]> git.sur5r.net Git - openocd/blob - src/target/aarch64.c
1d2abc702713655cb27c5fcb1a5b9d89f2fb2e1f
[openocd] / src / target / aarch64.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *                                                                         *
18  ***************************************************************************/
19
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "breakpoints.h"
25 #include "aarch64.h"
26 #include "register.h"
27 #include "target_request.h"
28 #include "target_type.h"
29 #include "armv8_opcodes.h"
30 #include "armv8_cache.h"
31 #include <helper/time_support.h>
32
33 static int aarch64_poll(struct target *target);
34 static int aarch64_debug_entry(struct target *target);
35 static int aarch64_restore_context(struct target *target, bool bpwp);
36 static int aarch64_set_breakpoint(struct target *target,
37         struct breakpoint *breakpoint, uint8_t matchmode);
38 static int aarch64_set_context_breakpoint(struct target *target,
39         struct breakpoint *breakpoint, uint8_t matchmode);
40 static int aarch64_set_hybrid_breakpoint(struct target *target,
41         struct breakpoint *breakpoint);
42 static int aarch64_unset_breakpoint(struct target *target,
43         struct breakpoint *breakpoint);
44 static int aarch64_mmu(struct target *target, int *enabled);
45 static int aarch64_virt2phys(struct target *target,
46         target_addr_t virt, target_addr_t *phys);
47 static int aarch64_read_apb_ap_memory(struct target *target,
48         uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
49
50 static int aarch64_restore_system_control_reg(struct target *target)
51 {
52         int retval = ERROR_OK;
53
54         struct aarch64_common *aarch64 = target_to_aarch64(target);
55         struct armv8_common *armv8 = target_to_armv8(target);
56
57         if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
58                 aarch64->system_control_reg_curr = aarch64->system_control_reg;
59                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
60
61                 switch (armv8->arm.core_mode) {
62                         case ARMV8_64_EL0T:
63                         case ARMV8_64_EL1T:
64                         case ARMV8_64_EL1H:
65                                 retval = armv8->arm.msr(target, 3, /*op 0*/
66                                                 0, 1,   /* op1, op2 */
67                                                 0, 0,   /* CRn, CRm */
68                                                 aarch64->system_control_reg);
69                                 if (retval != ERROR_OK)
70                                         return retval;
71                         break;
72                         case ARMV8_64_EL2T:
73                         case ARMV8_64_EL2H:
74                                 retval = armv8->arm.msr(target, 3, /*op 0*/
75                                                 4, 1,   /* op1, op2 */
76                                                 0, 0,   /* CRn, CRm */
77                                                 aarch64->system_control_reg);
78                                 if (retval != ERROR_OK)
79                                         return retval;
80                         break;
81                         case ARMV8_64_EL3H:
82                         case ARMV8_64_EL3T:
83                                 retval = armv8->arm.msr(target, 3, /*op 0*/
84                                                 6, 1,   /* op1, op2 */
85                                                 0, 0,   /* CRn, CRm */
86                                                 aarch64->system_control_reg);
87                                 if (retval != ERROR_OK)
88                                         return retval;
89                         break;
90                         default:
91                                 retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
92                                 if (retval != ERROR_OK)
93                                         return retval;
94                                 break;
95                         }
96         }
97         return retval;
98 }
99
100 /*  check address before aarch64_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int aarch64_check_address(struct target *target, uint32_t address)
103 {
104         /* TODO */
105         return ERROR_OK;
106 }
107 /*  modify system_control_reg in order to enable or disable mmu for :
108  *  - virt2phys address conversion
109  *  - read or write memory in phys or virt address */
110 static int aarch64_mmu_modify(struct target *target, int enable)
111 {
112         struct aarch64_common *aarch64 = target_to_aarch64(target);
113         struct armv8_common *armv8 = &aarch64->armv8_common;
114         int retval = ERROR_OK;
115
116         if (enable) {
117                 /*      if mmu enabled at target stop and mmu not enable */
118                 if (!(aarch64->system_control_reg & 0x1U)) {
119                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
120                         return ERROR_FAIL;
121                 }
122                 if (!(aarch64->system_control_reg_curr & 0x1U)) {
123                         aarch64->system_control_reg_curr |= 0x1U;
124                         switch (armv8->arm.core_mode) {
125                                 case ARMV8_64_EL0T:
126                                 case ARMV8_64_EL1T:
127                                 case ARMV8_64_EL1H:
128                                         retval = armv8->arm.msr(target, 3, /*op 0*/
129                                                         0, 0,   /* op1, op2 */
130                                                         1, 0,   /* CRn, CRm */
131                                                         aarch64->system_control_reg_curr);
132                                         if (retval != ERROR_OK)
133                                                 return retval;
134                                 break;
135                                 case ARMV8_64_EL2T:
136                                 case ARMV8_64_EL2H:
137                                         retval = armv8->arm.msr(target, 3, /*op 0*/
138                                                         4, 0,   /* op1, op2 */
139                                                         1, 0,   /* CRn, CRm */
140                                                         aarch64->system_control_reg_curr);
141                                         if (retval != ERROR_OK)
142                                                 return retval;
143                                 break;
144                                 case ARMV8_64_EL3H:
145                                 case ARMV8_64_EL3T:
146                                         retval = armv8->arm.msr(target, 3, /*op 0*/
147                                                         6, 0,   /* op1, op2 */
148                                                         1, 0,   /* CRn, CRm */
149                                                         aarch64->system_control_reg_curr);
150                                         if (retval != ERROR_OK)
151                                                 return retval;
152                                 break;
153                                 default:
154                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
155                         }
156                 }
157         } else {
158                 if (aarch64->system_control_reg_curr & 0x4U) {
159                         /*  data cache is active */
160                         aarch64->system_control_reg_curr &= ~0x4U;
161                         /* flush data cache armv7 function to be called */
162                         if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
163                                 armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
164                 }
165                 if ((aarch64->system_control_reg_curr & 0x1U)) {
166                         aarch64->system_control_reg_curr &= ~0x1U;
167                         switch (armv8->arm.core_mode) {
168                                 case ARMV8_64_EL0T:
169                                 case ARMV8_64_EL1T:
170                                 case ARMV8_64_EL1H:
171                                         retval = armv8->arm.msr(target, 3, /*op 0*/
172                                                         0, 0,   /* op1, op2 */
173                                                         1, 0,   /* CRn, CRm */
174                                                         aarch64->system_control_reg_curr);
175                                         if (retval != ERROR_OK)
176                                                 return retval;
177                                         break;
178                                 case ARMV8_64_EL2T:
179                                 case ARMV8_64_EL2H:
180                                         retval = armv8->arm.msr(target, 3, /*op 0*/
181                                                         4, 0,   /* op1, op2 */
182                                                         1, 0,   /* CRn, CRm */
183                                                         aarch64->system_control_reg_curr);
184                                         if (retval != ERROR_OK)
185                                                 return retval;
186                                         break;
187                                 case ARMV8_64_EL3H:
188                                 case ARMV8_64_EL3T:
189                                         retval = armv8->arm.msr(target, 3, /*op 0*/
190                                                         6, 0,   /* op1, op2 */
191                                                         1, 0,   /* CRn, CRm */
192                                                         aarch64->system_control_reg_curr);
193                                         if (retval != ERROR_OK)
194                                                 return retval;
195                                         break;
196                                 default:
197                                         LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
198                                         break;
199                         }
200                 }
201         }
202         return retval;
203 }
204
205 /*
206  * Basic debug access, very low level assumes state is saved
207  */
208 static int aarch64_init_debug_access(struct target *target)
209 {
210         struct armv8_common *armv8 = target_to_armv8(target);
211         int retval;
212         uint32_t dummy;
213
214         LOG_DEBUG(" ");
215
216         /* Clear Sticky Power Down status Bit in PRSR to enable access to
217            the registers in the Core Power Domain */
218         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
219                         armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /*
224          * Static CTI configuration:
225          * Channel 0 -> trigger outputs HALT request to PE
226          * Channel 1 -> trigger outputs Resume request to PE
227          * Gate all channel trigger events from entering the CTM
228          */
229
230         /* Enable CTI */
231         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
232                         armv8->cti_base + CTI_CTR, 1);
233         /* By default, gate all channel triggers to and from the CTM */
234         if (retval == ERROR_OK)
235                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
236                                 armv8->cti_base + CTI_GATE, 0);
237         /* output halt requests to PE on channel 0 trigger */
238         if (retval == ERROR_OK)
239                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
240                                 armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
241         /* output restart requests to PE on channel 1 trigger */
242         if (retval == ERROR_OK)
243                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
244                                 armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
245         if (retval != ERROR_OK)
246                 return retval;
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return aarch64_poll(target);
252 }
253
254 /* Write to memory mapped registers directly with no cache or mmu handling */
255 static int aarch64_dap_write_memap_register_u32(struct target *target,
256         uint32_t address,
257         uint32_t value)
258 {
259         int retval;
260         struct armv8_common *armv8 = target_to_armv8(target);
261
262         retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
263
264         return retval;
265 }
266
267 static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
268 {
269         struct arm_dpm *dpm = &a8->armv8_common.dpm;
270         int retval;
271
272         dpm->arm = &a8->armv8_common.arm;
273         dpm->didr = debug;
274
275         retval = armv8_dpm_setup(dpm);
276         if (retval == ERROR_OK)
277                 retval = armv8_dpm_initialize(dpm);
278
279         return retval;
280 }
281
282 static struct target *get_aarch64(struct target *target, int32_t coreid)
283 {
284         struct target_list *head;
285         struct target *curr;
286
287         head = target->head;
288         while (head != (struct target_list *)NULL) {
289                 curr = head->target;
290                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
291                         return curr;
292                 head = head->next;
293         }
294         return target;
295 }
296 static int aarch64_halt(struct target *target);
297
298 static int aarch64_halt_smp(struct target *target)
299 {
300         int retval = ERROR_OK;
301         struct target_list *head = target->head;
302
303         while (head != (struct target_list *)NULL) {
304                 struct target *curr = head->target;
305                 struct armv8_common *armv8 = target_to_armv8(curr);
306
307                 /* open the gate for channel 0 to let HALT requests pass to the CTM */
308                 if (curr->smp)
309                         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
310                                         armv8->cti_base + CTI_GATE, CTI_CHNL(0));
311                 if (retval != ERROR_OK)
312                         break;
313
314                 head = head->next;
315         }
316
317         /* halt the target PE */
318         if (retval == ERROR_OK)
319                 retval = aarch64_halt(target);
320
321         return retval;
322 }
323
324 static int update_halt_gdb(struct target *target)
325 {
326         int retval = 0;
327         if (target->gdb_service && target->gdb_service->core[0] == -1) {
328                 target->gdb_service->target = target;
329                 target->gdb_service->core[0] = target->coreid;
330                 retval += aarch64_halt_smp(target);
331         }
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 static int aarch64_poll(struct target *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         struct aarch64_common *aarch64 = target_to_aarch64(target);
344         struct armv8_common *armv8 = &aarch64->armv8_common;
345         enum target_state prev_target_state = target->state;
346         /*  toggle to another core is done by gdb as follow */
347         /*  maint packet J core_id */
348         /*  continue */
349         /*  the next polling trigger an halt event sent to gdb */
350         if ((target->state == TARGET_HALTED) && (target->smp) &&
351                 (target->gdb_service) &&
352                 (target->gdb_service->target == NULL)) {
353                 target->gdb_service->target =
354                         get_aarch64(target, target->gdb_service->core[1]);
355                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
356                 return retval;
357         }
358         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
359                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
360         if (retval != ERROR_OK)
361                 return retval;
362         aarch64->cpudbg_dscr = dscr;
363
364         if (DSCR_RUN_MODE(dscr) == 0x3) {
365                 if (prev_target_state != TARGET_HALTED) {
366                         /* We have a halting debug event */
367                         LOG_DEBUG("Target halted");
368                         target->state = TARGET_HALTED;
369                         if ((prev_target_state == TARGET_RUNNING)
370                                 || (prev_target_state == TARGET_UNKNOWN)
371                                 || (prev_target_state == TARGET_RESET)) {
372                                 retval = aarch64_debug_entry(target);
373                                 if (retval != ERROR_OK)
374                                         return retval;
375                                 if (target->smp) {
376                                         retval = update_halt_gdb(target);
377                                         if (retval != ERROR_OK)
378                                                 return retval;
379                                 }
380                                 target_call_event_callbacks(target,
381                                         TARGET_EVENT_HALTED);
382                         }
383                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
384                                 LOG_DEBUG(" ");
385
386                                 retval = aarch64_debug_entry(target);
387                                 if (retval != ERROR_OK)
388                                         return retval;
389                                 if (target->smp) {
390                                         retval = update_halt_gdb(target);
391                                         if (retval != ERROR_OK)
392                                                 return retval;
393                                 }
394
395                                 target_call_event_callbacks(target,
396                                         TARGET_EVENT_DEBUG_HALTED);
397                         }
398                 }
399         } else
400                 target->state = TARGET_RUNNING;
401
402         return retval;
403 }
404
405 static int aarch64_halt(struct target *target)
406 {
407         int retval = ERROR_OK;
408         uint32_t dscr;
409         struct armv8_common *armv8 = target_to_armv8(target);
410
411         /*
412          * add HDE in halting debug mode
413          */
414         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
415                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
416         if (retval == ERROR_OK)
417                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
418                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr | DSCR_HDE);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         /* trigger an event on channel 0, this outputs a halt request to the PE */
423         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
424                         armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
425         if (retval != ERROR_OK)
426                 return retval;
427
428         long long then = timeval_ms();
429         for (;; ) {
430                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
431                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
432                 if (retval != ERROR_OK)
433                         return retval;
434                 if ((dscr & DSCRV8_HALT_MASK) != 0)
435                         break;
436                 if (timeval_ms() > then + 1000) {
437                         LOG_ERROR("Timeout waiting for halt");
438                         return ERROR_FAIL;
439                 }
440         }
441
442         target->debug_reason = DBG_REASON_DBGRQ;
443
444         return ERROR_OK;
445 }
446
447 static int aarch64_internal_restore(struct target *target, int current,
448         uint64_t *address, int handle_breakpoints, int debug_execution)
449 {
450         struct armv8_common *armv8 = target_to_armv8(target);
451         struct arm *arm = &armv8->arm;
452         int retval;
453         uint64_t resume_pc;
454
455         if (!debug_execution)
456                 target_free_all_working_areas(target);
457
458         /* current = 1: continue on current pc, otherwise continue at <address> */
459         resume_pc = buf_get_u64(arm->pc->value, 0, 64);
460         if (!current)
461                 resume_pc = *address;
462         else
463                 *address = resume_pc;
464
465         /* Make sure that the Armv7 gdb thumb fixups does not
466          * kill the return address
467          */
468         switch (arm->core_state) {
469                 case ARM_STATE_ARM:
470                         resume_pc &= 0xFFFFFFFC;
471                         break;
472                 case ARM_STATE_AARCH64:
473                         resume_pc &= 0xFFFFFFFFFFFFFFFC;
474                         break;
475                 case ARM_STATE_THUMB:
476                 case ARM_STATE_THUMB_EE:
477                         /* When the return address is loaded into PC
478                          * bit 0 must be 1 to stay in Thumb state
479                          */
480                         resume_pc |= 0x1;
481                         break;
482                 case ARM_STATE_JAZELLE:
483                         LOG_ERROR("How do I resume into Jazelle state??");
484                         return ERROR_FAIL;
485         }
486         LOG_DEBUG("resume pc = 0x%16" PRIx64, resume_pc);
487         buf_set_u64(arm->pc->value, 0, 64, resume_pc);
488         arm->pc->dirty = 1;
489         arm->pc->valid = 1;
490         dpmv8_modeswitch(&armv8->dpm, ARM_MODE_ANY);
491
492         /* called it now before restoring context because it uses cpu
493          * register r0 for restoring system control register */
494         retval = aarch64_restore_system_control_reg(target);
495         if (retval != ERROR_OK)
496                 return retval;
497         retval = aarch64_restore_context(target, handle_breakpoints);
498         if (retval != ERROR_OK)
499                 return retval;
500         target->debug_reason = DBG_REASON_NOTHALTED;
501         target->state = TARGET_RUNNING;
502
503         /* registers are now invalid */
504         register_cache_invalidate(arm->core_cache);
505
506         return retval;
507 }
508
509 static int aarch64_internal_restart(struct target *target, bool slave_pe)
510 {
511         struct armv8_common *armv8 = target_to_armv8(target);
512         struct arm *arm = &armv8->arm;
513         int retval;
514         uint32_t dscr;
515         /*
516          * * Restart core and wait for it to be started.  Clear ITRen and sticky
517          * * exception flags: see ARMv7 ARM, C5.9.
518          *
519          * REVISIT: for single stepping, we probably want to
520          * disable IRQs by default, with optional override...
521          */
522
523         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
524                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
525         if (retval != ERROR_OK)
526                 return retval;
527
528         if ((dscr & DSCR_ITE) == 0)
529                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
530
531         /* make sure to acknowledge the halt event before resuming */
532         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
533                         armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
534
535         /*
536          * open the CTI gate for channel 1 so that the restart events
537          * get passed along to all PEs
538          */
539         if (retval == ERROR_OK)
540                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
541                                 armv8->cti_base + CTI_GATE, CTI_CHNL(1));
542         if (retval != ERROR_OK)
543                 return retval;
544
545         if (!slave_pe) {
546                 /* trigger an event on channel 1, generates a restart request to the PE */
547                 retval = mem_ap_write_atomic_u32(armv8->debug_ap,
548                                 armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
549                 if (retval != ERROR_OK)
550                         return retval;
551
552                 long long then = timeval_ms();
553                 for (;; ) {
554                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
555                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
556                         if (retval != ERROR_OK)
557                                 return retval;
558                         if ((dscr & DSCR_HDE) != 0)
559                                 break;
560                         if (timeval_ms() > then + 1000) {
561                                 LOG_ERROR("Timeout waiting for resume");
562                                 return ERROR_FAIL;
563                         }
564                 }
565         }
566
567         target->debug_reason = DBG_REASON_NOTHALTED;
568         target->state = TARGET_RUNNING;
569
570         /* registers are now invalid */
571         register_cache_invalidate(arm->core_cache);
572
573         return ERROR_OK;
574 }
575
576 static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
577 {
578         int retval = 0;
579         struct target_list *head;
580         struct target *curr;
581         uint64_t address;
582         head = target->head;
583         while (head != (struct target_list *)NULL) {
584                 curr = head->target;
585                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
586                         /*  resume current address , not in step mode */
587                         retval += aarch64_internal_restore(curr, 1, &address,
588                                         handle_breakpoints, 0);
589                         retval += aarch64_internal_restart(curr, true);
590                 }
591                 head = head->next;
592
593         }
594         return retval;
595 }
596
597 static int aarch64_resume(struct target *target, int current,
598         target_addr_t address, int handle_breakpoints, int debug_execution)
599 {
600         int retval = 0;
601         uint64_t addr = address;
602
603         /* dummy resume for smp toggle in order to reduce gdb impact  */
604         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
605                 /*   simulate a start and halt of target */
606                 target->gdb_service->target = NULL;
607                 target->gdb_service->core[0] = target->gdb_service->core[1];
608                 /*  fake resume at next poll we play the  target core[1], see poll*/
609                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
610                 return 0;
611         }
612         aarch64_internal_restore(target, current, &addr, handle_breakpoints,
613                                  debug_execution);
614         if (target->smp) {
615                 target->gdb_service->core[0] = -1;
616                 retval = aarch64_restore_smp(target, handle_breakpoints);
617                 if (retval != ERROR_OK)
618                         return retval;
619         }
620         aarch64_internal_restart(target, false);
621
622         if (!debug_execution) {
623                 target->state = TARGET_RUNNING;
624                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
625                 LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
626         } else {
627                 target->state = TARGET_DEBUG_RUNNING;
628                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
629                 LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
630         }
631
632         return ERROR_OK;
633 }
634
635 static int aarch64_debug_entry(struct target *target)
636 {
637         int retval = ERROR_OK;
638         struct aarch64_common *aarch64 = target_to_aarch64(target);
639         struct armv8_common *armv8 = target_to_armv8(target);
640
641         LOG_DEBUG("dscr = 0x%08" PRIx32, aarch64->cpudbg_dscr);
642
643         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
644          * imprecise data aborts get discarded by issuing a Data
645          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
646          */
647
648         /* make sure to clear all sticky errors */
649         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
650                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
651         if (retval != ERROR_OK)
652                 return retval;
653
654         /* Examine debug reason */
655         armv8_dpm_report_dscr(&armv8->dpm, aarch64->cpudbg_dscr);
656
657         /* save address of instruction that triggered the watchpoint? */
658         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
659                 uint32_t tmp;
660                 uint64_t wfar = 0;
661
662                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
663                                 armv8->debug_base + CPUV8_DBG_WFAR1,
664                                 &tmp);
665                 if (retval != ERROR_OK)
666                         return retval;
667                 wfar = tmp;
668                 wfar = (wfar << 32);
669                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
670                                 armv8->debug_base + CPUV8_DBG_WFAR0,
671                                 &tmp);
672                 if (retval != ERROR_OK)
673                         return retval;
674                 wfar |= tmp;
675                 armv8_dpm_report_wfar(&armv8->dpm, wfar);
676         }
677
678         retval = armv8_dpm_read_current_registers(&armv8->dpm);
679
680         if (armv8->post_debug_entry) {
681                 retval = armv8->post_debug_entry(target);
682                 if (retval != ERROR_OK)
683                         return retval;
684         }
685
686         return retval;
687 }
688
689 static int aarch64_post_debug_entry(struct target *target)
690 {
691         struct aarch64_common *aarch64 = target_to_aarch64(target);
692         struct armv8_common *armv8 = &aarch64->armv8_common;
693         int retval;
694
695         /* clear sticky errors */
696         mem_ap_write_atomic_u32(armv8->debug_ap,
697                                     armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
698
699         switch (armv8->arm.core_mode) {
700                 case ARMV8_64_EL0T:
701                 case ARMV8_64_EL1T:
702                 case ARMV8_64_EL1H:
703                         retval = armv8->arm.mrs(target, 3, /*op 0*/
704                                         0, 0,   /* op1, op2 */
705                                         1, 0,   /* CRn, CRm */
706                                         &aarch64->system_control_reg);
707                         if (retval != ERROR_OK)
708                                 return retval;
709                 break;
710                 case ARMV8_64_EL2T:
711                 case ARMV8_64_EL2H:
712                         retval = armv8->arm.mrs(target, 3, /*op 0*/
713                                         4, 0,   /* op1, op2 */
714                                         1, 0,   /* CRn, CRm */
715                                         &aarch64->system_control_reg);
716                         if (retval != ERROR_OK)
717                                 return retval;
718                 break;
719                 case ARMV8_64_EL3H:
720                 case ARMV8_64_EL3T:
721                         retval = armv8->arm.mrs(target, 3, /*op 0*/
722                                         6, 0,   /* op1, op2 */
723                                         1, 0,   /* CRn, CRm */
724                                         &aarch64->system_control_reg);
725                         if (retval != ERROR_OK)
726                                 return retval;
727                 break;
728                 default:
729                         retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
730                         if (retval != ERROR_OK)
731                                 return retval;
732                         break;
733         }
734
735         LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
736         aarch64->system_control_reg_curr = aarch64->system_control_reg;
737
738         if (armv8->armv8_mmu.armv8_cache.ctype == -1)
739                 armv8_identify_cache(target);
740
741         armv8->armv8_mmu.mmu_enabled =
742                         (aarch64->system_control_reg & 0x1U) ? 1 : 0;
743         armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
744                 (aarch64->system_control_reg & 0x4U) ? 1 : 0;
745         armv8->armv8_mmu.armv8_cache.i_cache_enabled =
746                 (aarch64->system_control_reg & 0x1000U) ? 1 : 0;
747         aarch64->curr_mode = armv8->arm.core_mode;
748         return ERROR_OK;
749 }
750
751 static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
752 {
753         struct armv8_common *armv8 = target_to_armv8(target);
754         uint32_t dscr;
755
756         /* Read DSCR */
757         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
758                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
759         if (ERROR_OK != retval)
760                 return retval;
761
762         /* clear bitfield */
763         dscr &= ~bit_mask;
764         /* put new value */
765         dscr |= value & bit_mask;
766
767         /* write new DSCR */
768         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
769                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
770         return retval;
771 }
772
773 static int aarch64_step(struct target *target, int current, target_addr_t address,
774         int handle_breakpoints)
775 {
776         struct armv8_common *armv8 = target_to_armv8(target);
777         int retval;
778         uint32_t edecr;
779
780         if (target->state != TARGET_HALTED) {
781                 LOG_WARNING("target not halted");
782                 return ERROR_TARGET_NOT_HALTED;
783         }
784
785         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
786                         armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
787         if (retval != ERROR_OK)
788                 return retval;
789
790         /* make sure EDECR.SS is not set when restoring the register */
791         edecr &= ~0x4;
792
793         /* set EDECR.SS to enter hardware step mode */
794         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
795                         armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
796         if (retval != ERROR_OK)
797                 return retval;
798
799         /* disable interrupts while stepping */
800         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
801         if (retval != ERROR_OK)
802                 return ERROR_OK;
803
804         /* resume the target */
805         retval = aarch64_resume(target, current, address, 0, 0);
806         if (retval != ERROR_OK)
807                 return retval;
808
809         long long then = timeval_ms();
810         while (target->state != TARGET_HALTED) {
811                 retval = aarch64_poll(target);
812                 if (retval != ERROR_OK)
813                         return retval;
814                 if (timeval_ms() > then + 1000) {
815                         LOG_ERROR("timeout waiting for target halt");
816                         return ERROR_FAIL;
817                 }
818         }
819
820         /* restore EDECR */
821         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
822                         armv8->debug_base + CPUV8_DBG_EDECR, edecr);
823         if (retval != ERROR_OK)
824                 return retval;
825
826         /* restore interrupts */
827         retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
828         if (retval != ERROR_OK)
829                 return ERROR_OK;
830
831         return ERROR_OK;
832 }
833
834 static int aarch64_restore_context(struct target *target, bool bpwp)
835 {
836         struct armv8_common *armv8 = target_to_armv8(target);
837
838         LOG_DEBUG(" ");
839
840         if (armv8->pre_restore_context)
841                 armv8->pre_restore_context(target);
842
843         return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
844
845 }
846
847 /*
848  * Cortex-A8 Breakpoint and watchpoint functions
849  */
850
851 /* Setup hardware Breakpoint Register Pair */
852 static int aarch64_set_breakpoint(struct target *target,
853         struct breakpoint *breakpoint, uint8_t matchmode)
854 {
855         int retval;
856         int brp_i = 0;
857         uint32_t control;
858         uint8_t byte_addr_select = 0x0F;
859         struct aarch64_common *aarch64 = target_to_aarch64(target);
860         struct armv8_common *armv8 = &aarch64->armv8_common;
861         struct aarch64_brp *brp_list = aarch64->brp_list;
862         uint32_t dscr;
863
864         if (breakpoint->set) {
865                 LOG_WARNING("breakpoint already set");
866                 return ERROR_OK;
867         }
868
869         if (breakpoint->type == BKPT_HARD) {
870                 int64_t bpt_value;
871                 while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
872                         brp_i++;
873                 if (brp_i >= aarch64->brp_num) {
874                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
875                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
876                 }
877                 breakpoint->set = brp_i + 1;
878                 if (breakpoint->length == 2)
879                         byte_addr_select = (3 << (breakpoint->address & 0x02));
880                 control = ((matchmode & 0x7) << 20)
881                         | (1 << 13)
882                         | (byte_addr_select << 5)
883                         | (3 << 1) | 1;
884                 brp_list[brp_i].used = 1;
885                 brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
886                 brp_list[brp_i].control = control;
887                 bpt_value = brp_list[brp_i].value;
888
889                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
890                                 + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
891                                 (uint32_t)(bpt_value & 0xFFFFFFFF));
892                 if (retval != ERROR_OK)
893                         return retval;
894                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
895                                 + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
896                                 (uint32_t)(bpt_value >> 32));
897                 if (retval != ERROR_OK)
898                         return retval;
899
900                 retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
901                                 + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
902                                 brp_list[brp_i].control);
903                 if (retval != ERROR_OK)
904                         return retval;
905                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
906                         brp_list[brp_i].control,
907                         brp_list[brp_i].value);
908
909         } else if (breakpoint->type == BKPT_SOFT) {
910                 uint8_t code[4];
911
912                 buf_set_u32(code, 0, 32, ARMV8_HLT(0x11));
913                 retval = target_read_memory(target,
914                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
915                                 breakpoint->length, 1,
916                                 breakpoint->orig_instr);
917                 if (retval != ERROR_OK)
918                         return retval;
919
920                 armv8_cache_d_inner_flush_virt(armv8,
921                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
922                                 breakpoint->length);
923
924                 retval = target_write_memory(target,
925                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
926                                 breakpoint->length, 1, code);
927                 if (retval != ERROR_OK)
928                         return retval;
929
930                 armv8_cache_d_inner_flush_virt(armv8,
931                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
932                                 breakpoint->length);
933
934                 armv8_cache_i_inner_inval_virt(armv8,
935                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
936                                 breakpoint->length);
937
938                 breakpoint->set = 0x11; /* Any nice value but 0 */
939         }
940
941         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
942                                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
943         /* Ensure that halting debug mode is enable */
944         dscr = dscr | DSCR_HDE;
945         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
946                                          armv8->debug_base + CPUV8_DBG_DSCR, dscr);
947         if (retval != ERROR_OK) {
948                 LOG_DEBUG("Failed to set DSCR.HDE");
949                 return retval;
950         }
951
952         return ERROR_OK;
953 }
954
955 static int aarch64_set_context_breakpoint(struct target *target,
956         struct breakpoint *breakpoint, uint8_t matchmode)
957 {
958         int retval = ERROR_FAIL;
959         int brp_i = 0;
960         uint32_t control;
961         uint8_t byte_addr_select = 0x0F;
962         struct aarch64_common *aarch64 = target_to_aarch64(target);
963         struct armv8_common *armv8 = &aarch64->armv8_common;
964         struct aarch64_brp *brp_list = aarch64->brp_list;
965
966         if (breakpoint->set) {
967                 LOG_WARNING("breakpoint already set");
968                 return retval;
969         }
970         /*check available context BRPs*/
971         while ((brp_list[brp_i].used ||
972                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
973                 brp_i++;
974
975         if (brp_i >= aarch64->brp_num) {
976                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
977                 return ERROR_FAIL;
978         }
979
980         breakpoint->set = brp_i + 1;
981         control = ((matchmode & 0x7) << 20)
982                 | (1 << 13)
983                 | (byte_addr_select << 5)
984                 | (3 << 1) | 1;
985         brp_list[brp_i].used = 1;
986         brp_list[brp_i].value = (breakpoint->asid);
987         brp_list[brp_i].control = control;
988         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
989                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
990                         brp_list[brp_i].value);
991         if (retval != ERROR_OK)
992                 return retval;
993         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
994                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
995                         brp_list[brp_i].control);
996         if (retval != ERROR_OK)
997                 return retval;
998         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
999                 brp_list[brp_i].control,
1000                 brp_list[brp_i].value);
1001         return ERROR_OK;
1002
1003 }
1004
1005 static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1006 {
1007         int retval = ERROR_FAIL;
1008         int brp_1 = 0;  /* holds the contextID pair */
1009         int brp_2 = 0;  /* holds the IVA pair */
1010         uint32_t control_CTX, control_IVA;
1011         uint8_t CTX_byte_addr_select = 0x0F;
1012         uint8_t IVA_byte_addr_select = 0x0F;
1013         uint8_t CTX_machmode = 0x03;
1014         uint8_t IVA_machmode = 0x01;
1015         struct aarch64_common *aarch64 = target_to_aarch64(target);
1016         struct armv8_common *armv8 = &aarch64->armv8_common;
1017         struct aarch64_brp *brp_list = aarch64->brp_list;
1018
1019         if (breakpoint->set) {
1020                 LOG_WARNING("breakpoint already set");
1021                 return retval;
1022         }
1023         /*check available context BRPs*/
1024         while ((brp_list[brp_1].used ||
1025                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
1026                 brp_1++;
1027
1028         printf("brp(CTX) found num: %d\n", brp_1);
1029         if (brp_1 >= aarch64->brp_num) {
1030                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1031                 return ERROR_FAIL;
1032         }
1033
1034         while ((brp_list[brp_2].used ||
1035                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
1036                 brp_2++;
1037
1038         printf("brp(IVA) found num: %d\n", brp_2);
1039         if (brp_2 >= aarch64->brp_num) {
1040                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1041                 return ERROR_FAIL;
1042         }
1043
1044         breakpoint->set = brp_1 + 1;
1045         breakpoint->linked_BRP = brp_2;
1046         control_CTX = ((CTX_machmode & 0x7) << 20)
1047                 | (brp_2 << 16)
1048                 | (0 << 14)
1049                 | (CTX_byte_addr_select << 5)
1050                 | (3 << 1) | 1;
1051         brp_list[brp_1].used = 1;
1052         brp_list[brp_1].value = (breakpoint->asid);
1053         brp_list[brp_1].control = control_CTX;
1054         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1055                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
1056                         brp_list[brp_1].value);
1057         if (retval != ERROR_OK)
1058                 return retval;
1059         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1060                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
1061                         brp_list[brp_1].control);
1062         if (retval != ERROR_OK)
1063                 return retval;
1064
1065         control_IVA = ((IVA_machmode & 0x7) << 20)
1066                 | (brp_1 << 16)
1067                 | (1 << 13)
1068                 | (IVA_byte_addr_select << 5)
1069                 | (3 << 1) | 1;
1070         brp_list[brp_2].used = 1;
1071         brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
1072         brp_list[brp_2].control = control_IVA;
1073         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1074                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
1075                         brp_list[brp_2].value & 0xFFFFFFFF);
1076         if (retval != ERROR_OK)
1077                 return retval;
1078         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1079                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
1080                         brp_list[brp_2].value >> 32);
1081         if (retval != ERROR_OK)
1082                 return retval;
1083         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1084                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
1085                         brp_list[brp_2].control);
1086         if (retval != ERROR_OK)
1087                 return retval;
1088
1089         return ERROR_OK;
1090 }
1091
1092 static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1093 {
1094         int retval;
1095         struct aarch64_common *aarch64 = target_to_aarch64(target);
1096         struct armv8_common *armv8 = &aarch64->armv8_common;
1097         struct aarch64_brp *brp_list = aarch64->brp_list;
1098
1099         if (!breakpoint->set) {
1100                 LOG_WARNING("breakpoint not set");
1101                 return ERROR_OK;
1102         }
1103
1104         if (breakpoint->type == BKPT_HARD) {
1105                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1106                         int brp_i = breakpoint->set - 1;
1107                         int brp_j = breakpoint->linked_BRP;
1108                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1109                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1110                                 return ERROR_OK;
1111                         }
1112                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
1113                                 brp_list[brp_i].control, brp_list[brp_i].value);
1114                         brp_list[brp_i].used = 0;
1115                         brp_list[brp_i].value = 0;
1116                         brp_list[brp_i].control = 0;
1117                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1118                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1119                                         brp_list[brp_i].control);
1120                         if (retval != ERROR_OK)
1121                                 return retval;
1122                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1123                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1124                                         (uint32_t)brp_list[brp_i].value);
1125                         if (retval != ERROR_OK)
1126                                 return retval;
1127                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1128                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1129                                         (uint32_t)brp_list[brp_i].value);
1130                         if (retval != ERROR_OK)
1131                                 return retval;
1132                         if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
1133                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1134                                 return ERROR_OK;
1135                         }
1136                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
1137                                 brp_list[brp_j].control, brp_list[brp_j].value);
1138                         brp_list[brp_j].used = 0;
1139                         brp_list[brp_j].value = 0;
1140                         brp_list[brp_j].control = 0;
1141                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1142                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
1143                                         brp_list[brp_j].control);
1144                         if (retval != ERROR_OK)
1145                                 return retval;
1146                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1147                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
1148                                         (uint32_t)brp_list[brp_j].value);
1149                         if (retval != ERROR_OK)
1150                                 return retval;
1151                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1152                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
1153                                         (uint32_t)brp_list[brp_j].value);
1154                         if (retval != ERROR_OK)
1155                                 return retval;
1156
1157                         breakpoint->linked_BRP = 0;
1158                         breakpoint->set = 0;
1159                         return ERROR_OK;
1160
1161                 } else {
1162                         int brp_i = breakpoint->set - 1;
1163                         if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
1164                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1165                                 return ERROR_OK;
1166                         }
1167                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
1168                                 brp_list[brp_i].control, brp_list[brp_i].value);
1169                         brp_list[brp_i].used = 0;
1170                         brp_list[brp_i].value = 0;
1171                         brp_list[brp_i].control = 0;
1172                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1173                                         + CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
1174                                         brp_list[brp_i].control);
1175                         if (retval != ERROR_OK)
1176                                 return retval;
1177                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1178                                         + CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
1179                                         brp_list[brp_i].value);
1180                         if (retval != ERROR_OK)
1181                                 return retval;
1182
1183                         retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
1184                                         + CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
1185                                         (uint32_t)brp_list[brp_i].value);
1186                         if (retval != ERROR_OK)
1187                                 return retval;
1188                         breakpoint->set = 0;
1189                         return ERROR_OK;
1190                 }
1191         } else {
1192                 /* restore original instruction (kept in target endianness) */
1193
1194                 armv8_cache_d_inner_flush_virt(armv8,
1195                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1196                                 breakpoint->length);
1197
1198                 if (breakpoint->length == 4) {
1199                         retval = target_write_memory(target,
1200                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1201                                         4, 1, breakpoint->orig_instr);
1202                         if (retval != ERROR_OK)
1203                                 return retval;
1204                 } else {
1205                         retval = target_write_memory(target,
1206                                         breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1207                                         2, 1, breakpoint->orig_instr);
1208                         if (retval != ERROR_OK)
1209                                 return retval;
1210                 }
1211
1212                 armv8_cache_d_inner_flush_virt(armv8,
1213                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1214                                 breakpoint->length);
1215
1216                 armv8_cache_i_inner_inval_virt(armv8,
1217                                 breakpoint->address & 0xFFFFFFFFFFFFFFFE,
1218                                 breakpoint->length);
1219         }
1220         breakpoint->set = 0;
1221
1222         return ERROR_OK;
1223 }
1224
1225 static int aarch64_add_breakpoint(struct target *target,
1226         struct breakpoint *breakpoint)
1227 {
1228         struct aarch64_common *aarch64 = target_to_aarch64(target);
1229
1230         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1231                 LOG_INFO("no hardware breakpoint available");
1232                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1233         }
1234
1235         if (breakpoint->type == BKPT_HARD)
1236                 aarch64->brp_num_available--;
1237
1238         return aarch64_set_breakpoint(target, breakpoint, 0x00);        /* Exact match */
1239 }
1240
1241 static int aarch64_add_context_breakpoint(struct target *target,
1242         struct breakpoint *breakpoint)
1243 {
1244         struct aarch64_common *aarch64 = target_to_aarch64(target);
1245
1246         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1247                 LOG_INFO("no hardware breakpoint available");
1248                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1249         }
1250
1251         if (breakpoint->type == BKPT_HARD)
1252                 aarch64->brp_num_available--;
1253
1254         return aarch64_set_context_breakpoint(target, breakpoint, 0x02);        /* asid match */
1255 }
1256
1257 static int aarch64_add_hybrid_breakpoint(struct target *target,
1258         struct breakpoint *breakpoint)
1259 {
1260         struct aarch64_common *aarch64 = target_to_aarch64(target);
1261
1262         if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
1263                 LOG_INFO("no hardware breakpoint available");
1264                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1265         }
1266
1267         if (breakpoint->type == BKPT_HARD)
1268                 aarch64->brp_num_available--;
1269
1270         return aarch64_set_hybrid_breakpoint(target, breakpoint);       /* ??? */
1271 }
1272
1273
1274 static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1275 {
1276         struct aarch64_common *aarch64 = target_to_aarch64(target);
1277
1278 #if 0
1279 /* It is perfectly possible to remove breakpoints while the target is running */
1280         if (target->state != TARGET_HALTED) {
1281                 LOG_WARNING("target not halted");
1282                 return ERROR_TARGET_NOT_HALTED;
1283         }
1284 #endif
1285
1286         if (breakpoint->set) {
1287                 aarch64_unset_breakpoint(target, breakpoint);
1288                 if (breakpoint->type == BKPT_HARD)
1289                         aarch64->brp_num_available++;
1290         }
1291
1292         return ERROR_OK;
1293 }
1294
1295 /*
1296  * Cortex-A8 Reset functions
1297  */
1298
1299 static int aarch64_assert_reset(struct target *target)
1300 {
1301         struct armv8_common *armv8 = target_to_armv8(target);
1302
1303         LOG_DEBUG(" ");
1304
1305         /* FIXME when halt is requested, make it work somehow... */
1306
1307         /* Issue some kind of warm reset. */
1308         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1309                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1310         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1311                 /* REVISIT handle "pulls" cases, if there's
1312                  * hardware that needs them to work.
1313                  */
1314                 jtag_add_reset(0, 1);
1315         } else {
1316                 LOG_ERROR("%s: how to reset?", target_name(target));
1317                 return ERROR_FAIL;
1318         }
1319
1320         /* registers are now invalid */
1321         register_cache_invalidate(armv8->arm.core_cache);
1322
1323         target->state = TARGET_RESET;
1324
1325         return ERROR_OK;
1326 }
1327
1328 static int aarch64_deassert_reset(struct target *target)
1329 {
1330         int retval;
1331
1332         LOG_DEBUG(" ");
1333
1334         /* be certain SRST is off */
1335         jtag_add_reset(0, 0);
1336
1337         retval = aarch64_poll(target);
1338         if (retval != ERROR_OK)
1339                 return retval;
1340
1341         if (target->reset_halt) {
1342                 if (target->state != TARGET_HALTED) {
1343                         LOG_WARNING("%s: ran after reset and before halt ...",
1344                                 target_name(target));
1345                         retval = target_halt(target);
1346                         if (retval != ERROR_OK)
1347                                 return retval;
1348                 }
1349         }
1350
1351         return ERROR_OK;
1352 }
1353
1354 static int aarch64_write_apb_ap_memory(struct target *target,
1355         uint64_t address, uint32_t size,
1356         uint32_t count, const uint8_t *buffer)
1357 {
1358         /* write memory through APB-AP */
1359         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1360         struct armv8_common *armv8 = target_to_armv8(target);
1361         struct arm_dpm *dpm = &armv8->dpm;
1362         struct arm *arm = &armv8->arm;
1363         int total_bytes = count * size;
1364         int total_u32;
1365         int start_byte = address & 0x3;
1366         int end_byte   = (address + total_bytes) & 0x3;
1367         struct reg *reg;
1368         uint32_t dscr;
1369         uint8_t *tmp_buff = NULL;
1370
1371         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %"  PRIu32 " count%"  PRIu32,
1372                           address, size, count);
1373         if (target->state != TARGET_HALTED) {
1374                 LOG_WARNING("target not halted");
1375                 return ERROR_TARGET_NOT_HALTED;
1376         }
1377
1378         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1379
1380         /* Mark register R0 as dirty, as it will be used
1381          * for transferring the data.
1382          * It will be restored automatically when exiting
1383          * debug mode
1384          */
1385         reg = armv8_reg_current(arm, 1);
1386         reg->dirty = true;
1387
1388         reg = armv8_reg_current(arm, 0);
1389         reg->dirty = true;
1390
1391         /*  clear any abort  */
1392         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1393                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1394         if (retval != ERROR_OK)
1395                 return retval;
1396
1397
1398         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1399
1400         /* The algorithm only copies 32 bit words, so the buffer
1401          * should be expanded to include the words at either end.
1402          * The first and last words will be read first to avoid
1403          * corruption if needed.
1404          */
1405         tmp_buff = malloc(total_u32 * 4);
1406
1407         if ((start_byte != 0) && (total_u32 > 1)) {
1408                 /* First bytes not aligned - read the 32 bit word to avoid corrupting
1409                  * the other bytes in the word.
1410                  */
1411                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
1412                 if (retval != ERROR_OK)
1413                         goto error_free_buff_w;
1414         }
1415
1416         /* If end of write is not aligned, or the write is less than 4 bytes */
1417         if ((end_byte != 0) ||
1418                 ((total_u32 == 1) && (total_bytes != 4))) {
1419
1420                 /* Read the last word to avoid corruption during 32 bit write */
1421                 int mem_offset = (total_u32-1) * 4;
1422                 retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
1423                 if (retval != ERROR_OK)
1424                         goto error_free_buff_w;
1425         }
1426
1427         /* Copy the write buffer over the top of the temporary buffer */
1428         memcpy(&tmp_buff[start_byte], buffer, total_bytes);
1429
1430         /* We now have a 32 bit aligned buffer that can be written */
1431
1432         /* Read DSCR */
1433         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1434                         armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1435         if (retval != ERROR_OK)
1436                 goto error_free_buff_w;
1437
1438         /* Set Normal access mode  */
1439         dscr = (dscr & ~DSCR_MA);
1440         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1441                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1442
1443         if (arm->core_state == ARM_STATE_AARCH64) {
1444                 /* Write X0 with value 'address' using write procedure */
1445                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1446                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1447                 retval = dpm->instr_write_data_dcc_64(dpm,
1448                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1449         } else {
1450                 /* Write R0 with value 'address' using write procedure */
1451                 /* Step 1.a+b - Write the address for read access into DBGDTRRX */
1452                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1453                 dpm->instr_write_data_dcc(dpm,
1454                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), address & ~0x3ULL);
1455
1456         }
1457         /* Step 1.d   - Change DCC to memory mode */
1458         dscr = dscr | DSCR_MA;
1459         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1460                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1461         if (retval != ERROR_OK)
1462                 goto error_unset_dtr_w;
1463
1464
1465         /* Step 2.a   - Do the write */
1466         retval = mem_ap_write_buf_noincr(armv8->debug_ap,
1467                                         tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
1468         if (retval != ERROR_OK)
1469                 goto error_unset_dtr_w;
1470
1471         /* Step 3.a   - Switch DTR mode back to Normal mode */
1472         dscr = (dscr & ~DSCR_MA);
1473         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1474                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1475         if (retval != ERROR_OK)
1476                 goto error_unset_dtr_w;
1477
1478         /* Check for sticky abort flags in the DSCR */
1479         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1480                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1481         if (retval != ERROR_OK)
1482                 goto error_free_buff_w;
1483         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1484                 /* Abort occurred - clear it and exit */
1485                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1486                 mem_ap_write_atomic_u32(armv8->debug_ap,
1487                                         armv8->debug_base + CPUV8_DBG_DRCR, 1<<2);
1488                 goto error_free_buff_w;
1489         }
1490
1491         /* Done */
1492         free(tmp_buff);
1493         return ERROR_OK;
1494
1495 error_unset_dtr_w:
1496         /* Unset DTR mode */
1497         mem_ap_read_atomic_u32(armv8->debug_ap,
1498                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1499         dscr = (dscr & ~DSCR_MA);
1500         mem_ap_write_atomic_u32(armv8->debug_ap,
1501                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1502 error_free_buff_w:
1503         LOG_ERROR("error");
1504         free(tmp_buff);
1505         return ERROR_FAIL;
1506 }
1507
1508 static int aarch64_read_apb_ap_memory(struct target *target,
1509         target_addr_t address, uint32_t size,
1510         uint32_t count, uint8_t *buffer)
1511 {
1512         /* read memory through APB-AP */
1513         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1514         struct armv8_common *armv8 = target_to_armv8(target);
1515         struct arm_dpm *dpm = &armv8->dpm;
1516         struct arm *arm = &armv8->arm;
1517         int total_bytes = count * size;
1518         int total_u32;
1519         int start_byte = address & 0x3;
1520         int end_byte   = (address + total_bytes) & 0x3;
1521         struct reg *reg;
1522         uint32_t dscr;
1523         uint8_t *tmp_buff = NULL;
1524         uint8_t *u8buf_ptr;
1525         uint32_t value;
1526
1527         LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count%"  PRIu32,
1528                           address, size, count);
1529         if (target->state != TARGET_HALTED) {
1530                 LOG_WARNING("target not halted");
1531                 return ERROR_TARGET_NOT_HALTED;
1532         }
1533
1534         total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
1535         /* Mark register X0, X1 as dirty, as it will be used
1536          * for transferring the data.
1537          * It will be restored automatically when exiting
1538          * debug mode
1539          */
1540         reg = armv8_reg_current(arm, 1);
1541         reg->dirty = true;
1542
1543         reg = armv8_reg_current(arm, 0);
1544         reg->dirty = true;
1545
1546         /*      clear any abort  */
1547         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1548                                 armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1549         if (retval != ERROR_OK)
1550                 goto error_free_buff_r;
1551
1552         /* Read DSCR */
1553         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1554                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1555
1556         /* This algorithm comes from DDI0487A.g, chapter J9.1 */
1557
1558         /* Set Normal access mode  */
1559         dscr = (dscr & ~DSCR_MA);
1560         retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1561                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1562
1563         if (arm->core_state == ARM_STATE_AARCH64) {
1564                 /* Write X0 with value 'address' using write procedure */
1565                 /* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
1566                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
1567                 retval += dpm->instr_write_data_dcc_64(dpm,
1568                                 ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
1569                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1570                 retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
1571                 /* Step 1.e - Change DCC to memory mode */
1572                 dscr = dscr | DSCR_MA;
1573                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1574                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1575                 /* Step 1.f - read DBGDTRTX and discard the value */
1576                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1577                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1578         } else {
1579                 /* Write R0 with value 'address' using write procedure */
1580                 /* Step 1.a+b - Write the address for read access into DBGDTRRXint */
1581                 /* Step 1.c   - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
1582                 retval += dpm->instr_write_data_dcc(dpm,
1583                                 T32_FMTITR(ARMV4_5_MRC(14, 0, 0, 0, 5, 0)), address & ~0x3ULL);
1584                 /* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
1585                 retval += dpm->instr_execute(dpm, T32_FMTITR(ARMV4_5_MCR(14, 0, 0, 0, 5, 0)));
1586                 /* Step 1.e - Change DCC to memory mode */
1587                 dscr = dscr | DSCR_MA;
1588                 retval +=  mem_ap_write_atomic_u32(armv8->debug_ap,
1589                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1590                 /* Step 1.f - read DBGDTRTX and discard the value */
1591                 retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1592                                 armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1593
1594         }
1595         if (retval != ERROR_OK)
1596                 goto error_unset_dtr_r;
1597
1598         /* Optimize the read as much as we can, either way we read in a single pass  */
1599         if ((start_byte) || (end_byte)) {
1600                 /* The algorithm only copies 32 bit words, so the buffer
1601                  * should be expanded to include the words at either end.
1602                  * The first and last words will be read into a temp buffer
1603                  * to avoid corruption
1604                  */
1605                 tmp_buff = malloc(total_u32 * 4);
1606                 if (!tmp_buff)
1607                         goto error_unset_dtr_r;
1608
1609                 /* use the tmp buffer to read the entire data */
1610                 u8buf_ptr = tmp_buff;
1611         } else
1612                 /* address and read length are aligned so read directly into the passed buffer */
1613                 u8buf_ptr = buffer;
1614
1615         /* Read the data - Each read of the DTRTX register causes the instruction to be reissued
1616          * Abort flags are sticky, so can be read at end of transactions
1617          *
1618          * This data is read in aligned to 32 bit boundary.
1619          */
1620
1621         /* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
1622          * increments X0 by 4. */
1623         retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
1624                                                                         armv8->debug_base + CPUV8_DBG_DTRTX);
1625         if (retval != ERROR_OK)
1626                         goto error_unset_dtr_r;
1627
1628         /* Step 3.a - set DTR access mode back to Normal mode   */
1629         dscr = (dscr & ~DSCR_MA);
1630         retval =  mem_ap_write_atomic_u32(armv8->debug_ap,
1631                                         armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1632         if (retval != ERROR_OK)
1633                 goto error_free_buff_r;
1634
1635         /* Step 3.b - read DBGDTRTX for the final value */
1636         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1637                         armv8->debug_base + CPUV8_DBG_DTRTX, &value);
1638         memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
1639
1640         /* Check for sticky abort flags in the DSCR */
1641         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1642                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1643         if (retval != ERROR_OK)
1644                 goto error_free_buff_r;
1645         if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
1646                 /* Abort occurred - clear it and exit */
1647                 LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
1648                 mem_ap_write_atomic_u32(armv8->debug_ap,
1649                                         armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
1650                 goto error_free_buff_r;
1651         }
1652
1653         /* check if we need to copy aligned data by applying any shift necessary */
1654         if (tmp_buff) {
1655                 memcpy(buffer, tmp_buff + start_byte, total_bytes);
1656                 free(tmp_buff);
1657         }
1658
1659         /* Done */
1660         return ERROR_OK;
1661
1662 error_unset_dtr_r:
1663         /* Unset DTR mode */
1664         mem_ap_read_atomic_u32(armv8->debug_ap,
1665                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1666         dscr = (dscr & ~DSCR_MA);
1667         mem_ap_write_atomic_u32(armv8->debug_ap,
1668                                 armv8->debug_base + CPUV8_DBG_DSCR, dscr);
1669 error_free_buff_r:
1670         LOG_ERROR("error");
1671         free(tmp_buff);
1672         return ERROR_FAIL;
1673 }
1674
1675 static int aarch64_read_phys_memory(struct target *target,
1676         target_addr_t address, uint32_t size,
1677         uint32_t count, uint8_t *buffer)
1678 {
1679         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1680         LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
1681                 address, size, count);
1682
1683         if (count && buffer) {
1684                 /* read memory through APB-AP */
1685                 retval = aarch64_mmu_modify(target, 0);
1686                 if (retval != ERROR_OK)
1687                         return retval;
1688                 retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1689         }
1690         return retval;
1691 }
1692
1693 static int aarch64_read_memory(struct target *target, target_addr_t address,
1694         uint32_t size, uint32_t count, uint8_t *buffer)
1695 {
1696         int mmu_enabled = 0;
1697         int retval;
1698
1699         /* aarch64 handles unaligned memory access */
1700         LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1701                 size, count);
1702
1703         /* determine if MMU was enabled on target stop */
1704         retval = aarch64_mmu(target, &mmu_enabled);
1705         if (retval != ERROR_OK)
1706                 return retval;
1707
1708         if (mmu_enabled) {
1709                 retval = aarch64_check_address(target, address);
1710                 if (retval != ERROR_OK)
1711                         return retval;
1712                 /* enable MMU as we could have disabled it for phys access */
1713                 retval = aarch64_mmu_modify(target, 1);
1714                 if (retval != ERROR_OK)
1715                         return retval;
1716         }
1717         return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
1718 }
1719
1720 static int aarch64_write_phys_memory(struct target *target,
1721         target_addr_t address, uint32_t size,
1722         uint32_t count, const uint8_t *buffer)
1723 {
1724         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1725
1726         LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
1727                 size, count);
1728
1729         if (count && buffer) {
1730                 /* write memory through APB-AP */
1731                 retval = aarch64_mmu_modify(target, 0);
1732                 if (retval != ERROR_OK)
1733                         return retval;
1734                 return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1735         }
1736
1737         return retval;
1738 }
1739
1740 static int aarch64_write_memory(struct target *target, target_addr_t address,
1741         uint32_t size, uint32_t count, const uint8_t *buffer)
1742 {
1743         int mmu_enabled = 0;
1744         int retval;
1745
1746         /* aarch64 handles unaligned memory access */
1747         LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
1748                   "; count %" PRId32, address, size, count);
1749
1750         /* determine if MMU was enabled on target stop */
1751         retval = aarch64_mmu(target, &mmu_enabled);
1752         if (retval != ERROR_OK)
1753                 return retval;
1754
1755         if (mmu_enabled) {
1756                 retval = aarch64_check_address(target, address);
1757                 if (retval != ERROR_OK)
1758                         return retval;
1759                 /* enable MMU as we could have disabled it for phys access */
1760                 retval = aarch64_mmu_modify(target, 1);
1761                 if (retval != ERROR_OK)
1762                         return retval;
1763         }
1764         return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
1765 }
1766
1767 static int aarch64_handle_target_request(void *priv)
1768 {
1769         struct target *target = priv;
1770         struct armv8_common *armv8 = target_to_armv8(target);
1771         int retval;
1772
1773         if (!target_was_examined(target))
1774                 return ERROR_OK;
1775         if (!target->dbg_msg_enabled)
1776                 return ERROR_OK;
1777
1778         if (target->state == TARGET_RUNNING) {
1779                 uint32_t request;
1780                 uint32_t dscr;
1781                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1782                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1783
1784                 /* check if we have data */
1785                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
1786                         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1787                                         armv8->debug_base + CPUV8_DBG_DTRTX, &request);
1788                         if (retval == ERROR_OK) {
1789                                 target_request(target, request);
1790                                 retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1791                                                 armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
1792                         }
1793                 }
1794         }
1795
1796         return ERROR_OK;
1797 }
1798
1799 static int aarch64_examine_first(struct target *target)
1800 {
1801         struct aarch64_common *aarch64 = target_to_aarch64(target);
1802         struct armv8_common *armv8 = &aarch64->armv8_common;
1803         struct adiv5_dap *swjdp = armv8->arm.dap;
1804         int i;
1805         int retval = ERROR_OK;
1806         uint64_t debug, ttypr;
1807         uint32_t cpuid;
1808         uint32_t tmp0, tmp1;
1809         debug = ttypr = cpuid = 0;
1810
1811         /* We do one extra read to ensure DAP is configured,
1812          * we call ahbap_debugport_init(swjdp) instead
1813          */
1814         retval = dap_dp_init(swjdp);
1815         if (retval != ERROR_OK)
1816                 return retval;
1817
1818         /* Search for the APB-AB - it is needed for access to debug registers */
1819         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
1820         if (retval != ERROR_OK) {
1821                 LOG_ERROR("Could not find APB-AP for debug access");
1822                 return retval;
1823         }
1824
1825         retval = mem_ap_init(armv8->debug_ap);
1826         if (retval != ERROR_OK) {
1827                 LOG_ERROR("Could not initialize the APB-AP");
1828                 return retval;
1829         }
1830
1831         armv8->debug_ap->memaccess_tck = 80;
1832
1833         if (!target->dbgbase_set) {
1834                 uint32_t dbgbase;
1835                 /* Get ROM Table base */
1836                 uint32_t apid;
1837                 int32_t coreidx = target->coreid;
1838                 retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
1839                 if (retval != ERROR_OK)
1840                         return retval;
1841                 /* Lookup 0x15 -- Processor DAP */
1842                 retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
1843                                 &armv8->debug_base, &coreidx);
1844                 if (retval != ERROR_OK)
1845                         return retval;
1846                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
1847                                 " apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
1848         } else
1849                 armv8->debug_base = target->dbgbase;
1850
1851         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1852                         armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
1853         if (retval != ERROR_OK) {
1854                 LOG_DEBUG("LOCK debug access fail");
1855                 return retval;
1856         }
1857
1858         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1859                         armv8->debug_base + CPUV8_DBG_OSLAR, 0);
1860         if (retval != ERROR_OK) {
1861                 LOG_DEBUG("Examine %s failed", "oslock");
1862                 return retval;
1863         }
1864
1865         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1866                         armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
1867         if (retval != ERROR_OK) {
1868                 LOG_DEBUG("Examine %s failed", "CPUID");
1869                 return retval;
1870         }
1871
1872         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1873                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
1874         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1875                         armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
1876         if (retval != ERROR_OK) {
1877                 LOG_DEBUG("Examine %s failed", "Memory Model Type");
1878                 return retval;
1879         }
1880         ttypr |= tmp1;
1881         ttypr = (ttypr << 32) | tmp0;
1882
1883         retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1884                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
1885         retval += mem_ap_read_atomic_u32(armv8->debug_ap,
1886                         armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
1887         if (retval != ERROR_OK) {
1888                 LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
1889                 return retval;
1890         }
1891         debug |= tmp1;
1892         debug = (debug << 32) | tmp0;
1893
1894         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1895         LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
1896         LOG_DEBUG("debug = 0x%08" PRIx64, debug);
1897
1898         if (target->ctibase == 0) {
1899                 /* assume a v8 rom table layout */
1900                 armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
1901                 LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
1902         } else
1903                 armv8->cti_base = target->ctibase;
1904
1905         armv8->arm.core_type = ARM_MODE_MON;
1906         retval = aarch64_dpm_setup(aarch64, debug);
1907         if (retval != ERROR_OK)
1908                 return retval;
1909
1910         /* Setup Breakpoint Register Pairs */
1911         aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
1912         aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
1913         aarch64->brp_num_available = aarch64->brp_num;
1914         aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
1915         for (i = 0; i < aarch64->brp_num; i++) {
1916                 aarch64->brp_list[i].used = 0;
1917                 if (i < (aarch64->brp_num-aarch64->brp_num_context))
1918                         aarch64->brp_list[i].type = BRP_NORMAL;
1919                 else
1920                         aarch64->brp_list[i].type = BRP_CONTEXT;
1921                 aarch64->brp_list[i].value = 0;
1922                 aarch64->brp_list[i].control = 0;
1923                 aarch64->brp_list[i].BRPn = i;
1924         }
1925
1926         LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
1927
1928         target_set_examined(target);
1929         return ERROR_OK;
1930 }
1931
1932 static int aarch64_examine(struct target *target)
1933 {
1934         int retval = ERROR_OK;
1935
1936         /* don't re-probe hardware after each reset */
1937         if (!target_was_examined(target))
1938                 retval = aarch64_examine_first(target);
1939
1940         /* Configure core debug access */
1941         if (retval == ERROR_OK)
1942                 retval = aarch64_init_debug_access(target);
1943
1944         return retval;
1945 }
1946
1947 /*
1948  *      Cortex-A8 target creation and initialization
1949  */
1950
1951 static int aarch64_init_target(struct command_context *cmd_ctx,
1952         struct target *target)
1953 {
1954         /* examine_first() does a bunch of this */
1955         return ERROR_OK;
1956 }
1957
1958 static int aarch64_init_arch_info(struct target *target,
1959         struct aarch64_common *aarch64, struct jtag_tap *tap)
1960 {
1961         struct armv8_common *armv8 = &aarch64->armv8_common;
1962         struct adiv5_dap *dap = armv8->arm.dap;
1963
1964         armv8->arm.dap = dap;
1965
1966         /* Setup struct aarch64_common */
1967         aarch64->common_magic = AARCH64_COMMON_MAGIC;
1968         /*  tap has no dap initialized */
1969         if (!tap->dap) {
1970                 tap->dap = dap_init();
1971
1972                 /* Leave (only) generic DAP stuff for debugport_init() */
1973                 tap->dap->tap = tap;
1974         }
1975
1976         armv8->arm.dap = tap->dap;
1977
1978         aarch64->fast_reg_read = 0;
1979
1980         /* register arch-specific functions */
1981         armv8->examine_debug_reason = NULL;
1982
1983         armv8->post_debug_entry = aarch64_post_debug_entry;
1984
1985         armv8->pre_restore_context = NULL;
1986
1987         armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
1988
1989         /* REVISIT v7a setup should be in a v7a-specific routine */
1990         armv8_init_arch_info(target, armv8);
1991         target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
1992
1993         return ERROR_OK;
1994 }
1995
1996 static int aarch64_target_create(struct target *target, Jim_Interp *interp)
1997 {
1998         struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
1999
2000         return aarch64_init_arch_info(target, aarch64, target->tap);
2001 }
2002
2003 static int aarch64_mmu(struct target *target, int *enabled)
2004 {
2005         if (target->state != TARGET_HALTED) {
2006                 LOG_ERROR("%s: target not halted", __func__);
2007                 return ERROR_TARGET_INVALID;
2008         }
2009
2010         *enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
2011         return ERROR_OK;
2012 }
2013
2014 static int aarch64_virt2phys(struct target *target, target_addr_t virt,
2015                              target_addr_t *phys)
2016 {
2017         return armv8_mmu_translate_va(target, virt, phys);
2018 }
2019
2020 COMMAND_HANDLER(aarch64_handle_cache_info_command)
2021 {
2022         struct target *target = get_current_target(CMD_CTX);
2023         struct armv8_common *armv8 = target_to_armv8(target);
2024
2025         return armv8_handle_cache_info_command(CMD_CTX,
2026                         &armv8->armv8_mmu.armv8_cache);
2027 }
2028
2029
2030 COMMAND_HANDLER(aarch64_handle_dbginit_command)
2031 {
2032         struct target *target = get_current_target(CMD_CTX);
2033         if (!target_was_examined(target)) {
2034                 LOG_ERROR("target not examined yet");
2035                 return ERROR_FAIL;
2036         }
2037
2038         return aarch64_init_debug_access(target);
2039 }
2040 COMMAND_HANDLER(aarch64_handle_smp_off_command)
2041 {
2042         struct target *target = get_current_target(CMD_CTX);
2043         /* check target is an smp target */
2044         struct target_list *head;
2045         struct target *curr;
2046         head = target->head;
2047         target->smp = 0;
2048         if (head != (struct target_list *)NULL) {
2049                 while (head != (struct target_list *)NULL) {
2050                         curr = head->target;
2051                         curr->smp = 0;
2052                         head = head->next;
2053                 }
2054                 /*  fixes the target display to the debugger */
2055                 target->gdb_service->target = target;
2056         }
2057         return ERROR_OK;
2058 }
2059
2060 COMMAND_HANDLER(aarch64_handle_smp_on_command)
2061 {
2062         struct target *target = get_current_target(CMD_CTX);
2063         struct target_list *head;
2064         struct target *curr;
2065         head = target->head;
2066         if (head != (struct target_list *)NULL) {
2067                 target->smp = 1;
2068                 while (head != (struct target_list *)NULL) {
2069                         curr = head->target;
2070                         curr->smp = 1;
2071                         head = head->next;
2072                 }
2073         }
2074         return ERROR_OK;
2075 }
2076
2077 COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
2078 {
2079         struct target *target = get_current_target(CMD_CTX);
2080         int retval = ERROR_OK;
2081         struct target_list *head;
2082         head = target->head;
2083         if (head != (struct target_list *)NULL) {
2084                 if (CMD_ARGC == 1) {
2085                         int coreid = 0;
2086                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
2087                         if (ERROR_OK != retval)
2088                                 return retval;
2089                         target->gdb_service->core[1] = coreid;
2090
2091                 }
2092                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
2093                         , target->gdb_service->core[1]);
2094         }
2095         return ERROR_OK;
2096 }
2097
2098 static const struct command_registration aarch64_exec_command_handlers[] = {
2099         {
2100                 .name = "cache_info",
2101                 .handler = aarch64_handle_cache_info_command,
2102                 .mode = COMMAND_EXEC,
2103                 .help = "display information about target caches",
2104                 .usage = "",
2105         },
2106         {
2107                 .name = "dbginit",
2108                 .handler = aarch64_handle_dbginit_command,
2109                 .mode = COMMAND_EXEC,
2110                 .help = "Initialize core debug",
2111                 .usage = "",
2112         },
2113         {       .name = "smp_off",
2114                 .handler = aarch64_handle_smp_off_command,
2115                 .mode = COMMAND_EXEC,
2116                 .help = "Stop smp handling",
2117                 .usage = "",
2118         },
2119         {
2120                 .name = "smp_on",
2121                 .handler = aarch64_handle_smp_on_command,
2122                 .mode = COMMAND_EXEC,
2123                 .help = "Restart smp handling",
2124                 .usage = "",
2125         },
2126         {
2127                 .name = "smp_gdb",
2128                 .handler = aarch64_handle_smp_gdb_command,
2129                 .mode = COMMAND_EXEC,
2130                 .help = "display/fix current core played to gdb",
2131                 .usage = "",
2132         },
2133
2134
2135         COMMAND_REGISTRATION_DONE
2136 };
2137 static const struct command_registration aarch64_command_handlers[] = {
2138         {
2139                 .chain = arm_command_handlers,
2140         },
2141         {
2142                 .chain = armv8_command_handlers,
2143         },
2144         {
2145                 .name = "cortex_a",
2146                 .mode = COMMAND_ANY,
2147                 .help = "Cortex-A command group",
2148                 .usage = "",
2149                 .chain = aarch64_exec_command_handlers,
2150         },
2151         COMMAND_REGISTRATION_DONE
2152 };
2153
2154 struct target_type aarch64_target = {
2155         .name = "aarch64",
2156
2157         .poll = aarch64_poll,
2158         .arch_state = armv8_arch_state,
2159
2160         .halt = aarch64_halt,
2161         .resume = aarch64_resume,
2162         .step = aarch64_step,
2163
2164         .assert_reset = aarch64_assert_reset,
2165         .deassert_reset = aarch64_deassert_reset,
2166
2167         /* REVISIT allow exporting VFP3 registers ... */
2168         .get_gdb_reg_list = armv8_get_gdb_reg_list,
2169
2170         .read_memory = aarch64_read_memory,
2171         .write_memory = aarch64_write_memory,
2172
2173         .checksum_memory = arm_checksum_memory,
2174         .blank_check_memory = arm_blank_check_memory,
2175
2176         .run_algorithm = armv4_5_run_algorithm,
2177
2178         .add_breakpoint = aarch64_add_breakpoint,
2179         .add_context_breakpoint = aarch64_add_context_breakpoint,
2180         .add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
2181         .remove_breakpoint = aarch64_remove_breakpoint,
2182         .add_watchpoint = NULL,
2183         .remove_watchpoint = NULL,
2184
2185         .commands = aarch64_command_handlers,
2186         .target_create = aarch64_target_create,
2187         .init_target = aarch64_init_target,
2188         .examine = aarch64_examine,
2189
2190         .read_phys_memory = aarch64_read_phys_memory,
2191         .write_phys_memory = aarch64_write_phys_memory,
2192         .mmu = aarch64_mmu,
2193         .virt2phys = aarch64_virt2phys,
2194 };