]> git.sur5r.net Git - openocd/blob - src/jtag/zy1000/zy1000.c
a2b88917f2e5f41cb996c75bf0c37176c2337e44
[openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
66
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
72
73 #endif
74
75
76 /* The software needs to check if it's in RCLK mode or not */
77 static bool zy1000_rclk = false;
78
79 static int zy1000_khz(int khz, int *jtag_speed)
80 {
81         if (khz == 0)
82         {
83                 *jtag_speed = 0;
84         }
85         else
86         {
87                 *jtag_speed = 64000/khz;
88         }
89         return ERROR_OK;
90 }
91
92 static int zy1000_speed_div(int speed, int *khz)
93 {
94         if (speed == 0)
95         {
96                 *khz = 0;
97         }
98         else
99         {
100                 *khz = 64000/speed;
101         }
102
103         return ERROR_OK;
104 }
105
106 static bool readPowerDropout(void)
107 {
108         uint32_t state;
109         // sample and clear power dropout
110         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
111         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
112         bool powerDropout;
113         powerDropout = (state & 0x80) != 0;
114         return powerDropout;
115 }
116
117
118 static bool readSRST(void)
119 {
120         uint32_t state;
121         // sample and clear SRST sensing
122         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
123         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
124         bool srstAsserted;
125         srstAsserted = (state & 0x40) != 0;
126         return srstAsserted;
127 }
128
129 static int zy1000_srst_asserted(int *srst_asserted)
130 {
131         *srst_asserted = readSRST();
132         return ERROR_OK;
133 }
134
135 static int zy1000_power_dropout(int *dropout)
136 {
137         *dropout = readPowerDropout();
138         return ERROR_OK;
139 }
140
141 void zy1000_reset(int trst, int srst)
142 {
143         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
144
145         /* flush the JTAG FIFO. Not flushing the queue before messing with
146          * reset has such interesting bugs as causing hard to reproduce
147          * RCLK bugs as RCLK will stop responding when TRST is asserted
148          */
149         waitIdle();
150
151         if (!srst)
152         {
153                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
154         }
155         else
156         {
157                 /* Danger!!! if clk != 0 when in
158                  * idle in TAP_IDLE, reset halt on str912 will fail.
159                  */
160                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
161         }
162
163         if (!trst)
164         {
165                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
166         }
167         else
168         {
169                 /* assert reset */
170                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
171         }
172
173         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
174         {
175                 /* we're now in the RESET state until trst is deasserted */
176                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
177         } else
178         {
179                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
180                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
181         }
182
183         /* wait for srst to float back up */
184         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
185                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
186         {
187                 bool first = true;
188                 long long start = 0;
189                 long total = 0;
190                 for (;;)
191                 {       
192                         // We don't want to sense our own reset, so we clear here.
193                         // There is of course a timing hole where we could loose
194                         // a "real" reset.
195                         if (!readSRST())
196                         {
197                                 if (total > 1)
198                                 {
199                                   LOG_USER("SRST took %dms to deassert", (int)total);
200                                 }
201                                 break;
202                         }
203
204                         if (first)
205                         {
206                             first = false;
207                             start = timeval_ms();
208                         }
209
210                         total = timeval_ms() - start;
211
212                         keep_alive();
213
214                         if (total > 5000)
215                         {
216                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
217                             break;
218                         }
219                 }
220
221         }
222 }
223
224 int zy1000_speed(int speed)
225 {
226         /* flush JTAG master FIFO before setting speed */
227         waitIdle();
228
229         zy1000_rclk = false;
230
231         if (speed == 0)
232         {
233                 /*0 means RCLK*/
234                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
235                 zy1000_rclk = true;
236                 LOG_DEBUG("jtag_speed using RCLK");
237         }
238         else
239         {
240                 if (speed > 8190 || speed < 2)
241                 {
242                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
243                         return ERROR_INVALID_ARGUMENTS;
244                 }
245
246                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
247                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
248                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
249         }
250         return ERROR_OK;
251 }
252
253 static bool savePower;
254
255
256 static void setPower(bool power)
257 {
258         savePower = power;
259         if (power)
260         {
261                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
262         } else
263         {
264                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
265         }
266 }
267
268 COMMAND_HANDLER(handle_power_command)
269 {
270         switch (CMD_ARGC)
271         {
272         case 1: {
273                 bool enable;
274                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
275                 setPower(enable);
276                 // fall through
277         }
278         case 0:
279                 LOG_INFO("Target power %s", savePower ? "on" : "off");
280                 break;
281         default:
282                 return ERROR_INVALID_ARGUMENTS;
283         }
284
285         return ERROR_OK;
286 }
287
288 #if !BUILD_ECOSBOARD
289 static char *tcp_server = "notspecified";
290 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
291 {
292         if (argc != 2)
293                 return JIM_ERR;
294
295         tcp_server = strdup(Jim_GetString(argv[1], NULL));
296
297         return JIM_OK;
298 }
299 #endif
300
301 #if BUILD_ECOSBOARD
302 /* Give TELNET a way to find out what version this is */
303 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
304 {
305         if ((argc < 1) || (argc > 3))
306                 return JIM_ERR;
307         const char *version_str = NULL;
308
309         if (argc == 1)
310         {
311                 version_str = ZYLIN_OPENOCD_VERSION;
312         } else
313         {
314                 const char *str = Jim_GetString(argv[1], NULL);
315                 const char *str2 = NULL;
316                 if (argc > 2)
317                         str2 = Jim_GetString(argv[2], NULL);
318                 if (strcmp("openocd", str) == 0)
319                 {
320                         version_str = ZYLIN_OPENOCD;
321                 }
322                 else if (strcmp("zy1000", str) == 0)
323                 {
324                         version_str = ZYLIN_VERSION;
325                 }
326                 else if (strcmp("date", str) == 0)
327                 {
328                         version_str = ZYLIN_DATE;
329                 }
330                 else if (strcmp("time", str) == 0)
331                 {
332                         version_str = ZYLIN_TIME;
333                 }
334                 else if (strcmp("pcb", str) == 0)
335                 {
336 #ifdef CYGPKG_HAL_NIOS2
337                         version_str="c";
338 #else
339                         version_str="b";
340 #endif
341                 }
342 #ifdef CYGPKG_HAL_NIOS2
343                 else if (strcmp("fpga", str) == 0)
344                 {
345
346                         /* return a list of 32 bit integers to describe the expected
347                          * and actual FPGA
348                          */
349                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
350                         uint32_t id, timestamp;
351                         HAL_READ_UINT32(SYSID_BASE, id);
352                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
353                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
354                         version_str = fpga_id;
355                         if ((argc>2) && (strcmp("time", str2) == 0))
356                         {
357                             time_t last_mod = timestamp;
358                             char * t = ctime (&last_mod) ;
359                             t[strlen(t)-1] = 0;
360                             version_str = t;
361                         }
362                 }
363 #endif
364
365                 else
366                 {
367                         return JIM_ERR;
368                 }
369         }
370
371         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
372
373         return JIM_OK;
374 }
375 #endif
376
377 #ifdef CYGPKG_HAL_NIOS2
378
379
380 struct info_forward
381 {
382         void *data;
383         struct cyg_upgrade_info *upgraded_file;
384 };
385
386 static void report_info(void *data, const char * format, va_list args)
387 {
388         char *s = alloc_vprintf(format, args);
389         LOG_USER_N("%s", s);
390         free(s);
391 }
392
393 struct cyg_upgrade_info firmware_info =
394 {
395                 (uint8_t *)0x84000000,
396                 "/ram/firmware.phi",
397                 "Firmware",
398                 0x0300000,
399                 0x1f00000 -
400                 0x0300000,
401                 "ZylinNiosFirmware\n",
402                 report_info,
403 };
404
405 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
406 {
407         if (argc != 2)
408                 return JIM_ERR;
409
410         int length;
411         const char *str = Jim_GetString(argv[1], &length);
412
413         /* */
414         int tmpFile;
415         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
416         {
417                 return JIM_ERR;
418         }
419         bool success;
420         success = write(tmpFile, str, length) == length;
421         close(tmpFile);
422         if (!success)
423                 return JIM_ERR;
424
425         if (!cyg_firmware_upgrade(NULL, firmware_info))
426                 return JIM_ERR;
427
428         return JIM_OK;
429 }
430 #endif
431
432 static int
433 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
434                                                                    int argc,
435                 Jim_Obj * const *argv)
436 {
437         if (argc != 1)
438         {
439                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
440                 return JIM_ERR;
441         }
442
443         bool dropout = readPowerDropout();
444
445         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
446
447         return JIM_OK;
448 }
449
450
451
452 int zy1000_quit(void)
453 {
454
455         return ERROR_OK;
456 }
457
458
459
460 int interface_jtag_execute_queue(void)
461 {
462         uint32_t empty;
463
464         waitIdle();
465
466         /* We must make sure to write data read back to memory location before we return
467          * from this fn
468          */
469         zy1000_flush_readqueue();
470
471         if (zy1000_rclk)
472         {
473                 /* Only check for errors when using RCLK to speed up
474                  * jtag over TCP/IP
475                  */
476                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
477                 /* clear JTAG error register */
478                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
479
480                 if ((empty&0x400) != 0)
481                 {
482                         LOG_WARNING("RCLK timeout");
483                         /* the error is informative only as we don't want to break the firmware if there
484                          * is a false positive.
485                          */
486         //              return ERROR_FAIL;
487                 }
488         }
489         return ERROR_OK;
490 }
491
492
493
494
495 static void writeShiftValue(uint8_t *data, int bits);
496
497 // here we shuffle N bits out/in
498 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
499 {
500         tap_state_t pause_state = shiftState;
501         for (int j = 0; j < num_bits; j += 32)
502         {
503                 int k = num_bits - j;
504                 if (k > 32)
505                 {
506                         k = 32;
507                         /* we have more to shift out */
508                 } else if (pause_now)
509                 {
510                         /* this was the last to shift out this time */
511                         pause_state = end_state;
512                 }
513
514                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
515                 // bits are pushed out LSB to MSB
516                 uint32_t value;
517                 value = 0;
518                 if (out_value != NULL)
519                 {
520                         for (int l = 0; l < k; l += 8)
521                         {
522                                 value|=out_value[(j + l)/8]<<l;
523                         }
524                 }
525                 /* mask away unused bits for easier debugging */
526                 if (k < 32)
527                 {
528                         value&=~(((uint32_t)0xffffffff) << k);
529                 } else
530                 {
531                         /* Shifting by >= 32 is not defined by the C standard
532                          * and will in fact shift by &0x1f bits on nios */
533                 }
534
535                 shiftValueInner(shiftState, pause_state, k, value);
536
537                 if (in_value != NULL)
538                 {
539                         writeShiftValue(in_value + (j/8), k);
540                 }
541         }
542 }
543
544 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
545 {
546         for (int i = 0; i < num_fields; i++)
547         {
548                 scanBits(fields[i].out_value,
549                                 fields[i].in_value,
550                                 fields[i].num_bits,
551                                 (i == num_fields-1),
552                                 shiftState,
553                                 end_state);
554         }
555 }
556
557 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
558 {
559         int scan_size = 0;
560         struct jtag_tap *tap, *nextTap;
561         tap_state_t pause_state = TAP_IRSHIFT;
562
563         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
564         {
565                 nextTap = jtag_tap_next_enabled(tap);
566                 if (nextTap==NULL)
567                 {
568                         pause_state = state;
569                 }
570                 scan_size = tap->ir_length;
571
572                 /* search the list */
573                 if (tap == active)
574                 {
575                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
576                         /* update device information */
577                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
578
579                         tap->bypass = 0;
580                 } else
581                 {
582                         /* if a device isn't listed, set it to BYPASS */
583                         assert(scan_size <= 32);
584                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
585
586                         tap->bypass = 1;
587                 }
588         }
589
590         return ERROR_OK;
591 }
592
593
594
595
596
597 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
598 {
599         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
600         return ERROR_OK;
601 }
602
603 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
604 {
605         struct jtag_tap *tap, *nextTap;
606         tap_state_t pause_state = TAP_DRSHIFT;
607         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
608         {
609                 nextTap = jtag_tap_next_enabled(tap);
610                 if (nextTap==NULL)
611                 {
612                         pause_state = state;
613                 }
614
615                 /* Find a range of fields to write to this tap */
616                 if (tap == active)
617                 {
618                         assert(!tap->bypass);
619
620                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
621                 } else
622                 {
623                         /* Shift out a 0 for disabled tap's */
624                         assert(tap->bypass);
625                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
626                 }
627         }
628         return ERROR_OK;
629 }
630
631 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
632 {
633         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
634         return ERROR_OK;
635 }
636
637 int interface_jtag_add_tlr()
638 {
639         setCurrentState(TAP_RESET);
640         return ERROR_OK;
641 }
642
643
644 int interface_jtag_add_reset(int req_trst, int req_srst)
645 {
646         zy1000_reset(req_trst, req_srst);
647         return ERROR_OK;
648 }
649
650 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
651 {
652         /* num_cycles can be 0 */
653         setCurrentState(clockstate);
654
655         /* execute num_cycles, 32 at the time. */
656         int i;
657         for (i = 0; i < num_cycles; i += 32)
658         {
659                 int num;
660                 num = 32;
661                 if (num_cycles-i < num)
662                 {
663                         num = num_cycles-i;
664                 }
665                 shiftValueInner(clockstate, clockstate, num, 0);
666         }
667
668 #if !TEST_MANUAL()
669         /* finish in end_state */
670         setCurrentState(state);
671 #else
672         tap_state_t t = TAP_IDLE;
673         /* test manual drive code on any target */
674         int tms;
675         uint8_t tms_scan = tap_get_tms_path(t, state);
676         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
677
678         for (i = 0; i < tms_count; i++)
679         {
680                 tms = (tms_scan >> i) & 1;
681                 waitIdle();
682                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
683         }
684         waitIdle();
685         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
686 #endif
687
688         return ERROR_OK;
689 }
690
691 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
692 {
693         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
694 }
695
696 int interface_jtag_add_clocks(int num_cycles)
697 {
698         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
699 }
700
701 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
702 {
703         /*wait for the fifo to be empty*/
704         waitIdle();
705
706         for (unsigned i = 0; i < num_bits; i++)
707         {
708                 int tms;
709
710                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
711                 {
712                         tms = 0;
713                 }
714                 else
715                 {
716                         tms = 1;
717                 }
718
719                 waitIdle();
720                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
721         }
722
723         waitIdle();
724         if (state != TAP_INVALID)
725         {
726                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
727         } else
728         {
729                 /* this would be normal if we are switching to SWD mode */
730         }
731         return ERROR_OK;
732 }
733
734 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
735 {
736         int state_count;
737         int tms = 0;
738
739         state_count = 0;
740
741         tap_state_t cur_state = cmd_queue_cur_state;
742
743         uint8_t seq[16];
744         memset(seq, 0, sizeof(seq));
745         assert(num_states < (int)((sizeof(seq) * 8)));
746
747         while (num_states)
748         {
749                 if (tap_state_transition(cur_state, false) == path[state_count])
750                 {
751                         tms = 0;
752                 }
753                 else if (tap_state_transition(cur_state, true) == path[state_count])
754                 {
755                         tms = 1;
756                 }
757                 else
758                 {
759                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
760                         exit(-1);
761                 }
762
763                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
764
765                 cur_state = path[state_count];
766                 state_count++;
767                 num_states--;
768         }
769
770         return interface_add_tms_seq(state_count, seq, cur_state);
771 }
772
773 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
774 {
775         /* bypass bits before and after */
776         int pre_bits = 0;
777         int post_bits = 0;
778
779         bool found = false;
780         struct jtag_tap *cur_tap, *nextTap;
781         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
782         {
783                 nextTap = jtag_tap_next_enabled(cur_tap);
784                 if (cur_tap == tap)
785                 {
786                         found = true;
787                 } else
788                 {
789                         if (found)
790                         {
791                                 post_bits++;
792                         } else
793                         {
794                                 pre_bits++;
795                         }
796                 }
797         }
798         *pre = pre_bits;
799         *post = post_bits;
800 }
801
802 /*
803         static const int embeddedice_num_bits[] = {32, 6};
804         uint32_t values[2];
805
806         values[0] = value;
807         values[1] = (1 << 5) | reg_addr;
808
809         jtag_add_dr_out(tap,
810                         2,
811                         embeddedice_num_bits,
812                         values,
813                         TAP_IDLE);
814 */
815
816 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
817 {
818 #if 0
819         int i;
820         for (i = 0; i < count; i++)
821         {
822                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
823                 buffer += 4;
824         }
825 #else
826         int pre_bits;
827         int post_bits;
828         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
829
830         if ((pre_bits > 32) || (post_bits + 6 > 32))
831         {
832                 int i;
833                 for (i = 0; i < count; i++)
834                 {
835                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
836                         buffer += 4;
837                 }
838         } else
839         {
840                 int i;
841                 for (i = 0; i < count; i++)
842                 {
843                         /* Fewer pokes means we get to use the FIFO more efficiently */
844                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
845                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
846                         /* Danger! here we need to exit into the TAP_IDLE state to make
847                          * DCC pick up this value.
848                          */
849                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
850                         buffer += 4;
851                 }
852         }
853 #endif
854 }
855
856
857
858 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
859 {
860         /* bypass bits before and after */
861         int pre_bits;
862         int post_bits;
863         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
864         post_bits+=2;
865
866         if ((pre_bits > 32) || (post_bits > 32))
867         {
868                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
869                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
870         } else
871         {
872                 static const int bits[] = {32, 2};
873                 uint32_t values[] = {0, 0};
874
875                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
876                  * with unaligned uint32_t * pointers... */
877                 const uint8_t *t = (const uint8_t *)data;
878
879                 while (--count > 0)
880                 {
881 #if 1
882                         /* Danger! This code doesn't update cmd_queue_cur_state, so
883                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
884                          * this loop would fail!
885                          */
886                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
887
888                         uint32_t value;
889                         value = *t++;
890                         value |= (*t++<<8);
891                         value |= (*t++<<16);
892                         value |= (*t++<<24);
893
894                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
895                         /* minimum 2 bits */
896                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
897
898                         /* copy & paste from arm11_dbgtap.c */
899                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
900                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
901                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
902                          * or in the jtag registers module.
903                          */
904                         waitIdle();
905                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
906                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
907                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
908                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
909                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
910                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
911                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
912                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
913                         /* we don't have to wait for the queue to empty here */
914                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
915                         waitIdle();
916 #else
917                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
918                         {
919                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
920                         };
921
922                         values[0] = *t++;
923                         values[0] |= (*t++<<8);
924                         values[0] |= (*t++<<16);
925                         values[0] |= (*t++<<24);
926
927                         jtag_add_dr_out(tap,
928                                 2,
929                                 bits,
930                                 values,
931                                 TAP_IDLE);
932
933                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
934                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
935 #endif
936                 }
937
938                 values[0] = *t++;
939                 values[0] |= (*t++<<8);
940                 values[0] |= (*t++<<16);
941                 values[0] |= (*t++<<24);
942
943                 /* This will happen on the last iteration updating cmd_queue_cur_state
944                  * so we don't have to track it during the common code path
945                  */
946                 jtag_add_dr_out(tap,
947                         2,
948                         bits,
949                         values,
950                         TAP_IDLE);
951
952                 return jtag_execute_queue();
953         }
954 }
955
956
957 static const struct command_registration zy1000_commands[] = {
958         {
959                 .name = "power",
960                 .handler = handle_power_command,
961                 .mode = COMMAND_ANY,
962                 .help = "Turn power switch to target on/off. "
963                         "With no arguments, prints status.",
964                 .usage = "('on'|'off)",
965         },
966 #if BUILD_ECOSBOARD
967         {
968                 .name = "zy1000_version",
969                 .mode = COMMAND_ANY,
970                 .jim_handler = jim_zy1000_version,
971                 .help = "Print version info for zy1000.",
972                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
973         },
974 #else
975         {
976                 .name = "zy1000_server",
977                 .mode = COMMAND_ANY,
978                 .jim_handler = jim_zy1000_server,
979                 .help = "Tcpip address for ZY1000 server.",
980                 .usage = "address",
981         },
982 #endif
983         {
984                 .name = "powerstatus",
985                 .mode = COMMAND_ANY,
986                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
987                 .help = "Returns power status of target",
988         },
989 #ifdef CYGPKG_HAL_NIOS2
990         {
991                 .name = "updatezy1000firmware",
992                 .mode = COMMAND_ANY,
993                 .jim_handler = jim_zy1000_writefirmware,
994                 .help = "writes firmware to flash",
995                 /* .usage = "some_string", */
996         },
997 #endif
998         COMMAND_REGISTRATION_DONE
999 };
1000
1001
1002 static int tcp_ip = -1;
1003
1004 /* Write large packets if we can */
1005 static size_t out_pos;
1006 static uint8_t out_buffer[16384];
1007 static size_t in_pos;
1008 static size_t in_write;
1009 static uint8_t in_buffer[16384];
1010
1011 static bool flush_writes(void)
1012 {
1013         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1014         out_pos = 0;
1015         return ok;
1016 }
1017
1018 static bool writeLong(uint32_t l)
1019 {
1020         int i;
1021         for (i = 0; i < 4; i++)
1022         {
1023                 uint8_t c = (l >> (i*8))&0xff;
1024                 out_buffer[out_pos++] = c;
1025                 if (out_pos >= sizeof(out_buffer))
1026                 {
1027                         if (!flush_writes())
1028                         {
1029                                 return false;
1030                         }
1031                 }
1032         }
1033         return true;
1034 }
1035
1036 static bool readLong(uint32_t *out_data)
1037 {
1038         if (out_pos > 0)
1039         {
1040                 if (!flush_writes())
1041                 {
1042                         return false;
1043                 }
1044         }
1045
1046         uint32_t data = 0;
1047         int i;
1048         for (i = 0; i < 4; i++)
1049         {
1050                 uint8_t c;
1051                 if (in_pos == in_write)
1052                 {
1053                         /* read more */
1054                         int t;
1055                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1056                         if (t < 1)
1057                         {
1058                                 return false;
1059                         }
1060                         in_write = (size_t) t;
1061                         in_pos = 0;
1062                 }
1063                 c = in_buffer[in_pos++];
1064
1065                 data |= (c << (i*8));
1066         }
1067         *out_data = data;
1068         return true;
1069 }
1070
1071 enum ZY1000_CMD
1072 {
1073         ZY1000_CMD_POKE = 0x0,
1074         ZY1000_CMD_PEEK = 0x8,
1075         ZY1000_CMD_SLEEP = 0x1,
1076         ZY1000_CMD_WAITIDLE = 2
1077 };
1078
1079
1080 #if !BUILD_ECOSBOARD
1081
1082 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1083 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1084
1085 /* We initialize this late since we need to know the server address
1086  * first.
1087  */
1088 static void tcpip_open(void)
1089 {
1090         if (tcp_ip >= 0)
1091                 return;
1092
1093         struct sockaddr_in echoServAddr; /* Echo server address */
1094
1095         /* Create a reliable, stream socket using TCP */
1096         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1097         {
1098                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1099                 exit(-1);
1100         }
1101
1102         /* Construct the server address structure */
1103         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1104         echoServAddr.sin_family = AF_INET; /* Internet address family */
1105         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1106         echoServAddr.sin_port = htons(7777); /* Server port */
1107
1108         /* Establish the connection to the echo server */
1109         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1110         {
1111                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1112                 exit(-1);
1113         }
1114
1115         int flag = 1;
1116         setsockopt(tcp_ip,      /* socket affected */
1117                         IPPROTO_TCP,            /* set option at TCP level */
1118                         TCP_NODELAY,            /* name of option */
1119                         (char *)&flag,          /* the cast is historical cruft */
1120                         sizeof(int));           /* length of option value */
1121
1122 }
1123
1124
1125 /* send a poke */
1126 void zy1000_tcpout(uint32_t address, uint32_t data)
1127 {
1128         tcpip_open();
1129         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1130                         !writeLong(data))
1131         {
1132                 fprintf(stderr, "Could not write to zy1000 server\n");
1133                 exit(-1);
1134         }
1135 }
1136
1137 /* By sending the wait to the server, we avoid a readback
1138  * of status. Radically improves performance for this operation
1139  * with long ping times.
1140  */
1141 void waitIdle(void)
1142 {
1143         tcpip_open();
1144         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1145         {
1146                 fprintf(stderr, "Could not write to zy1000 server\n");
1147                 exit(-1);
1148         }
1149 }
1150
1151 uint32_t zy1000_tcpin(uint32_t address)
1152 {
1153         tcpip_open();
1154
1155         zy1000_flush_readqueue();
1156
1157         uint32_t data;
1158         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1159                         !readLong(&data))
1160         {
1161                 fprintf(stderr, "Could not read from zy1000 server\n");
1162                 exit(-1);
1163         }
1164         return data;
1165 }
1166
1167 int interface_jtag_add_sleep(uint32_t us)
1168 {
1169         tcpip_open();
1170         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1171                         !writeLong(us))
1172         {
1173                 fprintf(stderr, "Could not read from zy1000 server\n");
1174                 exit(-1);
1175         }
1176         return ERROR_OK;
1177 }
1178
1179 /* queue a readback */
1180 #define readqueue_size 16384
1181 static struct
1182 {
1183         uint8_t *dest;
1184         int bits;
1185 } readqueue[readqueue_size];
1186
1187 static int readqueue_pos = 0;
1188
1189 /* flush the readqueue, this means reading any data that
1190  * we're expecting and store them into the final position
1191  */
1192 void zy1000_flush_readqueue(void)
1193 {
1194         if (readqueue_pos == 0)
1195         {
1196                 /* simply debugging by allowing easy breakpoints when there
1197                  * is something to do. */
1198                 return;
1199         }
1200         int i;
1201         tcpip_open();
1202         for (i = 0; i < readqueue_pos; i++)
1203         {
1204                 uint32_t value;
1205                 if (!readLong(&value))
1206                 {
1207                         fprintf(stderr, "Could not read from zy1000 server\n");
1208                         exit(-1);
1209                 }
1210
1211                 uint8_t *in_value = readqueue[i].dest;
1212                 int k = readqueue[i].bits;
1213
1214                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1215                 value >>= 32-k;
1216
1217                 for (int l = 0; l < k; l += 8)
1218                 {
1219                         in_value[l/8]=(value >> l)&0xff;
1220                 }
1221         }
1222         readqueue_pos = 0;
1223 }
1224
1225 static void writeShiftValue(uint8_t *data, int bits)
1226 {
1227         waitIdle();
1228
1229         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1230         {
1231                 fprintf(stderr, "Could not read from zy1000 server\n");
1232                 exit(-1);
1233         }
1234
1235         if (readqueue_pos >= readqueue_size)
1236         {
1237                 zy1000_flush_readqueue();
1238         }
1239
1240         readqueue[readqueue_pos].dest = data;
1241         readqueue[readqueue_pos].bits = bits;
1242         readqueue_pos++;
1243 }
1244
1245 #else
1246
1247 static void writeShiftValue(uint8_t *data, int bits)
1248 {
1249         uint32_t value;
1250         waitIdle();
1251         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1252         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1253
1254         // data in, LSB to MSB
1255         // we're shifting in data to MSB, shift data to be aligned for returning the value
1256         value >>= 32 - bits;
1257
1258         for (int l = 0; l < bits; l += 8)
1259         {
1260                 data[l/8]=(value >> l)&0xff;
1261         }
1262 }
1263
1264 #endif
1265
1266 #if BUILD_ECOSBOARD
1267 static char tcpip_stack[2048];
1268 static cyg_thread tcpip_thread_object;
1269 static cyg_handle_t tcpip_thread_handle;
1270
1271 static char watchdog_stack[2048];
1272 static cyg_thread watchdog_thread_object;
1273 static cyg_handle_t watchdog_thread_handle;
1274
1275 /* Infinite loop peeking & poking */
1276 static void tcpipserver(void)
1277 {
1278         for (;;)
1279         {
1280                 uint32_t address;
1281                 if (!readLong(&address))
1282                         return;
1283                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1284                 address &= 0xffffff;
1285                 switch (c)
1286                 {
1287                         case ZY1000_CMD_POKE:
1288                         {
1289                                 uint32_t data;
1290                                 if (!readLong(&data))
1291                                         return;
1292                                 address &= ~0x80000000;
1293                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1294                                 break;
1295                         }
1296                         case ZY1000_CMD_PEEK:
1297                         {
1298                                 uint32_t data;
1299                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1300                                 if (!writeLong(data))
1301                                         return;
1302                                 break;
1303                         }
1304                         case ZY1000_CMD_SLEEP:
1305                         {
1306                                 uint32_t data;
1307                                 if (!readLong(&data))
1308                                         return;
1309                                 jtag_sleep(data);
1310                                 break;
1311                         }
1312                         case ZY1000_CMD_WAITIDLE:
1313                         {
1314                                 waitIdle();
1315                                 break;
1316                         }
1317                         default:
1318                                 return;
1319                 }
1320         }
1321 }
1322
1323
1324 static void tcpip_server(cyg_addrword_t data)
1325 {
1326         int so_reuseaddr_option = 1;
1327
1328         int fd;
1329         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1330         {
1331                 LOG_ERROR("error creating socket: %s", strerror(errno));
1332                 exit(-1);
1333         }
1334
1335         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1336                         sizeof(int));
1337
1338         struct sockaddr_in sin;
1339         unsigned int address_size;
1340         address_size = sizeof(sin);
1341         memset(&sin, 0, sizeof(sin));
1342         sin.sin_family = AF_INET;
1343         sin.sin_addr.s_addr = INADDR_ANY;
1344         sin.sin_port = htons(7777);
1345
1346         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1347         {
1348                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1349                 exit(-1);
1350         }
1351
1352         if (listen(fd, 1) == -1)
1353         {
1354                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1355                 exit(-1);
1356         }
1357
1358
1359         for (;;)
1360         {
1361                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1362                 if (tcp_ip < 0)
1363                 {
1364                         continue;
1365                 }
1366
1367                 int flag = 1;
1368                 setsockopt(tcp_ip,      /* socket affected */
1369                                 IPPROTO_TCP,            /* set option at TCP level */
1370                                 TCP_NODELAY,            /* name of option */
1371                                 (char *)&flag,          /* the cast is historical cruft */
1372                                 sizeof(int));           /* length of option value */
1373
1374                 bool save_poll = jtag_poll_get_enabled();
1375
1376                 /* polling will screw up the "connection" */
1377                 jtag_poll_set_enabled(false);
1378
1379                 tcpipserver();
1380
1381                 jtag_poll_set_enabled(save_poll);
1382
1383                 close(tcp_ip);
1384
1385         }
1386         close(fd);
1387
1388 }
1389
1390 #ifdef WATCHDOG_BASE
1391 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1392 static void watchdog_server(cyg_addrword_t data)
1393 {
1394         int so_reuseaddr_option = 1;
1395
1396         int fd;
1397         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1398         {
1399                 LOG_ERROR("error creating socket: %s", strerror(errno));
1400                 exit(-1);
1401         }
1402
1403         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1404                         sizeof(int));
1405
1406         struct sockaddr_in sin;
1407         unsigned int address_size;
1408         address_size = sizeof(sin);
1409         memset(&sin, 0, sizeof(sin));
1410         sin.sin_family = AF_INET;
1411         sin.sin_addr.s_addr = INADDR_ANY;
1412         sin.sin_port = htons(8888);
1413
1414         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1415         {
1416                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1417                 exit(-1);
1418         }
1419
1420         if (listen(fd, 1) == -1)
1421         {
1422                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1423                 exit(-1);
1424         }
1425
1426
1427         for (;;)
1428         {
1429                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1430
1431                 /* Start watchdog, must be reset every 10 seconds. */
1432                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1433
1434                 if (watchdog_ip < 0)
1435                 {
1436                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1437                         exit(-1);
1438                 }
1439
1440                 int flag = 1;
1441                 setsockopt(watchdog_ip, /* socket affected */
1442                                 IPPROTO_TCP,            /* set option at TCP level */
1443                                 TCP_NODELAY,            /* name of option */
1444                                 (char *)&flag,          /* the cast is historical cruft */
1445                                 sizeof(int));           /* length of option value */
1446
1447
1448                 char buf;
1449                 for (;;)
1450                 {
1451                         if (read(watchdog_ip, &buf, 1) == 1)
1452                         {
1453                                 /* Reset timer */
1454                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1455                                 /* Echo so we can telnet in and see that resetting works */
1456                                 write(watchdog_ip, &buf, 1);
1457                         } else
1458                         {
1459                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1460                                  * now.
1461                                  */
1462                                 return;
1463                         }
1464
1465                 }
1466
1467                 /* Never reached */
1468         }
1469 }
1470 #endif
1471
1472 int interface_jtag_add_sleep(uint32_t us)
1473 {
1474         jtag_sleep(us);
1475         return ERROR_OK;
1476 }
1477
1478 #endif
1479
1480
1481 int zy1000_init(void)
1482 {
1483 #if BUILD_ECOSBOARD
1484         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1485 #endif
1486
1487         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1488
1489         setPower(true); // on by default
1490
1491
1492          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1493         zy1000_reset(0, 0);
1494         zy1000_speed(jtag_get_speed());
1495
1496
1497 #if BUILD_ECOSBOARD
1498         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1499                         (void *) tcpip_stack, sizeof(tcpip_stack),
1500                         &tcpip_thread_handle, &tcpip_thread_object);
1501         cyg_thread_resume(tcpip_thread_handle);
1502 #ifdef WATCHDOG_BASE
1503         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1504                         (void *) watchdog_stack, sizeof(watchdog_stack),
1505                         &watchdog_thread_handle, &watchdog_thread_object);
1506         cyg_thread_resume(watchdog_thread_handle);
1507 #endif
1508 #endif
1509
1510         return ERROR_OK;
1511 }
1512
1513
1514
1515 struct jtag_interface zy1000_interface =
1516 {
1517         .name = "ZY1000",
1518         .supported = DEBUG_CAP_TMS_SEQ,
1519         .execute_queue = NULL,
1520         .speed = zy1000_speed,
1521         .commands = zy1000_commands,
1522         .init = zy1000_init,
1523         .quit = zy1000_quit,
1524         .khz = zy1000_khz,
1525         .speed_div = zy1000_speed_div,
1526         .power_dropout = zy1000_power_dropout,
1527         .srst_asserted = zy1000_srst_asserted,
1528 };