if (strcmp("date", str) == 0)
363                 {
364                         version_str = ZYLIN_DATE;
365                 }
366                 else if (strcmp("time", str) == 0)
367                 {
368                         version_str = ZYLIN_TIME;
369                 }
370                 else if (strcmp("pcb", str) == 0)
371                 {
372 #ifdef CYGPKG_HAL_NIOS2
373                         version_str="c";
374 #else
375                         version_str="b";
376 #endif
377                 }
378 #ifdef CYGPKG_HAL_NIOS2
379                 else if (strcmp("fpga", str) == 0)
380                 {
381
382                         /* return a list of 32 bit integers to describe the expected
383                          * and actual FPGA
384                          */
385                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
386                         uint32_t id, timestamp;
387                         HAL_READ_UINT32(SYSID_BASE, id);
388                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
389                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
390                         version_str = fpga_id;
391                         if ((argc>2) && (strcmp("time", str2) == 0))
392                         {
393                             time_t last_mod = timestamp;
394                             char * t = ctime (&last_mod) ;
395                             t[strlen(t)-1] = 0;
396                             version_str = t;
397                         }
398                 }
399 #endif
400
401                 else
402                 {
403                         return JIM_ERR;
404                 }
405         }
406
407         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
408
409         return JIM_OK;
410 }
411 #endif
412
413 #ifdef CYGPKG_HAL_NIOS2
414
415
416 struct info_forward
417 {
418         void *data;
419         struct cyg_upgrade_info *upgraded_file;
420 };
421
422 static void report_info(void *data, const char * format, va_list args)
423 {
424         char *s = alloc_vprintf(format, args);
425         LOG_USER_N("%s", s);
426         free(s);
427 }
428
429 struct cyg_upgrade_info firmware_info =
430 {
431                 (uint8_t *)0x84000000,
432                 "/ram/firmware.phi",
433                 "Firmware",
434                 0x0300000,
435                 0x1f00000 -
436                 0x0300000,
437                 "ZylinNiosFirmware\n",
438                 report_info,
439 };
440
441 // File written to /ram/firmware.phi before arriving at this fn
442 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
443 {
444         if (argc != 1)
445                 return JIM_ERR;
446
447         if (!cyg_firmware_upgrade(NULL, firmware_info))
448                 return JIM_ERR;
449
450         return JIM_OK;
451 }
452 #endif
453
454 static int
455 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
456                                                                    int argc,
457                 Jim_Obj * const *argv)
458 {
459         if (argc != 1)
460         {
461                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
462                 return JIM_ERR;
463         }
464
465         bool dropout = readPowerDropout();
466
467         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
468
469         return JIM_OK;
470 }
471
472
473
474 int zy1000_quit(void)
475 {
476
477         return ERROR_OK;
478 }
479
480
481
482 int interface_jtag_execute_queue(void)
483 {
484         uint32_t empty;
485
486         waitIdle();
487
488         /* We must make sure to write data read back to memory location before we return
489          * from this fn
490          */
491         zy1000_flush_readqueue();
492
493         /* and handle any callbacks... */
494         zy1000_flush_callbackqueue();
495
496         if (zy1000_rclk)
497         {
498                 /* Only check for errors when using RCLK to speed up
499                  * jtag over TCP/IP
500                  */
501                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
502                 /* clear JTAG error register */
503                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
504
505                 if ((empty&0x400) != 0)
506                 {
507                         LOG_WARNING("RCLK timeout");
508                         /* the error is informative only as we don't want to break the firmware if there
509                          * is a false positive.
510                          */
511         //              return ERROR_FAIL;
512                 }
513         }
514         return ERROR_OK;
515 }
516
517
518
519
520 static void writeShiftValue(uint8_t *data, int bits);
521
522 // here we shuffle N bits out/in
523 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
524 {
525         tap_state_t pause_state = shiftState;
526         for (int j = 0; j < num_bits; j += 32)
527         {
528                 int k = num_bits - j;
529                 if (k > 32)
530                 {
531                         k = 32;
532                         /* we have more to shift out */
533                 } else if (pause_now)
534                 {
535                         /* this was the last to shift out this time */
536                         pause_state = end_state;
537                 }
538
539                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
540                 // bits are pushed out LSB to MSB
541                 uint32_t value;
542                 value = 0;
543                 if (out_value != NULL)
544                 {
545                         for (int l = 0; l < k; l += 8)
546                         {
547                                 value|=out_value[(j + l)/8]<<l;
548                         }
549                 }
550                 /* mask away unused bits for easier debugging */
551                 if (k < 32)
552                 {
553                         value&=~(((uint32_t)0xffffffff) << k);
554                 } else
555                 {
556                         /* Shifting by >= 32 is not defined by the C standard
557                          * and will in fact shift by &0x1f bits on nios */
558                 }
559
560                 shiftValueInner(shiftState, pause_state, k, value);
561
562                 if (in_value != NULL)
563                 {
564                         writeShiftValue(in_value + (j/8), k);
565                 }
566         }
567 }
568
569 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
570 {
571         for (int i = 0; i < num_fields; i++)
572         {
573                 scanBits(fields[i].out_value,
574                                 fields[i].in_value,
575                                 fields[i].num_bits,
576                                 (i == num_fields-1),
577                                 shiftState,
578                                 end_state);
579         }
580 }
581
582 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
583 {
584         int scan_size = 0;
585         struct jtag_tap *tap, *nextTap;
586         tap_state_t pause_state = TAP_IRSHIFT;
587
588         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
589         {
590                 nextTap = jtag_tap_next_enabled(tap);
591                 if (nextTap==NULL)
592                 {
593                         pause_state = state;
594                 }
595                 scan_size = tap->ir_length;
596
597                 /* search the list */
598                 if (tap == active)
599                 {
600                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
601                         /* update device information */
602                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
603
604                         tap->bypass = 0;
605                 } else
606                 {
607                         /* if a device isn't listed, set it to BYPASS */
608                         assert(scan_size <= 32);
609                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
610
611                         tap->bypass = 1;
612                 }
613         }
614
615         return ERROR_OK;
616 }
617
618
619
620
621
622 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
623 {
624         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
625         return ERROR_OK;
626 }
627
628 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
629 {
630         struct jtag_tap *tap, *nextTap;
631         tap_state_t pause_state = TAP_DRSHIFT;
632         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
633         {
634                 nextTap = jtag_tap_next_enabled(tap);
635                 if (nextTap==NULL)
636                 {
637                         pause_state = state;
638                 }
639
640                 /* Find a range of fields to write to this tap */
641                 if (tap == active)
642                 {
643                         assert(!tap->bypass);
644
645                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
646                 } else
647                 {
648                         /* Shift out a 0 for disabled tap's */
649                         assert(tap->bypass);
650                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
651                 }
652         }
653         return ERROR_OK;
654 }
655
656 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
657 {
658         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
659         return ERROR_OK;
660 }
661
662 int interface_jtag_add_tlr()
663 {
664         setCurrentState(TAP_RESET);
665         return ERROR_OK;
666 }
667
668
669 int interface_jtag_add_reset(int req_trst, int req_srst)
670 {
671         zy1000_reset(req_trst, req_srst);
672         return ERROR_OK;
673 }
674
675 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
676 {
677         /* num_cycles can be 0 */
678         setCurrentState(clockstate);
679
680         /* execute num_cycles, 32 at the time. */
681         int i;
682         for (i = 0; i < num_cycles; i += 32)
683         {
684                 int num;
685                 num = 32;
686                 if (num_cycles-i < num)
687                 {
688                         num = num_cycles-i;
689                 }
690                 shiftValueInner(clockstate, clockstate, num, 0);
691         }
692
693 #if !TEST_MANUAL()
694         /* finish in end_state */
695         setCurrentState(state);
696 #else
697         tap_state_t t = TAP_IDLE;
698         /* test manual drive code on any target */
699         int tms;
700         uint8_t tms_scan = tap_get_tms_path(t, state);
701         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
702
703         for (i = 0; i < tms_count; i++)
704         {
705                 tms = (tms_scan >> i) & 1;
706                 waitIdle();
707                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
708         }
709         waitIdle();
710         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
711 #endif
712
713         return ERROR_OK;
714 }
715
716 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
717 {
718         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
719 }
720
721 int interface_jtag_add_clocks(int num_cycles)
722 {
723         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
724 }
725
726 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
727 {
728         /*wait for the fifo to be empty*/
729         waitIdle();
730
731         for (unsigned i = 0; i < num_bits; i++)
732         {
733                 int tms;
734
735                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
736                 {
737                         tms = 0;
738                 }
739                 else
740                 {
741                         tms = 1;
742                 }
743
744                 waitIdle();
745                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
746         }
747
748         waitIdle();
749         if (state != TAP_INVALID)
750         {
751                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
752         } else
753         {
754                 /* this would be normal if we are switching to SWD mode */
755         }
756         return ERROR_OK;
757 }
758
759 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
760 {
761         int state_count;
762         int tms = 0;
763
764         state_count = 0;
765
766         tap_state_t cur_state = cmd_queue_cur_state;
767
768         uint8_t seq[16];
769         memset(seq, 0, sizeof(seq));
770         assert(num_states < (int)((sizeof(seq) * 8)));
771
772         while (num_states)
773         {
774                 if (tap_state_transition(cur_state, false) == path[state_count])
775                 {
776                         tms = 0;
777                 }
778                 else if (tap_state_transition(cur_state, true) == path[state_count])
779                 {
780                         tms = 1;
781                 }
782                 else
783                 {
784                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
785                         exit(-1);
786                 }
787
788                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
789
790                 cur_state = path[state_count];
791                 state_count++;
792                 num_states--;
793         }
794
795         return interface_add_tms_seq(state_count, seq, cur_state);
796 }
797
798 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
799 {
800         /* bypass bits before and after */
801         int pre_bits = 0;
802         int post_bits = 0;
803
804         bool found = false;
805         struct jtag_tap *cur_tap, *nextTap;
806         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
807         {
808                 nextTap = jtag_tap_next_enabled(cur_tap);
809                 if (cur_tap == tap)
810                 {
811                         found = true;
812                 } else
813                 {
814                         if (found)
815                         {
816                                 post_bits++;
817                         } else
818                         {
819                                 pre_bits++;
820                         }
821                 }
822         }
823         *pre = pre_bits;
824         *post = post_bits;
825 }
826
827 /*
828         static const int embeddedice_num_bits[] = {32, 6};
829         uint32_t values[2];
830
831         values[0] = value;
832         values[1] = (1 << 5) | reg_addr;
833
834         jtag_add_dr_out(tap,
835                         2,
836                         embeddedice_num_bits,
837                         values,
838                         TAP_IDLE);
839 */
840
841 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
842 {
843 #if 0
844         int i;
845         for (i = 0; i < count; i++)
846         {
847                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
848                 buffer += 4;
849         }
850 #else
851         int pre_bits;
852         int post_bits;
853         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
854
855         if ((pre_bits > 32) || (post_bits + 6 > 32))
856         {
857                 int i;
858                 for (i = 0; i < count; i++)
859                 {
860                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
861                         buffer += 4;
862                 }
863         } else
864         {
865                 int i;
866                 for (i = 0; i < count; i++)
867                 {
868                         /* Fewer pokes means we get to use the FIFO more efficiently */
869                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
870                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
871                         /* Danger! here we need to exit into the TAP_IDLE state to make
872                          * DCC pick up this value.
873                          */
874                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
875                         buffer += 4;
876                 }
877         }
878 #endif
879 }
880
881
882
883 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
884 {
885         /* bypass bits before and after */
886         int pre_bits;
887         int post_bits;
888         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
889         post_bits+=2;
890
891         if ((pre_bits > 32) || (post_bits > 32))
892         {
893                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
894                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
895         } else
896         {
897                 static const int bits[] = {32, 2};
898                 uint32_t values[] = {0, 0};
899
900                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
901                  * with unaligned uint32_t * pointers... */
902                 const uint8_t *t = (const uint8_t *)data;
903
904                 while (--count > 0)
905                 {
906 #if 1
907                         /* Danger! This code doesn't update cmd_queue_cur_state, so
908                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
909                          * this loop would fail!
910                          */
911                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
912
913                         uint32_t value;
914                         value = *t++;
915                         value |= (*t++<<8);
916                         value |= (*t++<<16);
917                         value |= (*t++<<24);
918
919                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
920                         /* minimum 2 bits */
921                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
922
923                         /* copy & paste from arm11_dbgtap.c */
924                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
925                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
926                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
927                          * or in the jtag registers module.
928                          */
929                         waitIdle();
930                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
931                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
932                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
933                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
934                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
935                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
936                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
937                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
938                         /* we don't have to wait for the queue to empty here */
939                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
940                         waitIdle();
941 #else
942                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
943                         {
944                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
945                         };
946
947                         values[0] = *t++;
948                         values[0] |= (*t++<<8);
949                         values[0] |= (*t++<<16);
950                         values[0] |= (*t++<<24);
951
952                         jtag_add_dr_out(tap,
953                                 2,
954                                 bits,
955                                 values,
956                                 TAP_IDLE);
957
958                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
959                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
960 #endif
961                 }
962
963                 values[0] = *t++;
964                 values[0] |= (*t++<<8);
965                 values[0] |= (*t++<<16);
966                 values[0] |= (*t++<<24);
967
968                 /* This will happen on the last iteration updating cmd_queue_cur_state
969                  * so we don't have to track it during the common code path
970                  */
971                 jtag_add_dr_out(tap,
972                         2,
973                         bits,
974                         values,
975                         TAP_IDLE);
976
977                 return jtag_execute_queue();
978         }
979 }
980
981
982 static const struct command_registration zy1000_commands[] = {
983         {
984                 .name = "power",
985                 .handler = handle_power_command,
986                 .mode = COMMAND_ANY,
987                 .help = "Turn power switch to target on/off. "
988                         "With no arguments, prints status.",
989                 .usage = "('on'|'off)",
990         },
991 #if BUILD_ZY1000_MASTER
992 #if BUILD_ECOSBOARD
993         {
994                 .name = "zy1000_version",
995                 .mode = COMMAND_ANY,
996                 .jim_handler = jim_zy1000_version,
997                 .help = "Print version info for zy1000.",
998                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
999         },
1000 #endif
1001 #else
1002         {
1003                 .name = "zy1000_server",
1004                 .mode = COMMAND_ANY,
1005                 .jim_handler = jim_zy1000_server,
1006                 .help = "Tcpip address for ZY1000 server.",
1007                 .usage = "address",
1008         },
1009 #endif
1010         {
1011                 .name = "powerstatus",
1012                 .mode = COMMAND_ANY,
1013                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1014                 .help = "Returns power status of target",
1015         },
1016 #ifdef CYGPKG_HAL_NIOS2
1017         {
1018                 .name = "updatezy1000firmware",
1019                 .mode = COMMAND_ANY,
1020                 .jim_handler = jim_zy1000_writefirmware,
1021                 .help = "writes firmware to flash",
1022                 /* .usage = "some_string", */
1023         },
1024 #endif
1025         COMMAND_REGISTRATION_DONE
1026 };
1027
1028
1029 #if !BUILD_ZY1000_MASTER || BUILD_ECOSBOARD
1030 static int tcp_ip = -1;
1031
1032 /* Write large packets if we can */
1033 static size_t out_pos;
1034 static uint8_t out_buffer[16384];
1035 static size_t in_pos;
1036 static size_t in_write;
1037 static uint8_t in_buffer[16384];
1038
1039 static bool flush_writes(void)
1040 {
1041         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1042         out_pos = 0;
1043         return ok;
1044 }
1045
1046 static bool writeLong(uint32_t l)
1047 {
1048         int i;
1049         for (i = 0; i < 4; i++)
1050         {
1051                 uint8_t c = (l >> (i*8))&0xff;
1052                 out_buffer[out_pos++] = c;
1053                 if (out_pos >= sizeof(out_buffer))
1054                 {
1055                         if (!flush_writes())
1056                         {
1057                                 return false;
1058                         }
1059                 }
1060         }
1061         return true;
1062 }
1063
1064 static bool readLong(uint32_t *out_data)
1065 {
1066         if (out_pos > 0)
1067         {
1068                 if (!flush_writes())
1069                 {
1070                         return false;
1071                 }
1072         }
1073
1074         uint32_t data = 0;
1075         int i;
1076         for (i = 0; i < 4; i++)
1077         {
1078                 uint8_t c;
1079                 if (in_pos == in_write)
1080                 {
1081                         /* read more */
1082                         int t;
1083                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1084                         if (t < 1)
1085                         {
1086                                 return false;
1087                         }
1088                         in_write = (size_t) t;
1089                         in_pos = 0;
1090                 }
1091                 c = in_buffer[in_pos++];
1092
1093                 data |= (c << (i*8));
1094         }
1095         *out_data = data;
1096         return true;
1097 }
1098 #endif
1099
1100 enum ZY1000_CMD
1101 {
1102         ZY1000_CMD_POKE = 0x0,
1103         ZY1000_CMD_PEEK = 0x8,
1104         ZY1000_CMD_SLEEP = 0x1,
1105         ZY1000_CMD_WAITIDLE = 2
1106 };
1107
1108
1109 #if !BUILD_ZY1000_MASTER
1110
1111 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1112 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1113
1114 /* We initialize this late since we need to know the server address
1115  * first.
1116  */
1117 static void tcpip_open(void)
1118 {
1119         if (tcp_ip >= 0)
1120                 return;
1121
1122         struct sockaddr_in echoServAddr; /* Echo server address */
1123
1124         /* Create a reliable, stream socket using TCP */
1125         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1126         {
1127                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1128                 exit(-1);
1129         }
1130
1131         /* Construct the server address structure */
1132         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1133         echoServAddr.sin_family = AF_INET; /* Internet address family */
1134         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1135         echoServAddr.sin_port = htons(7777); /* Server port */
1136
1137         /* Establish the connection to the echo server */
1138         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1139         {
1140                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1141                 exit(-1);
1142         }
1143
1144         int flag = 1;
1145         setsockopt(tcp_ip,      /* socket affected */
1146                         IPPROTO_TCP,            /* set option at TCP level */
1147                         TCP_NODELAY,            /* name of option */
1148                         (char *)&flag,          /* the cast is historical cruft */
1149                         sizeof(int));           /* length of option value */
1150
1151 }
1152
1153
1154 /* send a poke */
1155 void zy1000_tcpout(uint32_t address, uint32_t data)
1156 {
1157         tcpip_open();
1158         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1159                         !writeLong(data))
1160         {
1161                 fprintf(stderr, "Could not write to zy1000 server\n");
1162                 exit(-1);
1163         }
1164 }
1165
1166 /* By sending the wait to the server, we avoid a readback
1167  * of status. Radically improves performance for this operation
1168  * with long ping times.
1169  */
1170 void waitIdle(void)
1171 {
1172         tcpip_open();
1173         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1174         {
1175                 fprintf(stderr, "Could not write to zy1000 server\n");
1176                 exit(-1);
1177         }
1178 }
1179
1180 uint32_t zy1000_tcpin(uint32_t address)
1181 {
1182         tcpip_open();
1183
1184         zy1000_flush_readqueue();
1185
1186         uint32_t data;
1187         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1188                         !readLong(&data))
1189         {
1190                 fprintf(stderr, "Could not read from zy1000 server\n");
1191                 exit(-1);
1192         }
1193         return data;
1194 }
1195
1196 int interface_jtag_add_sleep(uint32_t us)
1197 {
1198         tcpip_open();
1199         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1200                         !writeLong(us))
1201         {
1202                 fprintf(stderr, "Could not read from zy1000 server\n");
1203                 exit(-1);
1204         }
1205         return ERROR_OK;
1206 }
1207
1208 /* queue a readback */
1209 #define readqueue_size 16384
1210 static struct
1211 {
1212         uint8_t *dest;
1213         int bits;
1214 } readqueue[readqueue_size];
1215
1216 static int readqueue_pos = 0;
1217
1218 /* flush the readqueue, this means reading any data that
1219  * we're expecting and store them into the final position
1220  */
1221 void zy1000_flush_readqueue(void)
1222 {
1223         if (readqueue_pos == 0)
1224         {
1225                 /* simply debugging by allowing easy breakpoints when there
1226                  * is something to do. */
1227                 return;
1228         }
1229         int i;
1230         tcpip_open();
1231         for (i = 0; i < readqueue_pos; i++)
1232         {
1233                 uint32_t value;
1234                 if (!readLong(&value))
1235                 {
1236                         fprintf(stderr, "Could not read from zy1000 server\n");
1237                         exit(-1);
1238                 }
1239
1240                 uint8_t *in_value = readqueue[i].dest;
1241                 int k = readqueue[i].bits;
1242
1243                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1244                 value >>= 32-k;
1245
1246                 for (int l = 0; l < k; l += 8)
1247                 {
1248                         in_value[l/8]=(value >> l)&0xff;
1249                 }
1250         }
1251         readqueue_pos = 0;
1252 }
1253
1254 /* By queuing the callback's we avoid flushing the
1255 read queue until jtag_execute_queue(). This can
1256 reduce latency dramatically for cases where
1257 callbacks are used extensively.
1258 */
1259 #define callbackqueue_size 128
1260 static struct callbackentry
1261 {
1262         jtag_callback_t callback;
1263         jtag_callback_data_t data0;
1264         jtag_callback_data_t data1;
1265         jtag_callback_data_t data2;
1266         jtag_callback_data_t data3;
1267 } callbackqueue[callbackqueue_size];
1268
1269 static int callbackqueue_pos = 0;
1270
1271 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1272 {
1273         if (callbackqueue_pos >= callbackqueue_size)
1274         {
1275                 zy1000_flush_callbackqueue();
1276         }
1277
1278         callbackqueue[callbackqueue_pos].callback = callback;
1279         callbackqueue[callbackqueue_pos].data0 = data0;
1280         callbackqueue[callbackqueue_pos].data1 = data1;
1281         callbackqueue[callbackqueue_pos].data2 = data2;
1282         callbackqueue[callbackqueue_pos].data3 = data3;
1283         callbackqueue_pos++;
1284 }
1285
1286 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1287 {
1288         ((jtag_callback1_t)data1)(data0);
1289         return ERROR_OK;
1290 }
1291
1292 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1293 {
1294         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1295 }
1296
1297 void zy1000_flush_callbackqueue(void)
1298 {
1299         /* we have to flush the read queue so we have access to
1300          the data the callbacks will use 
1301         */
1302         zy1000_flush_readqueue();
1303         int i;
1304         for (i = 0; i < callbackqueue_pos; i++)
1305         {
1306                 struct callbackentry *entry = &callbackqueue[i];
1307                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1308         }
1309         callbackqueue_pos = 0;
1310 }
1311
1312 static void writeShiftValue(uint8_t *data, int bits)
1313 {
1314         waitIdle();
1315
1316         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1317         {
1318                 fprintf(stderr, "Could not read from zy1000 server\n");
1319                 exit(-1);
1320         }
1321
1322         if (readqueue_pos >= readqueue_size)
1323         {
1324                 zy1000_flush_readqueue();
1325         }
1326
1327         readqueue[readqueue_pos].dest = data;
1328         readqueue[readqueue_pos].bits = bits;
1329         readqueue_pos++;
1330 }
1331
1332 #else
1333
1334 static void writeShiftValue(uint8_t *data, int bits)
1335 {
1336         uint32_t value;
1337         waitIdle();
1338         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1339         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1340
1341         // data in, LSB to MSB
1342         // we're shifting in data to MSB, shift data to be aligned for returning the value
1343         value >>= 32 - bits;
1344
1345         for (int l = 0; l < bits; l += 8)
1346         {
1347                 data[l/8]=(value >> l)&0xff;
1348         }
1349 }
1350
1351 #endif
1352
1353 #if BUILD_ECOSBOARD
1354 static char tcpip_stack[2048];
1355 static cyg_thread tcpip_thread_object;
1356 static cyg_handle_t tcpip_thread_handle;
1357
1358 static char watchdog_stack[2048];
1359 static cyg_thread watchdog_thread_object;
1360 static cyg_handle_t watchdog_thread_handle;
1361
1362 /* Infinite loop peeking & poking */
1363 static void tcpipserver(void)
1364 {
1365         for (;;)
1366         {
1367                 uint32_t address;
1368                 if (!readLong(&address))
1369                         return;
1370                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1371                 address &= 0xffffff;
1372                 switch (c)
1373                 {
1374                         case ZY1000_CMD_POKE:
1375                         {
1376                                 uint32_t data;
1377                                 if (!readLong(&data))
1378                                         return;
1379                                 address &= ~0x80000000;
1380                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1381                                 break;
1382                         }
1383                         case ZY1000_CMD_PEEK:
1384                         {
1385                                 uint32_t data;
1386                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1387                                 if (!writeLong(data))
1388                                         return;
1389                                 break;
1390                         }
1391                         case ZY1000_CMD_SLEEP:
1392                         {
1393                                 uint32_t data;
1394                                 if (!readLong(&data))
1395                                         return;
1396                                 jtag_sleep(data);
1397                                 break;
1398                         }
1399                         case ZY1000_CMD_WAITIDLE:
1400                         {
1401                                 waitIdle();
1402                                 break;
1403                         }
1404                         default:
1405                                 return;
1406                 }
1407         }
1408 }
1409
1410
1411 static void tcpip_server(cyg_addrword_t data)
1412 {
1413         int so_reuseaddr_option = 1;
1414
1415         int fd;
1416         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1417         {
1418                 LOG_ERROR("error creating socket: %s", strerror(errno));
1419                 exit(-1);
1420         }
1421
1422         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1423                         sizeof(int));
1424
1425         struct sockaddr_in sin;
1426         unsigned int address_size;
1427         address_size = sizeof(sin);
1428         memset(&sin, 0, sizeof(sin));
1429         sin.sin_family = AF_INET;
1430         sin.sin_addr.s_addr = INADDR_ANY;
1431         sin.sin_port = htons(7777);
1432
1433         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1434         {
1435                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1436                 exit(-1);
1437         }
1438
1439         if (listen(fd, 1) == -1)
1440         {
1441                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1442                 exit(-1);
1443         }
1444
1445
1446         for (;;)
1447         {
1448                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1449                 if (tcp_ip < 0)
1450                 {
1451                         continue;
1452                 }
1453
1454                 int flag = 1;
1455                 setsockopt(tcp_ip,      /* socket affected */
1456                                 IPPROTO_TCP,            /* set option at TCP level */
1457                                 TCP_NODELAY,            /* name of option */
1458                                 (char *)&flag,          /* the cast is historical cruft */
1459                                 sizeof(int));           /* length of option value */
1460
1461                 bool save_poll = jtag_poll_get_enabled();
1462
1463                 /* polling will screw up the "connection" */
1464                 jtag_poll_set_enabled(false);
1465
1466                 tcpipserver();
1467
1468                 jtag_poll_set_enabled(save_poll);
1469
1470                 close(tcp_ip);
1471
1472         }
1473         close(fd);
1474
1475 }
1476
1477 #ifdef WATCHDOG_BASE
1478 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1479 static void watchdog_server(cyg_addrword_t data)
1480 {
1481         int so_reuseaddr_option = 1;
1482
1483         int fd;
1484         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1485         {
1486                 LOG_ERROR("error creating socket: %s", strerror(errno));
1487                 exit(-1);
1488         }
1489
1490         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1491                         sizeof(int));
1492
1493         struct sockaddr_in sin;
1494         unsigned int address_size;
1495         address_size = sizeof(sin);
1496         memset(&sin, 0, sizeof(sin));
1497         sin.sin_family = AF_INET;
1498         sin.sin_addr.s_addr = INADDR_ANY;
1499         sin.sin_port = htons(8888);
1500
1501         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1502         {
1503                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1504                 exit(-1);
1505         }
1506
1507         if (listen(fd, 1) == -1)
1508         {
1509                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1510                 exit(-1);
1511         }
1512
1513
1514         for (;;)
1515         {
1516                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1517
1518                 /* Start watchdog, must be reset every 10 seconds. */
1519                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1520
1521                 if (watchdog_ip < 0)
1522                 {
1523                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1524                         exit(-1);
1525                 }
1526
1527                 int flag = 1;
1528                 setsockopt(watchdog_ip, /* socket affected */
1529                                 IPPROTO_TCP,            /* set option at TCP level */
1530                                 TCP_NODELAY,            /* name of option */
1531                                 (char *)&flag,          /* the cast is historical cruft */
1532                                 sizeof(int));           /* length of option value */
1533
1534
1535                 char buf;
1536                 for (;;)
1537                 {
1538                         if (read(watchdog_ip, &buf, 1) == 1)
1539                         {
1540                                 /* Reset timer */
1541                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1542                                 /* Echo so we can telnet in and see that resetting works */
1543                                 write(watchdog_ip, &buf, 1);
1544                         } else
1545                         {
1546                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1547                                  * now.
1548                                  */
1549                                 return;
1550                         }
1551
1552                 }
1553
1554                 /* Never reached */
1555         }
1556 }
1557 #endif
1558
1559 #endif
1560
1561 #if BUILD_ZY1000_MASTER
1562 int interface_jtag_add_sleep(uint32_t us)
1563 {
1564         jtag_sleep(us);
1565         return ERROR_OK;
1566 }
1567 #endif
1568
1569 #if BUILD_ZY1000_MASTER && !BUILD_ECOSBOARD
1570 volatile void *zy1000_jtag_master;
1571 #include <sys/mman.h>
1572 #endif
1573
1574 int zy1000_init(void)
1575 {
1576 #if BUILD_ECOSBOARD
1577         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1578 #elif BUILD_ZY1000_MASTER
1579         int fd;
1580         if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
1581         {
1582                 LOG_ERROR("No access to /dev/mem");
1583                 return ERROR_FAIL;
1584         }
1585 #ifndef REGISTERS_BASE
1586 #define REGISTERS_BASE 0x9002000
1587 #define REGISTERS_SPAN 128
1588 #endif
1589     
1590     zy1000_jtag_master = mmap(0, REGISTERS_SPAN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, REGISTERS_BASE);
1591     
1592     if(zy1000_jtag_master == (void *) -1) 
1593     {
1594             close(fd);
1595                 LOG_ERROR("No access to /dev/mem");
1596                 return ERROR_FAIL;
1597     } 
1598 #endif
1599
1600
1601
1602         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1603
1604         setPower(true); // on by default
1605
1606
1607          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1608         zy1000_reset(0, 0);
1609         int jtag_speed_var;
1610         int retval = jtag_get_speed(&jtag_speed_var);
1611         if (retval != ERROR_OK)
1612                 return retval;
1613         zy1000_speed(jtag_speed_var);
1614
1615
1616 #if BUILD_ECOSBOARD
1617         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1618                         (void *) tcpip_stack, sizeof(tcpip_stack),
1619                         &tcpip_thread_handle, &tcpip_thread_object);
1620         cyg_thread_resume(tcpip_thread_handle);
1621 #ifdef WATCHDOG_BASE
1622         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1623                         (void *) watchdog_stack, sizeof(watchdog_stack),
1624                         &watchdog_thread_handle, &watchdog_thread_object);
1625         cyg_thread_resume(watchdog_thread_handle);
1626 #endif
1627 #endif
1628
1629         return ERROR_OK;
1630 }
1631
1632
1633
1634 struct jtag_interface zy1000_interface =
1635 {
1636         .name = "ZY1000",
1637         .supported = DEBUG_CAP_TMS_SEQ,
1638         .execute_queue = NULL,
1639         .speed = zy1000_speed,
1640         .commands = zy1000_commands,
1641         .init = zy1000_init,
1642         .quit = zy1000_quit,
1643         .khz = zy1000_khz,
1644         .speed_div = zy1000_speed_div,
1645         .power_dropout = zy1000_power_dropout,
1646         .srst_asserted = zy1000_srst_asserted,
1647 };