]> git.sur5r.net Git - openocd/blob - src/target/arm7_9_common.c
6f76c07cf9517bf19ce82674a977fd262ffef8dc
[openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(target_t *target);
41 int arm7_9_enable_sw_bkpts(struct target_s *target);
42
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52
53 /**
54  * Clear watchpoints for an ARM7/9 target.
55  *
56  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57  * @return JTAG error status after executing queue
58  */
59 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
60 {
61         LOG_DEBUG("-");
62         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
63         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
64         arm7_9->sw_breakpoint_count = 0;
65         arm7_9->sw_breakpoints_added = 0;
66         arm7_9->wp0_used = 0;
67         arm7_9->wp1_used = arm7_9->wp1_used_default;
68         arm7_9->wp_available = arm7_9->wp_available_max;
69
70         return jtag_execute_queue();
71 }
72
73 /**
74  * Assign a watchpoint to one of the two available hardware comparators in an
75  * ARM7 or ARM9 target.
76  *
77  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
78  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
79  */
80 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
81 {
82         if (!arm7_9->wp0_used)
83         {
84                 arm7_9->wp0_used = 1;
85                 breakpoint->set = 1;
86                 arm7_9->wp_available--;
87         }
88         else if (!arm7_9->wp1_used)
89         {
90                 arm7_9->wp1_used = 1;
91                 breakpoint->set = 2;
92                 arm7_9->wp_available--;
93         }
94         else
95         {
96                 LOG_ERROR("BUG: no hardware comparator available");
97         }
98         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d", 
99                           breakpoint->unique_id,
100                           breakpoint->address,
101                           breakpoint->set );
102 }
103
104 /**
105  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
106  *
107  * @param arm7_9 Pointer to common struct for ARM7/9 targets
108  * @return Error codes if there is a problem finding a watchpoint or the result
109  *         of executing the JTAG queue
110  */
111 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
112 {
113         if (arm7_9->sw_breakpoints_added)
114         {
115                 return ERROR_OK;
116         }
117         if (arm7_9->wp_available < 1)
118         {
119                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
120                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
121         }
122         arm7_9->wp_available--;
123
124         /* pick a breakpoint unit */
125         if (!arm7_9->wp0_used)
126         {
127                 arm7_9->sw_breakpoints_added = 1;
128                 arm7_9->wp0_used = 3;
129         } else if (!arm7_9->wp1_used)
130         {
131                 arm7_9->sw_breakpoints_added = 2;
132                 arm7_9->wp1_used = 3;
133         }
134         else
135         {
136                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137                 return ERROR_FAIL;
138         }
139
140         if (arm7_9->sw_breakpoints_added == 1)
141         {
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
146                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
147         }
148         else if (arm7_9->sw_breakpoints_added == 2)
149         {
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
155         }
156         else
157         {
158                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
159                 return ERROR_FAIL;
160         }
161         LOG_DEBUG("SW BP using hw wp: %d", 
162                           arm7_9->sw_breakpoints_added );
163
164         return jtag_execute_queue();
165 }
166
167 /**
168  * Setup the common pieces for an ARM7/9 target after reset or on startup.
169  *
170  * @param target Pointer to an ARM7/9 target to setup
171  * @return Result of clearing the watchpoints on the target
172  */
173 int arm7_9_setup(target_t *target)
174 {
175         armv4_5_common_t *armv4_5 = target->arch_info;
176         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
177
178         return arm7_9_clear_watchpoints(arm7_9);
179 }
180
181 /**
182  * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
183  * targets.  A return of ERROR_OK signifies that the target is a valid target
184  * and that the pointers have been set properly.
185  *
186  * @param target Pointer to the target device to get the pointers from
187  * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
188  *                  targets
189  * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
190  *                 targets
191  * @return ERROR_OK if successful
192  */
193 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
194 {
195         armv4_5_common_t *armv4_5 = target->arch_info;
196         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
197
198         if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
199         {
200                 return -1;
201         }
202
203         if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
204         {
205                 return -1;
206         }
207
208         *armv4_5_p = armv4_5;
209         *arm7_9_p = arm7_9;
210
211         return ERROR_OK;
212 }
213
214 /**
215  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
216  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
217  * might have erased the values in Embedded ICE.
218  *
219  * @param target Pointer to the target device to set the breakpoints on
220  * @param breakpoint Pointer to the breakpoint to be set
221  * @return For hardware breakpoints, this is the result of executing the JTAG
222  *         queue.  For software breakpoints, this will be the status of the
223  *         required memory reads and writes
224  */
225 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
226 {
227         armv4_5_common_t *armv4_5 = target->arch_info;
228         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
229         int retval = ERROR_OK;
230
231         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
232                           breakpoint->unique_id,
233                           breakpoint->address,
234                           breakpoint->type);
235
236         if (target->state != TARGET_HALTED)
237         {
238                 LOG_WARNING("target not halted");
239                 return ERROR_TARGET_NOT_HALTED;
240         }
241
242         if (breakpoint->type == BKPT_HARD)
243         {
244                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
245                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
246
247                 /* reassign a hw breakpoint */
248                 if (breakpoint->set == 0)
249                 {
250                         arm7_9_assign_wp(arm7_9, breakpoint);
251                 }
252
253                 if (breakpoint->set == 1)
254                 {
255                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
256                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
257                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
258                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
259                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
260                 }
261                 else if (breakpoint->set == 2)
262                 {
263                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
264                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
265                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
266                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
267                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
268                 }
269                 else
270                 {
271                         LOG_ERROR("BUG: no hardware comparator available");
272                         return ERROR_OK;
273                 }
274
275                 retval = jtag_execute_queue();
276         }
277         else if (breakpoint->type == BKPT_SOFT)
278         {
279                 /* did we already set this breakpoint? */
280                 if (breakpoint->set)
281                         return ERROR_OK;
282
283                 if (breakpoint->length == 4)
284                 {
285                         uint32_t verify = 0xffffffff;
286                         /* keep the original instruction in target endianness */
287                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
288                         {
289                                 return retval;
290                         }
291                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
292                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
293                         {
294                                 return retval;
295                         }
296
297                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
298                         {
299                                 return retval;
300                         }
301                         if (verify != arm7_9->arm_bkpt)
302                         {
303                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
304                                 return ERROR_OK;
305                         }
306                 }
307                 else
308                 {
309                         uint16_t verify = 0xffff;
310                         /* keep the original instruction in target endianness */
311                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
312                         {
313                                 return retval;
314                         }
315                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
316                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
317                         {
318                                 return retval;
319                         }
320
321                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
322                         {
323                                 return retval;
324                         }
325                         if (verify != arm7_9->thumb_bkpt)
326                         {
327                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
328                                 return ERROR_OK;
329                         }
330                 }
331
332                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
333                         return retval;
334
335                 arm7_9->sw_breakpoint_count++;
336
337                 breakpoint->set = 1;
338         }
339
340         return retval;
341 }
342
343 /**
344  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
345  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
346  * will be updated.  Otherwise, the software breakpoint will be restored to its
347  * original instruction if it hasn't already been modified.
348  *
349  * @param target Pointer to ARM7/9 target to unset the breakpoint from
350  * @param breakpoint Pointer to breakpoint to be unset
351  * @return For hardware breakpoints, this is the result of executing the JTAG
352  *         queue.  For software breakpoints, this will be the status of the
353  *         required memory reads and writes
354  */
355 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
356 {
357         int retval = ERROR_OK;
358
359         armv4_5_common_t *armv4_5 = target->arch_info;
360         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
361
362         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
363                           breakpoint->unique_id,
364                           breakpoint->address );
365
366         if (!breakpoint->set)
367         {
368                 LOG_WARNING("breakpoint not set");
369                 return ERROR_OK;
370         }
371
372         if (breakpoint->type == BKPT_HARD)
373         {
374                 LOG_DEBUG("BPID: %d Releasing hw wp: %d", 
375                                   breakpoint->unique_id,
376                                   breakpoint->set );
377                 if (breakpoint->set == 1)
378                 {
379                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
380                         arm7_9->wp0_used = 0;
381                         arm7_9->wp_available++;
382                 }
383                 else if (breakpoint->set == 2)
384                 {
385                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
386                         arm7_9->wp1_used = 0;
387                         arm7_9->wp_available++;
388                 }
389                 retval = jtag_execute_queue();
390                 breakpoint->set = 0;
391         }
392         else
393         {
394                 /* restore original instruction (kept in target endianness) */
395                 if (breakpoint->length == 4)
396                 {
397                         uint32_t current_instr;
398                         /* check that user program as not modified breakpoint instruction */
399                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
400                         {
401                                 return retval;
402                         }
403                         if (current_instr == arm7_9->arm_bkpt)
404                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
405                                 {
406                                         return retval;
407                                 }
408                 }
409                 else
410                 {
411                         uint16_t current_instr;
412                         /* check that user program as not modified breakpoint instruction */
413                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
414                         {
415                                 return retval;
416                         }
417                         if (current_instr == arm7_9->thumb_bkpt)
418                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
419                                 {
420                                         return retval;
421                                 }
422                 }
423
424                 if (--arm7_9->sw_breakpoint_count==0)
425                 {
426                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
427                         if (arm7_9->sw_breakpoints_added == 1)
428                         {
429                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
430                         }
431                         else if (arm7_9->sw_breakpoints_added == 2)
432                         {
433                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
434                         }
435                 }
436
437                 breakpoint->set = 0;
438         }
439
440         return retval;
441 }
442
443 /**
444  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
445  * dangling breakpoints and that the desired breakpoint can be added.
446  *
447  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
448  * @param breakpoint Pointer to the breakpoint to be added
449  * @return An error status if there is a problem adding the breakpoint or the
450  *         result of setting the breakpoint
451  */
452 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
453 {
454         armv4_5_common_t *armv4_5 = target->arch_info;
455         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
456
457         if (target->state != TARGET_HALTED)
458         {
459                 LOG_WARNING("target not halted");
460                 return ERROR_TARGET_NOT_HALTED;
461         }
462
463         if (arm7_9->breakpoint_count == 0)
464         {
465                 /* make sure we don't have any dangling breakpoints. This is vital upon
466                  * GDB connect/disconnect
467                  */
468                 arm7_9_clear_watchpoints(arm7_9);
469         }
470
471         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
472         {
473                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
474                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
475         }
476
477         if ((breakpoint->length != 2) && (breakpoint->length != 4))
478         {
479                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
480                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
481         }
482
483         if (breakpoint->type == BKPT_HARD)
484         {
485                 arm7_9_assign_wp(arm7_9, breakpoint);
486         }
487
488         arm7_9->breakpoint_count++;
489
490         return arm7_9_set_breakpoint(target, breakpoint);
491 }
492
493 /**
494  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
495  * dangling breakpoints and updates available watchpoints if it is a hardware
496  * breakpoint.
497  *
498  * @param target Pointer to the target to have a breakpoint removed
499  * @param breakpoint Pointer to the breakpoint to be removed
500  * @return Error status if there was a problem unsetting the breakpoint or the
501  *         watchpoints could not be cleared
502  */
503 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
504 {
505         int retval = ERROR_OK;
506         armv4_5_common_t *armv4_5 = target->arch_info;
507         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
508
509         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
510         {
511                 return retval;
512         }
513
514         if (breakpoint->type == BKPT_HARD)
515                 arm7_9->wp_available++;
516
517         arm7_9->breakpoint_count--;
518         if (arm7_9->breakpoint_count == 0)
519         {
520                 /* make sure we don't have any dangling breakpoints */
521                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
522                 {
523                         return retval;
524                 }
525         }
526
527         return ERROR_OK;
528 }
529
530 /**
531  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
532  * considered a bug to call this function when there are no available watchpoint
533  * units.
534  *
535  * @param target Pointer to an ARM7/9 target to set a watchpoint on
536  * @param watchpoint Pointer to the watchpoint to be set
537  * @return Error status if watchpoint set fails or the result of executing the
538  *         JTAG queue
539  */
540 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
541 {
542         int retval = ERROR_OK;
543         armv4_5_common_t *armv4_5 = target->arch_info;
544         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
545         int rw_mask = 1;
546         uint32_t mask;
547
548         mask = watchpoint->length - 1;
549
550         if (target->state != TARGET_HALTED)
551         {
552                 LOG_WARNING("target not halted");
553                 return ERROR_TARGET_NOT_HALTED;
554         }
555
556         if (watchpoint->rw == WPT_ACCESS)
557                 rw_mask = 0;
558         else
559                 rw_mask = 1;
560
561         if (!arm7_9->wp0_used)
562         {
563                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
564                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
565                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
566                 if (watchpoint->mask != 0xffffffffu)
567                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
568                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
569                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
570
571                 if ((retval = jtag_execute_queue()) != ERROR_OK)
572                 {
573                         return retval;
574                 }
575                 watchpoint->set = 1;
576                 arm7_9->wp0_used = 2;
577         }
578         else if (!arm7_9->wp1_used)
579         {
580                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
581                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
582                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
583                 if (watchpoint->mask != 0xffffffffu)
584                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
585                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
586                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
587
588                 if ((retval = jtag_execute_queue()) != ERROR_OK)
589                 {
590                         return retval;
591                 }
592                 watchpoint->set = 2;
593                 arm7_9->wp1_used = 2;
594         }
595         else
596         {
597                 LOG_ERROR("BUG: no hardware comparator available");
598                 return ERROR_OK;
599         }
600
601         return ERROR_OK;
602 }
603
604 /**
605  * Unset an existing watchpoint and clear the used watchpoint unit.
606  *
607  * @param target Pointer to the target to have the watchpoint removed
608  * @param watchpoint Pointer to the watchpoint to be removed
609  * @return Error status while trying to unset the watchpoint or the result of
610  *         executing the JTAG queue
611  */
612 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
613 {
614         int retval = ERROR_OK;
615         armv4_5_common_t *armv4_5 = target->arch_info;
616         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
617
618         if (target->state != TARGET_HALTED)
619         {
620                 LOG_WARNING("target not halted");
621                 return ERROR_TARGET_NOT_HALTED;
622         }
623
624         if (!watchpoint->set)
625         {
626                 LOG_WARNING("breakpoint not set");
627                 return ERROR_OK;
628         }
629
630         if (watchpoint->set == 1)
631         {
632                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
633                 if ((retval = jtag_execute_queue()) != ERROR_OK)
634                 {
635                         return retval;
636                 }
637                 arm7_9->wp0_used = 0;
638         }
639         else if (watchpoint->set == 2)
640         {
641                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
642                 if ((retval = jtag_execute_queue()) != ERROR_OK)
643                 {
644                         return retval;
645                 }
646                 arm7_9->wp1_used = 0;
647         }
648         watchpoint->set = 0;
649
650         return ERROR_OK;
651 }
652
653 /**
654  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
655  * available, an error response is returned.
656  *
657  * @param target Pointer to the ARM7/9 target to add a watchpoint to
658  * @param watchpoint Pointer to the watchpoint to be added
659  * @return Error status while trying to add the watchpoint
660  */
661 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
662 {
663         armv4_5_common_t *armv4_5 = target->arch_info;
664         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
665
666         if (target->state != TARGET_HALTED)
667         {
668                 LOG_WARNING("target not halted");
669                 return ERROR_TARGET_NOT_HALTED;
670         }
671
672         if (arm7_9->wp_available < 1)
673         {
674                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
675         }
676
677         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
678         {
679                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
680         }
681
682         arm7_9->wp_available--;
683
684         return ERROR_OK;
685 }
686
687 /**
688  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
689  * the used watchpoint unit will be reopened.
690  *
691  * @param target Pointer to the target to remove a watchpoint from
692  * @param watchpoint Pointer to the watchpoint to be removed
693  * @return Result of trying to unset the watchpoint
694  */
695 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
696 {
697         int retval = ERROR_OK;
698         armv4_5_common_t *armv4_5 = target->arch_info;
699         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
700
701         if (watchpoint->set)
702         {
703                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
704                 {
705                         return retval;
706                 }
707         }
708
709         arm7_9->wp_available++;
710
711         return ERROR_OK;
712 }
713
714 /**
715  * Restarts the target by sending a RESTART instruction and moving the JTAG
716  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
717  * asserted by the processor.
718  *
719  * @param target Pointer to target to issue commands to
720  * @return Error status if there is a timeout or a problem while executing the
721  *         JTAG queue
722  */
723 int arm7_9_execute_sys_speed(struct target_s *target)
724 {
725         int retval;
726
727         armv4_5_common_t *armv4_5 = target->arch_info;
728         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
729         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
730         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
731
732         /* set RESTART instruction */
733         jtag_set_end_state(TAP_IDLE);
734         if (arm7_9->need_bypass_before_restart) {
735                 arm7_9->need_bypass_before_restart = 0;
736                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
737         }
738         arm_jtag_set_instr(jtag_info, 0x4, NULL);
739
740         long long then = timeval_ms();
741         int timeout;
742         while (!(timeout = ((timeval_ms()-then) > 1000)))
743         {
744                 /* read debug status register */
745                 embeddedice_read_reg(dbg_stat);
746                 if ((retval = jtag_execute_queue()) != ERROR_OK)
747                         return retval;
748                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
749                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
750                         break;
751                 if (debug_level >= 3)
752                 {
753                         alive_sleep(100);
754                 } else
755                 {
756                         keep_alive();
757                 }
758         }
759         if (timeout)
760         {
761                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
762                 return ERROR_TARGET_TIMEOUT;
763         }
764
765         return ERROR_OK;
766 }
767
768 /**
769  * Restarts the target by sending a RESTART instruction and moving the JTAG
770  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
771  * waiting until they are.
772  *
773  * @param target Pointer to the target to issue commands to
774  * @return Always ERROR_OK
775  */
776 int arm7_9_execute_fast_sys_speed(struct target_s *target)
777 {
778         static int set = 0;
779         static uint8_t check_value[4], check_mask[4];
780
781         armv4_5_common_t *armv4_5 = target->arch_info;
782         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
783         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
784         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
785
786         /* set RESTART instruction */
787         jtag_set_end_state(TAP_IDLE);
788         if (arm7_9->need_bypass_before_restart) {
789                 arm7_9->need_bypass_before_restart = 0;
790                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
791         }
792         arm_jtag_set_instr(jtag_info, 0x4, NULL);
793
794         if (!set)
795         {
796                 /* check for DBGACK and SYSCOMP set (others don't care) */
797
798                 /* NB! These are constants that must be available until after next jtag_execute() and
799                  * we evaluate the values upon first execution in lieu of setting up these constants
800                  * during early setup.
801                  * */
802                 buf_set_u32(check_value, 0, 32, 0x9);
803                 buf_set_u32(check_mask, 0, 32, 0x9);
804                 set = 1;
805         }
806
807         /* read debug status register */
808         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
809
810         return ERROR_OK;
811 }
812
813 /**
814  * Get some data from the ARM7/9 target.
815  *
816  * @param target Pointer to the ARM7/9 target to read data from
817  * @param size The number of 32bit words to be read
818  * @param buffer Pointer to the buffer that will hold the data
819  * @return The result of receiving data from the Embedded ICE unit
820  */
821 int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer)
822 {
823         armv4_5_common_t *armv4_5 = target->arch_info;
824         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
825         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
826         uint32_t *data;
827         int retval = ERROR_OK;
828         uint32_t i;
829
830         data = malloc(size * (sizeof(uint32_t)));
831
832         retval = embeddedice_receive(jtag_info, data, size);
833
834         /* return the 32-bit ints in the 8-bit array */
835         for (i = 0; i < size; i++)
836         {
837                 h_u32_to_le(buffer + (i * 4), data[i]);
838         }
839
840         free(data);
841
842         return retval;
843 }
844
845 /**
846  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
847  * target is running and the DCC control register has the W bit high, this will
848  * execute the request on the target.
849  *
850  * @param priv Void pointer expected to be a target_t pointer
851  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
852  *                  from the Embedded ICE unit
853  */
854 int arm7_9_handle_target_request(void *priv)
855 {
856         int retval = ERROR_OK;
857         target_t *target = priv;
858         if (!target_was_examined(target))
859                 return ERROR_OK;
860         armv4_5_common_t *armv4_5 = target->arch_info;
861         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
862         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
863         reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
864
865         if (!target->dbg_msg_enabled)
866                 return ERROR_OK;
867
868         if (target->state == TARGET_RUNNING)
869         {
870                 /* read DCC control register */
871                 embeddedice_read_reg(dcc_control);
872                 if ((retval = jtag_execute_queue()) != ERROR_OK)
873                 {
874                         return retval;
875                 }
876
877                 /* check W bit */
878                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
879                 {
880                         uint32_t request;
881
882                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
883                         {
884                                 return retval;
885                         }
886                         if ((retval = target_request(target, request)) != ERROR_OK)
887                         {
888                                 return retval;
889                         }
890                 }
891         }
892
893         return ERROR_OK;
894 }
895
896 /**
897  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
898  * is manipulated to the right halted state based on its current state.  This is
899  * what happens:
900  *
901  * <table>
902  *              <tr><th > State</th><th > Action</th></tr>
903  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
904  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
905  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
906  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
907  * </table>
908  *
909  * If the target does not end up in the halted state, a warning is produced.  If
910  * DBGACK is cleared, then the target is expected to either be running or
911  * running in debug.
912  *
913  * @param target Pointer to the ARM7/9 target to poll
914  * @return ERROR_OK or an error status if a command fails
915  */
916 int arm7_9_poll(target_t *target)
917 {
918         int retval;
919         armv4_5_common_t *armv4_5 = target->arch_info;
920         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
921         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
922
923         /* read debug status register */
924         embeddedice_read_reg(dbg_stat);
925         if ((retval = jtag_execute_queue()) != ERROR_OK)
926         {
927                 return retval;
928         }
929
930         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
931         {
932 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
933                 if (target->state == TARGET_UNKNOWN)
934                 {
935                         /* Starting OpenOCD with target in debug-halt */
936                         target->state = TARGET_RUNNING;
937                         LOG_DEBUG("DBGACK already set during server startup.");
938                 }
939                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
940                 {
941                         int check_pc = 0;
942                         if (target->state == TARGET_RESET)
943                         {
944                                 if (target->reset_halt)
945                                 {
946                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
947                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
948                                         {
949                                                 check_pc = 1;
950                                         }
951                                 }
952                         }
953
954                         target->state = TARGET_HALTED;
955
956                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
957                                 return retval;
958
959                         if (check_pc)
960                         {
961                                 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
962                                 uint32_t t=*((uint32_t *)reg->value);
963                                 if (t != 0)
964                                 {
965                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
966                                 }
967                         }
968
969                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
970                         {
971                                 return retval;
972                         }
973                 }
974                 if (target->state == TARGET_DEBUG_RUNNING)
975                 {
976                         target->state = TARGET_HALTED;
977                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
978                                 return retval;
979
980                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
981                         {
982                                 return retval;
983                         }
984                 }
985                 if (target->state != TARGET_HALTED)
986                 {
987                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
988                 }
989         }
990         else
991         {
992                 if (target->state != TARGET_DEBUG_RUNNING)
993                         target->state = TARGET_RUNNING;
994         }
995
996         return ERROR_OK;
997 }
998
999 /**
1000  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
1001  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
1002  * affected) completely stop the JTAG clock while the core is held in reset
1003  * (SRST).  It isn't possible to program the halt condition once reset is
1004  * asserted, hence a hook that allows the target to set up its reset-halt
1005  * condition is setup prior to asserting reset.
1006  *
1007  * @param target Pointer to an ARM7/9 target to assert reset on
1008  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
1009  */
1010 int arm7_9_assert_reset(target_t *target)
1011 {
1012         armv4_5_common_t *armv4_5 = target->arch_info;
1013         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1014         LOG_DEBUG("target->state: %s",
1015                   target_state_name(target));
1016
1017         enum reset_types jtag_reset_config = jtag_get_reset_config();
1018         if (!(jtag_reset_config & RESET_HAS_SRST))
1019         {
1020                 LOG_ERROR("Can't assert SRST");
1021                 return ERROR_FAIL;
1022         }
1023
1024         if (target->reset_halt)
1025         {
1026                 /*
1027                  * Some targets do not support communication while SRST is asserted. We need to
1028                  * set up the reset vector catch here.
1029                  *
1030                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1031                  * here is harmless.
1032                  */
1033                 if (arm7_9->has_vector_catch)
1034                 {
1035                         /* program vector catch register to catch reset vector */
1036                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1037
1038                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1039                         jtag_add_runtest(1, jtag_get_end_state());
1040                 }
1041                 else
1042                 {
1043                         /* program watchpoint unit to match on reset vector address */
1044                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1045                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1046                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1047                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1048                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1049                 }
1050         }
1051
1052         /* here we should issue an SRST only, but we may have to assert TRST as well */
1053         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1054         {
1055                 jtag_add_reset(1, 1);
1056         } else
1057         {
1058                 jtag_add_reset(0, 1);
1059         }
1060
1061         target->state = TARGET_RESET;
1062         jtag_add_sleep(50000);
1063
1064         armv4_5_invalidate_core_regs(target);
1065
1066         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1067         {
1068                 /* debug entry was already prepared in arm7_9_assert_reset() */
1069                 target->debug_reason = DBG_REASON_DBGRQ;
1070         }
1071
1072         return ERROR_OK;
1073 }
1074
1075 /**
1076  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1077  * and the target is being reset into a halt, a warning will be triggered
1078  * because it is not possible to reset into a halted mode in this case.  The
1079  * target is halted using the target's functions.
1080  *
1081  * @param target Pointer to the target to have the reset deasserted
1082  * @return ERROR_OK or an error from polling or halting the target
1083  */
1084 int arm7_9_deassert_reset(target_t *target)
1085 {
1086         int retval = ERROR_OK;
1087         LOG_DEBUG("target->state: %s",
1088                 target_state_name(target));
1089
1090         /* deassert reset lines */
1091         jtag_add_reset(0, 0);
1092
1093         enum reset_types jtag_reset_config = jtag_get_reset_config();
1094         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1095         {
1096                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1097                 /* set up embedded ice registers again */
1098                 if ((retval = target_examine_one(target)) != ERROR_OK)
1099                         return retval;
1100
1101                 if ((retval = target_poll(target)) != ERROR_OK)
1102                 {
1103                         return retval;
1104                 }
1105
1106                 if ((retval = target_halt(target)) != ERROR_OK)
1107                 {
1108                         return retval;
1109                 }
1110
1111         }
1112         return retval;
1113 }
1114
1115 /**
1116  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1117  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1118  * vector catch was used, it is restored.  Otherwise, the control value is
1119  * restored and the watchpoint unit is restored if it was in use.
1120  *
1121  * @param target Pointer to the ARM7/9 target to have halt cleared
1122  * @return Always ERROR_OK
1123  */
1124 int arm7_9_clear_halt(target_t *target)
1125 {
1126         armv4_5_common_t *armv4_5 = target->arch_info;
1127         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1128         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1129
1130         /* we used DBGRQ only if we didn't come out of reset */
1131         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1132         {
1133                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1134                  */
1135                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1136                 embeddedice_store_reg(dbg_ctrl);
1137         }
1138         else
1139         {
1140                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1141                 {
1142                         /* if we came out of reset, and vector catch is supported, we used
1143                          * vector catch to enter debug state
1144                          * restore the register in that case
1145                          */
1146                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1147                 }
1148                 else
1149                 {
1150                         /* restore registers if watchpoint unit 0 was in use
1151                          */
1152                         if (arm7_9->wp0_used)
1153                         {
1154                                 if (arm7_9->debug_entry_from_reset)
1155                                 {
1156                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1157                                 }
1158                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1159                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1160                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1161                         }
1162                         /* control value always has to be restored, as it was either disabled,
1163                          * or enabled with possibly different bits
1164                          */
1165                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1166                 }
1167         }
1168
1169         return ERROR_OK;
1170 }
1171
1172 /**
1173  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1174  * and then there is a wait until the processor shows the halt.  This wait can
1175  * timeout and results in an error being returned.  The software reset involves
1176  * clearing the halt, updating the debug control register, changing to ARM mode,
1177  * reset of the program counter, and reset of all of the registers.
1178  *
1179  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1180  * @return Error status if any of the commands fail, otherwise ERROR_OK
1181  */
1182 int arm7_9_soft_reset_halt(struct target_s *target)
1183 {
1184         armv4_5_common_t *armv4_5 = target->arch_info;
1185         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1186         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1187         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1188         int i;
1189         int retval;
1190
1191         /* FIX!!! replace some of this code with tcl commands
1192          *
1193          * halt # the halt command is synchronous
1194          * armv4_5 core_state arm
1195          *
1196          */
1197
1198         if ((retval = target_halt(target)) != ERROR_OK)
1199                 return retval;
1200
1201         long long then = timeval_ms();
1202         int timeout;
1203         while (!(timeout = ((timeval_ms()-then) > 1000)))
1204         {
1205                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1206                         break;
1207                 embeddedice_read_reg(dbg_stat);
1208                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1209                         return retval;
1210                 if (debug_level >= 3)
1211                 {
1212                         alive_sleep(100);
1213                 } else
1214                 {
1215                         keep_alive();
1216                 }
1217         }
1218         if (timeout)
1219         {
1220                 LOG_ERROR("Failed to halt CPU after 1 sec");
1221                 return ERROR_TARGET_TIMEOUT;
1222         }
1223         target->state = TARGET_HALTED;
1224
1225         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1226          * ensure that DBGRQ is cleared
1227          */
1228         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1229         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1230         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1231         embeddedice_store_reg(dbg_ctrl);
1232
1233         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1234         {
1235                 return retval;
1236         }
1237
1238         /* if the target is in Thumb state, change to ARM state */
1239         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1240         {
1241                 uint32_t r0_thumb, pc_thumb;
1242                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1243                 /* Entered debug from Thumb mode */
1244                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1245                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1246         }
1247
1248         /* all register content is now invalid */
1249         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1250         {
1251                 return retval;
1252         }
1253
1254         /* SVC, ARM state, IRQ and FIQ disabled */
1255         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1256         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1257         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1258
1259         /* start fetching from 0x0 */
1260         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1261         armv4_5->core_cache->reg_list[15].dirty = 1;
1262         armv4_5->core_cache->reg_list[15].valid = 1;
1263
1264         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1265         armv4_5->core_state = ARMV4_5_STATE_ARM;
1266
1267         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1268                 return ERROR_FAIL;
1269
1270         /* reset registers */
1271         for (i = 0; i <= 14; i++)
1272         {
1273                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1274                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1275                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1276         }
1277
1278         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1279         {
1280                 return retval;
1281         }
1282
1283         return ERROR_OK;
1284 }
1285
1286 /**
1287  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1288  * line or by programming a watchpoint to trigger on any address.  It is
1289  * considered a bug to call this function while the target is in the
1290  * TARGET_RESET state.
1291  *
1292  * @param target Pointer to the ARM7/9 target to be halted
1293  * @return Always ERROR_OK
1294  */
1295 int arm7_9_halt(target_t *target)
1296 {
1297         if (target->state == TARGET_RESET)
1298         {
1299                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1300                 return ERROR_OK;
1301         }
1302
1303         armv4_5_common_t *armv4_5 = target->arch_info;
1304         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1305         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1306
1307         LOG_DEBUG("target->state: %s",
1308                   target_state_name(target));
1309
1310         if (target->state == TARGET_HALTED)
1311         {
1312                 LOG_DEBUG("target was already halted");
1313                 return ERROR_OK;
1314         }
1315
1316         if (target->state == TARGET_UNKNOWN)
1317         {
1318                 LOG_WARNING("target was in unknown state when halt was requested");
1319         }
1320
1321         if (arm7_9->use_dbgrq)
1322         {
1323                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1324                  */
1325                 if (arm7_9->set_special_dbgrq) {
1326                         arm7_9->set_special_dbgrq(target);
1327                 } else {
1328                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1329                         embeddedice_store_reg(dbg_ctrl);
1330                 }
1331         }
1332         else
1333         {
1334                 /* program watchpoint unit to match on any address
1335                  */
1336                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1337                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1338                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1339                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1340         }
1341
1342         target->debug_reason = DBG_REASON_DBGRQ;
1343
1344         return ERROR_OK;
1345 }
1346
1347 /**
1348  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1349  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1350  * examined.  Once done, the target is verified to be halted and the processor
1351  * is forced into ARM mode.  The core registers are saved for the current core
1352  * mode and the program counter (register 15) is updated as needed.  The core
1353  * registers and CPSR and SPSR are saved for restoration later.
1354  *
1355  * @param target Pointer to target that is entering debug mode
1356  * @return Error code if anything fails, otherwise ERROR_OK
1357  */
1358 int arm7_9_debug_entry(target_t *target)
1359 {
1360         int i;
1361         uint32_t context[16];
1362         uint32_t* context_p[16];
1363         uint32_t r0_thumb, pc_thumb;
1364         uint32_t cpsr;
1365         int retval;
1366         /* get pointers to arch-specific information */
1367         armv4_5_common_t *armv4_5 = target->arch_info;
1368         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1369         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1370         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1371
1372 #ifdef _DEBUG_ARM7_9_
1373         LOG_DEBUG("-");
1374 #endif
1375
1376         if (arm7_9->pre_debug_entry)
1377                 arm7_9->pre_debug_entry(target);
1378
1379         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1380          * ensure that DBGRQ is cleared
1381          */
1382         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1383         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1384         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1385         embeddedice_store_reg(dbg_ctrl);
1386
1387         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1388         {
1389                 return retval;
1390         }
1391
1392         if ((retval = jtag_execute_queue()) != ERROR_OK)
1393         {
1394                 return retval;
1395         }
1396
1397         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1398                 return retval;
1399
1400
1401         if (target->state != TARGET_HALTED)
1402         {
1403                 LOG_WARNING("target not halted");
1404                 return ERROR_TARGET_NOT_HALTED;
1405         }
1406
1407         /* if the target is in Thumb state, change to ARM state */
1408         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1409         {
1410                 LOG_DEBUG("target entered debug from Thumb state");
1411                 /* Entered debug from Thumb mode */
1412                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1413                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1414                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1415         }
1416         else
1417         {
1418                 LOG_DEBUG("target entered debug from ARM state");
1419                 /* Entered debug from ARM mode */
1420                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1421         }
1422
1423         for (i = 0; i < 16; i++)
1424                 context_p[i] = &context[i];
1425         /* save core registers (r0 - r15 of current core mode) */
1426         arm7_9->read_core_regs(target, 0xffff, context_p);
1427
1428         arm7_9->read_xpsr(target, &cpsr, 0);
1429
1430         if ((retval = jtag_execute_queue()) != ERROR_OK)
1431                 return retval;
1432
1433         /* if the core has been executing in Thumb state, set the T bit */
1434         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1435                 cpsr |= 0x20;
1436
1437         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1438         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1439         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1440
1441         armv4_5->core_mode = cpsr & 0x1f;
1442
1443         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1444         {
1445                 target->state = TARGET_UNKNOWN;
1446                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1447                 return ERROR_TARGET_FAILURE;
1448         }
1449
1450         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1451
1452         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1453         {
1454                 LOG_DEBUG("thumb state, applying fixups");
1455                 context[0] = r0_thumb;
1456                 context[15] = pc_thumb;
1457         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1458         {
1459                 /* adjust value stored by STM */
1460                 context[15] -= 3 * 4;
1461         }
1462
1463         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1464                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1465         else
1466                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1467
1468         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1469                 return ERROR_FAIL;
1470
1471         for (i = 0; i <= 15; i++)
1472         {
1473                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1474                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1475                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1476                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1477         }
1478
1479         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1480
1481         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1482                 return ERROR_FAIL;
1483
1484         /* exceptions other than USR & SYS have a saved program status register */
1485         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1486         {
1487                 uint32_t spsr;
1488                 arm7_9->read_xpsr(target, &spsr, 1);
1489                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1490                 {
1491                         return retval;
1492                 }
1493                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1494                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1495                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1496         }
1497
1498         /* r0 and r15 (pc) have to be restored later */
1499         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1500         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1501
1502         if ((retval = jtag_execute_queue()) != ERROR_OK)
1503                 return retval;
1504
1505         if (arm7_9->post_debug_entry)
1506                 arm7_9->post_debug_entry(target);
1507
1508         return ERROR_OK;
1509 }
1510
1511 /**
1512  * Validate the full context for an ARM7/9 target in all processor modes.  If
1513  * there are any invalid registers for the target, they will all be read.  This
1514  * includes the PSR.
1515  *
1516  * @param target Pointer to the ARM7/9 target to capture the full context from
1517  * @return Error if the target is not halted, has an invalid core mode, or if
1518  *         the JTAG queue fails to execute
1519  */
1520 int arm7_9_full_context(target_t *target)
1521 {
1522         int i;
1523         int retval;
1524         armv4_5_common_t *armv4_5 = target->arch_info;
1525         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1526
1527         LOG_DEBUG("-");
1528
1529         if (target->state != TARGET_HALTED)
1530         {
1531                 LOG_WARNING("target not halted");
1532                 return ERROR_TARGET_NOT_HALTED;
1533         }
1534
1535         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1536                 return ERROR_FAIL;
1537
1538         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1539          * SYS shares registers with User, so we don't touch SYS
1540          */
1541         for (i = 0; i < 6; i++)
1542         {
1543                 uint32_t mask = 0;
1544                 uint32_t* reg_p[16];
1545                 int j;
1546                 int valid = 1;
1547
1548                 /* check if there are invalid registers in the current mode
1549                  */
1550                 for (j = 0; j <= 16; j++)
1551                 {
1552                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1553                                 valid = 0;
1554                 }
1555
1556                 if (!valid)
1557                 {
1558                         uint32_t tmp_cpsr;
1559
1560                         /* change processor mode (and mask T bit) */
1561                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1562                         tmp_cpsr |= armv4_5_number_to_mode(i);
1563                         tmp_cpsr &= ~0x20;
1564                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1565
1566                         for (j = 0; j < 15; j++)
1567                         {
1568                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1569                                 {
1570                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1571                                         mask |= 1 << j;
1572                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1573                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1574                                 }
1575                         }
1576
1577                         /* if only the PSR is invalid, mask is all zeroes */
1578                         if (mask)
1579                                 arm7_9->read_core_regs(target, mask, reg_p);
1580
1581                         /* check if the PSR has to be read */
1582                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1583                         {
1584                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1585                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1586                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1587                         }
1588                 }
1589         }
1590
1591         /* restore processor mode (mask T bit) */
1592         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1593
1594         if ((retval = jtag_execute_queue()) != ERROR_OK)
1595         {
1596                 return retval;
1597         }
1598         return ERROR_OK;
1599 }
1600
1601 /**
1602  * Restore the processor context on an ARM7/9 target.  The full processor
1603  * context is analyzed to see if any of the registers are dirty on this end, but
1604  * have a valid new value.  If this is the case, the processor is changed to the
1605  * appropriate mode and the new register values are written out to the
1606  * processor.  If there happens to be a dirty register with an invalid value, an
1607  * error will be logged.
1608  *
1609  * @param target Pointer to the ARM7/9 target to have its context restored
1610  * @return Error status if the target is not halted or the core mode in the
1611  *         armv4_5 struct is invalid.
1612  */
1613 int arm7_9_restore_context(target_t *target)
1614 {
1615         armv4_5_common_t *armv4_5 = target->arch_info;
1616         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1617         reg_t *reg;
1618         armv4_5_core_reg_t *reg_arch_info;
1619         enum armv4_5_mode current_mode = armv4_5->core_mode;
1620         int i, j;
1621         int dirty;
1622         int mode_change;
1623
1624         LOG_DEBUG("-");
1625
1626         if (target->state != TARGET_HALTED)
1627         {
1628                 LOG_WARNING("target not halted");
1629                 return ERROR_TARGET_NOT_HALTED;
1630         }
1631
1632         if (arm7_9->pre_restore_context)
1633                 arm7_9->pre_restore_context(target);
1634
1635         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1636                 return ERROR_FAIL;
1637
1638         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1639          * SYS shares registers with User, so we don't touch SYS
1640          */
1641         for (i = 0; i < 6; i++)
1642         {
1643                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1644                 dirty = 0;
1645                 mode_change = 0;
1646                 /* check if there are dirty registers in the current mode
1647                 */
1648                 for (j = 0; j <= 16; j++)
1649                 {
1650                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1651                         reg_arch_info = reg->arch_info;
1652                         if (reg->dirty == 1)
1653                         {
1654                                 if (reg->valid == 1)
1655                                 {
1656                                         dirty = 1;
1657                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1658                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1659                                                 && (reg_arch_info->mode != current_mode)
1660                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1661                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1662                                         {
1663                                                 mode_change = 1;
1664                                                 LOG_DEBUG("require mode change");
1665                                         }
1666                                 }
1667                                 else
1668                                 {
1669                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1670                                 }
1671                         }
1672                 }
1673
1674                 if (dirty)
1675                 {
1676                         uint32_t mask = 0x0;
1677                         int num_regs = 0;
1678                         uint32_t regs[16];
1679
1680                         if (mode_change)
1681                         {
1682                                 uint32_t tmp_cpsr;
1683
1684                                 /* change processor mode (mask T bit) */
1685                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1686                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1687                                 tmp_cpsr &= ~0x20;
1688                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1689                                 current_mode = armv4_5_number_to_mode(i);
1690                         }
1691
1692                         for (j = 0; j <= 14; j++)
1693                         {
1694                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1695                                 reg_arch_info = reg->arch_info;
1696
1697
1698                                 if (reg->dirty == 1)
1699                                 {
1700                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1701                                         mask |= 1 << j;
1702                                         num_regs++;
1703                                         reg->dirty = 0;
1704                                         reg->valid = 1;
1705                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1706                                 }
1707                         }
1708
1709                         if (mask)
1710                         {
1711                                 arm7_9->write_core_regs(target, mask, regs);
1712                         }
1713
1714                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1715                         reg_arch_info = reg->arch_info;
1716                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1717                         {
1718                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1719                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1720                         }
1721                 }
1722         }
1723
1724         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1725         {
1726                 /* restore processor mode (mask T bit) */
1727                 uint32_t tmp_cpsr;
1728
1729                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1730                 tmp_cpsr |= armv4_5_number_to_mode(i);
1731                 tmp_cpsr &= ~0x20;
1732                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1733                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1734         }
1735         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1736         {
1737                 /* CPSR has been changed, full restore necessary (mask T bit) */
1738                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1739                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1740                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1741                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1742         }
1743
1744         /* restore PC */
1745         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1746         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1747         armv4_5->core_cache->reg_list[15].dirty = 0;
1748
1749         if (arm7_9->post_restore_context)
1750                 arm7_9->post_restore_context(target);
1751
1752         return ERROR_OK;
1753 }
1754
1755 /**
1756  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1757  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1758  * restart.
1759  *
1760  * @param target Pointer to the ARM7/9 target to be restarted
1761  * @return Result of executing the JTAG queue
1762  */
1763 int arm7_9_restart_core(struct target_s *target)
1764 {
1765         armv4_5_common_t *armv4_5 = target->arch_info;
1766         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1767         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1768
1769         /* set RESTART instruction */
1770         jtag_set_end_state(TAP_IDLE);
1771         if (arm7_9->need_bypass_before_restart) {
1772                 arm7_9->need_bypass_before_restart = 0;
1773                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1774         }
1775         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1776
1777         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1778         return jtag_execute_queue();
1779 }
1780
1781 /**
1782  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1783  * iterated through and are set on the target if they aren't already set.
1784  *
1785  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1786  */
1787 void arm7_9_enable_watchpoints(struct target_s *target)
1788 {
1789         watchpoint_t *watchpoint = target->watchpoints;
1790
1791         while (watchpoint)
1792         {
1793                 if (watchpoint->set == 0)
1794                         arm7_9_set_watchpoint(target, watchpoint);
1795                 watchpoint = watchpoint->next;
1796         }
1797 }
1798
1799 /**
1800  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1801  * iterated through and are set on the target.
1802  *
1803  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1804  */
1805 void arm7_9_enable_breakpoints(struct target_s *target)
1806 {
1807         breakpoint_t *breakpoint = target->breakpoints;
1808
1809         /* set any pending breakpoints */
1810         while (breakpoint)
1811         {
1812                 arm7_9_set_breakpoint(target, breakpoint);
1813                 breakpoint = breakpoint->next;
1814         }
1815 }
1816
1817 int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1818 {
1819         armv4_5_common_t *armv4_5 = target->arch_info;
1820         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1821         breakpoint_t *breakpoint = target->breakpoints;
1822         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1823         int err, retval = ERROR_OK;
1824
1825         LOG_DEBUG("-");
1826
1827         if (target->state != TARGET_HALTED)
1828         {
1829                 LOG_WARNING("target not halted");
1830                 return ERROR_TARGET_NOT_HALTED;
1831         }
1832
1833         if (!debug_execution)
1834         {
1835                 target_free_all_working_areas(target);
1836         }
1837
1838         /* current = 1: continue on current pc, otherwise continue at <address> */
1839         if (!current)
1840                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1841
1842         uint32_t current_pc;
1843         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1844
1845         /* the front-end may request us not to handle breakpoints */
1846         if (handle_breakpoints)
1847         {
1848                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1849                 {
1850                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1851                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1852                         {
1853                                 return retval;
1854                         }
1855
1856                         /* calculate PC of next instruction */
1857                         uint32_t next_pc;
1858                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1859                         {
1860                                 uint32_t current_opcode;
1861                                 target_read_u32(target, current_pc, &current_opcode);
1862                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1863                                 return retval;
1864                         }
1865
1866                         LOG_DEBUG("enable single-step");
1867                         arm7_9->enable_single_step(target, next_pc);
1868
1869                         target->debug_reason = DBG_REASON_SINGLESTEP;
1870
1871                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1872                         {
1873                                 return retval;
1874                         }
1875
1876                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1877                                 arm7_9->branch_resume(target);
1878                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1879                         {
1880                                 arm7_9->branch_resume_thumb(target);
1881                         }
1882                         else
1883                         {
1884                                 LOG_ERROR("unhandled core state");
1885                                 return ERROR_FAIL;
1886                         }
1887
1888                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1889                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1890                         err = arm7_9_execute_sys_speed(target);
1891
1892                         LOG_DEBUG("disable single-step");
1893                         arm7_9->disable_single_step(target);
1894
1895                         if (err != ERROR_OK)
1896                         {
1897                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1898                                 {
1899                                         return retval;
1900                                 }
1901                                 target->state = TARGET_UNKNOWN;
1902                                 return err;
1903                         }
1904
1905                         arm7_9_debug_entry(target);
1906                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1907
1908                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1909                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1910                         {
1911                                 return retval;
1912                         }
1913                 }
1914         }
1915
1916         /* enable any pending breakpoints and watchpoints */
1917         arm7_9_enable_breakpoints(target);
1918         arm7_9_enable_watchpoints(target);
1919
1920         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1921         {
1922                 return retval;
1923         }
1924
1925         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1926         {
1927                 arm7_9->branch_resume(target);
1928         }
1929         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1930         {
1931                 arm7_9->branch_resume_thumb(target);
1932         }
1933         else
1934         {
1935                 LOG_ERROR("unhandled core state");
1936                 return ERROR_FAIL;
1937         }
1938
1939         /* deassert DBGACK and INTDIS */
1940         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1941         /* INTDIS only when we really resume, not during debug execution */
1942         if (!debug_execution)
1943                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1944         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1945
1946         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1947         {
1948                 return retval;
1949         }
1950
1951         target->debug_reason = DBG_REASON_NOTHALTED;
1952
1953         if (!debug_execution)
1954         {
1955                 /* registers are now invalid */
1956                 armv4_5_invalidate_core_regs(target);
1957                 target->state = TARGET_RUNNING;
1958                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1959                 {
1960                         return retval;
1961                 }
1962         }
1963         else
1964         {
1965                 target->state = TARGET_DEBUG_RUNNING;
1966                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1967                 {
1968                         return retval;
1969                 }
1970         }
1971
1972         LOG_DEBUG("target resumed");
1973
1974         return ERROR_OK;
1975 }
1976
1977 void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc)
1978 {
1979         armv4_5_common_t *armv4_5 = target->arch_info;
1980         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1981
1982         uint32_t current_pc;
1983         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1984
1985         if (next_pc != current_pc)
1986         {
1987                 /* setup an inverse breakpoint on the current PC
1988                 * - comparator 1 matches the current address
1989                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1990                 * - comparator 0 matches any address, as long as rangein is low */
1991                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1992                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1993                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1994                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1995                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1996                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1997                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1998                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1999                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2000         }
2001         else
2002         {
2003                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2004                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2005                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
2006                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
2007                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
2008                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2009                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2010                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2011                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2012         }
2013 }
2014
2015 void arm7_9_disable_eice_step(target_t *target)
2016 {
2017         armv4_5_common_t *armv4_5 = target->arch_info;
2018         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2019
2020         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2021         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2022         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2023         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2024         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2025         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2026         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2027         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2028         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2029 }
2030
2031 int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints)
2032 {
2033         armv4_5_common_t *armv4_5 = target->arch_info;
2034         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2035         breakpoint_t *breakpoint = NULL;
2036         int err, retval;
2037
2038         if (target->state != TARGET_HALTED)
2039         {
2040                 LOG_WARNING("target not halted");
2041                 return ERROR_TARGET_NOT_HALTED;
2042         }
2043
2044         /* current = 1: continue on current pc, otherwise continue at <address> */
2045         if (!current)
2046                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2047
2048         uint32_t current_pc;
2049         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2050
2051         /* the front-end may request us not to handle breakpoints */
2052         if (handle_breakpoints)
2053                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2054                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2055                         {
2056                                 return retval;
2057                         }
2058
2059         target->debug_reason = DBG_REASON_SINGLESTEP;
2060
2061         /* calculate PC of next instruction */
2062         uint32_t next_pc;
2063         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2064         {
2065                 uint32_t current_opcode;
2066                 target_read_u32(target, current_pc, &current_opcode);
2067                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2068                 return retval;
2069         }
2070
2071         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2072         {
2073                 return retval;
2074         }
2075
2076         arm7_9->enable_single_step(target, next_pc);
2077
2078         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2079         {
2080                 arm7_9->branch_resume(target);
2081         }
2082         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2083         {
2084                 arm7_9->branch_resume_thumb(target);
2085         }
2086         else
2087         {
2088                 LOG_ERROR("unhandled core state");
2089                 return ERROR_FAIL;
2090         }
2091
2092         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2093         {
2094                 return retval;
2095         }
2096
2097         err = arm7_9_execute_sys_speed(target);
2098         arm7_9->disable_single_step(target);
2099
2100         /* registers are now invalid */
2101         armv4_5_invalidate_core_regs(target);
2102
2103         if (err != ERROR_OK)
2104         {
2105                 target->state = TARGET_UNKNOWN;
2106         } else {
2107                 arm7_9_debug_entry(target);
2108                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2109                 {
2110                         return retval;
2111                 }
2112                 LOG_DEBUG("target stepped");
2113         }
2114
2115         if (breakpoint)
2116                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2117                 {
2118                         return retval;
2119                 }
2120
2121         return err;
2122 }
2123
2124 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2125 {
2126         uint32_t* reg_p[16];
2127         uint32_t value;
2128         int retval;
2129         armv4_5_common_t *armv4_5 = target->arch_info;
2130         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2131
2132         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2133                 return ERROR_FAIL;
2134
2135         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2136
2137         if ((num < 0) || (num > 16))
2138                 return ERROR_INVALID_ARGUMENTS;
2139
2140         if ((mode != ARMV4_5_MODE_ANY)
2141                         && (mode != armv4_5->core_mode)
2142                         && (reg_mode != ARMV4_5_MODE_ANY))
2143         {
2144                 uint32_t tmp_cpsr;
2145
2146                 /* change processor mode (mask T bit) */
2147                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2148                 tmp_cpsr |= mode;
2149                 tmp_cpsr &= ~0x20;
2150                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2151         }
2152
2153         if ((num >= 0) && (num <= 15))
2154         {
2155                 /* read a normal core register */
2156                 reg_p[num] = &value;
2157
2158                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2159         }
2160         else
2161         {
2162                 /* read a program status register
2163                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2164                  */
2165                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2166                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2167
2168                 arm7_9->read_xpsr(target, &value, spsr);
2169         }
2170
2171         if ((retval = jtag_execute_queue()) != ERROR_OK)
2172         {
2173                 return retval;
2174         }
2175
2176         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2177         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2178         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2179
2180         if ((mode != ARMV4_5_MODE_ANY)
2181                         && (mode != armv4_5->core_mode)
2182                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2183                 /* restore processor mode (mask T bit) */
2184                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2185         }
2186
2187         return ERROR_OK;
2188 }
2189
2190 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value)
2191 {
2192         uint32_t reg[16];
2193         armv4_5_common_t *armv4_5 = target->arch_info;
2194         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2195
2196         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2197                 return ERROR_FAIL;
2198
2199         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2200
2201         if ((num < 0) || (num > 16))
2202                 return ERROR_INVALID_ARGUMENTS;
2203
2204         if ((mode != ARMV4_5_MODE_ANY)
2205                         && (mode != armv4_5->core_mode)
2206                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2207                 uint32_t tmp_cpsr;
2208
2209                 /* change processor mode (mask T bit) */
2210                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2211                 tmp_cpsr |= mode;
2212                 tmp_cpsr &= ~0x20;
2213                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2214         }
2215
2216         if ((num >= 0) && (num <= 15))
2217         {
2218                 /* write a normal core register */
2219                 reg[num] = value;
2220
2221                 arm7_9->write_core_regs(target, 1 << num, reg);
2222         }
2223         else
2224         {
2225                 /* write a program status register
2226                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2227                 */
2228                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2229                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2230
2231                 /* if we're writing the CPSR, mask the T bit */
2232                 if (!spsr)
2233                         value &= ~0x20;
2234
2235                 arm7_9->write_xpsr(target, value, spsr);
2236         }
2237
2238         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2239         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2240
2241         if ((mode != ARMV4_5_MODE_ANY)
2242                         && (mode != armv4_5->core_mode)
2243                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2244                 /* restore processor mode (mask T bit) */
2245                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2246         }
2247
2248         return jtag_execute_queue();
2249 }
2250
2251 int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2252 {
2253         armv4_5_common_t *armv4_5 = target->arch_info;
2254         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2255
2256         uint32_t reg[16];
2257         uint32_t num_accesses = 0;
2258         int thisrun_accesses;
2259         int i;
2260         uint32_t cpsr;
2261         int retval;
2262         int last_reg = 0;
2263
2264         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2265
2266         if (target->state != TARGET_HALTED)
2267         {
2268                 LOG_WARNING("target not halted");
2269                 return ERROR_TARGET_NOT_HALTED;
2270         }
2271
2272         /* sanitize arguments */
2273         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2274                 return ERROR_INVALID_ARGUMENTS;
2275
2276         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2277                 return ERROR_TARGET_UNALIGNED_ACCESS;
2278
2279         /* load the base register with the address of the first word */
2280         reg[0] = address;
2281         arm7_9->write_core_regs(target, 0x1, reg);
2282
2283         int j = 0;
2284
2285         switch (size)
2286         {
2287                 case 4:
2288                         while (num_accesses < count)
2289                         {
2290                                 uint32_t reg_list;
2291                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2292                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2293
2294                                 if (last_reg <= thisrun_accesses)
2295                                         last_reg = thisrun_accesses;
2296
2297                                 arm7_9->load_word_regs(target, reg_list);
2298
2299                                 /* fast memory reads are only safe when the target is running
2300                                  * from a sufficiently high clock (32 kHz is usually too slow)
2301                                  */
2302                                 if (arm7_9->fast_memory_access)
2303                                         retval = arm7_9_execute_fast_sys_speed(target);
2304                                 else
2305                                         retval = arm7_9_execute_sys_speed(target);
2306                                 if (retval != ERROR_OK)
2307                                         return retval;
2308
2309                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2310
2311                                 /* advance buffer, count number of accesses */
2312                                 buffer += thisrun_accesses * 4;
2313                                 num_accesses += thisrun_accesses;
2314
2315                                 if ((j++%1024) == 0)
2316                                 {
2317                                         keep_alive();
2318                                 }
2319                         }
2320                         break;
2321                 case 2:
2322                         while (num_accesses < count)
2323                         {
2324                                 uint32_t reg_list;
2325                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2326                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2327
2328                                 for (i = 1; i <= thisrun_accesses; i++)
2329                                 {
2330                                         if (i > last_reg)
2331                                                 last_reg = i;
2332                                         arm7_9->load_hword_reg(target, i);
2333                                         /* fast memory reads are only safe when the target is running
2334                                          * from a sufficiently high clock (32 kHz is usually too slow)
2335                                          */
2336                                         if (arm7_9->fast_memory_access)
2337                                                 retval = arm7_9_execute_fast_sys_speed(target);
2338                                         else
2339                                                 retval = arm7_9_execute_sys_speed(target);
2340                                         if (retval != ERROR_OK)
2341                                         {
2342                                                 return retval;
2343                                         }
2344
2345                                 }
2346
2347                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2348
2349                                 /* advance buffer, count number of accesses */
2350                                 buffer += thisrun_accesses * 2;
2351                                 num_accesses += thisrun_accesses;
2352
2353                                 if ((j++%1024) == 0)
2354                                 {
2355                                         keep_alive();
2356                                 }
2357                         }
2358                         break;
2359                 case 1:
2360                         while (num_accesses < count)
2361                         {
2362                                 uint32_t reg_list;
2363                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2364                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2365
2366                                 for (i = 1; i <= thisrun_accesses; i++)
2367                                 {
2368                                         if (i > last_reg)
2369                                                 last_reg = i;
2370                                         arm7_9->load_byte_reg(target, i);
2371                                         /* fast memory reads are only safe when the target is running
2372                                          * from a sufficiently high clock (32 kHz is usually too slow)
2373                                          */
2374                                         if (arm7_9->fast_memory_access)
2375                                                 retval = arm7_9_execute_fast_sys_speed(target);
2376                                         else
2377                                                 retval = arm7_9_execute_sys_speed(target);
2378                                         if (retval != ERROR_OK)
2379                                         {
2380                                                 return retval;
2381                                         }
2382                                 }
2383
2384                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2385
2386                                 /* advance buffer, count number of accesses */
2387                                 buffer += thisrun_accesses * 1;
2388                                 num_accesses += thisrun_accesses;
2389
2390                                 if ((j++%1024) == 0)
2391                                 {
2392                                         keep_alive();
2393                                 }
2394                         }
2395                         break;
2396                 default:
2397                         LOG_ERROR("BUG: we shouldn't get here");
2398                         exit(-1);
2399                         break;
2400         }
2401
2402         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2403                 return ERROR_FAIL;
2404
2405         for (i = 0; i <= last_reg; i++)
2406                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2407
2408         arm7_9->read_xpsr(target, &cpsr, 0);
2409         if ((retval = jtag_execute_queue()) != ERROR_OK)
2410         {
2411                 LOG_ERROR("JTAG error while reading cpsr");
2412                 return ERROR_TARGET_DATA_ABORT;
2413         }
2414
2415         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2416         {
2417                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2418
2419                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2420
2421                 return ERROR_TARGET_DATA_ABORT;
2422         }
2423
2424         return ERROR_OK;
2425 }
2426
2427 int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2428 {
2429         armv4_5_common_t *armv4_5 = target->arch_info;
2430         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2431         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2432
2433         uint32_t reg[16];
2434         uint32_t num_accesses = 0;
2435         int thisrun_accesses;
2436         int i;
2437         uint32_t cpsr;
2438         int retval;
2439         int last_reg = 0;
2440
2441 #ifdef _DEBUG_ARM7_9_
2442         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2443 #endif
2444
2445         if (target->state != TARGET_HALTED)
2446         {
2447                 LOG_WARNING("target not halted");
2448                 return ERROR_TARGET_NOT_HALTED;
2449         }
2450
2451         /* sanitize arguments */
2452         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2453                 return ERROR_INVALID_ARGUMENTS;
2454
2455         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2456                 return ERROR_TARGET_UNALIGNED_ACCESS;
2457
2458         /* load the base register with the address of the first word */
2459         reg[0] = address;
2460         arm7_9->write_core_regs(target, 0x1, reg);
2461
2462         /* Clear DBGACK, to make sure memory fetches work as expected */
2463         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2464         embeddedice_store_reg(dbg_ctrl);
2465
2466         switch (size)
2467         {
2468                 case 4:
2469                         while (num_accesses < count)
2470                         {
2471                                 uint32_t reg_list;
2472                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2473                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2474
2475                                 for (i = 1; i <= thisrun_accesses; i++)
2476                                 {
2477                                         if (i > last_reg)
2478                                                 last_reg = i;
2479                                         reg[i] = target_buffer_get_u32(target, buffer);
2480                                         buffer += 4;
2481                                 }
2482
2483                                 arm7_9->write_core_regs(target, reg_list, reg);
2484
2485                                 arm7_9->store_word_regs(target, reg_list);
2486
2487                                 /* fast memory writes are only safe when the target is running
2488                                  * from a sufficiently high clock (32 kHz is usually too slow)
2489                                  */
2490                                 if (arm7_9->fast_memory_access)
2491                                         retval = arm7_9_execute_fast_sys_speed(target);
2492                                 else
2493                                         retval = arm7_9_execute_sys_speed(target);
2494                                 if (retval != ERROR_OK)
2495                                 {
2496                                         return retval;
2497                                 }
2498
2499                                 num_accesses += thisrun_accesses;
2500                         }
2501                         break;
2502                 case 2:
2503                         while (num_accesses < count)
2504                         {
2505                                 uint32_t reg_list;
2506                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2507                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2508
2509                                 for (i = 1; i <= thisrun_accesses; i++)
2510                                 {
2511                                         if (i > last_reg)
2512                                                 last_reg = i;
2513                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2514                                         buffer += 2;
2515                                 }
2516
2517                                 arm7_9->write_core_regs(target, reg_list, reg);
2518
2519                                 for (i = 1; i <= thisrun_accesses; i++)
2520                                 {
2521                                         arm7_9->store_hword_reg(target, i);
2522
2523                                         /* fast memory writes are only safe when the target is running
2524                                          * from a sufficiently high clock (32 kHz is usually too slow)
2525                                          */
2526                                         if (arm7_9->fast_memory_access)
2527                                                 retval = arm7_9_execute_fast_sys_speed(target);
2528                                         else
2529                                                 retval = arm7_9_execute_sys_speed(target);
2530                                         if (retval != ERROR_OK)
2531                                         {
2532                                                 return retval;
2533                                         }
2534                                 }
2535
2536                                 num_accesses += thisrun_accesses;
2537                         }
2538                         break;
2539                 case 1:
2540                         while (num_accesses < count)
2541                         {
2542                                 uint32_t reg_list;
2543                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2544                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2545
2546                                 for (i = 1; i <= thisrun_accesses; i++)
2547                                 {
2548                                         if (i > last_reg)
2549                                                 last_reg = i;
2550                                         reg[i] = *buffer++ & 0xff;
2551                                 }
2552
2553                                 arm7_9->write_core_regs(target, reg_list, reg);
2554
2555                                 for (i = 1; i <= thisrun_accesses; i++)
2556                                 {
2557                                         arm7_9->store_byte_reg(target, i);
2558                                         /* fast memory writes are only safe when the target is running
2559                                          * from a sufficiently high clock (32 kHz is usually too slow)
2560                                          */
2561                                         if (arm7_9->fast_memory_access)
2562                                                 retval = arm7_9_execute_fast_sys_speed(target);
2563                                         else
2564                                                 retval = arm7_9_execute_sys_speed(target);
2565                                         if (retval != ERROR_OK)
2566                                         {
2567                                                 return retval;
2568                                         }
2569
2570                                 }
2571
2572                                 num_accesses += thisrun_accesses;
2573                         }
2574                         break;
2575                 default:
2576                         LOG_ERROR("BUG: we shouldn't get here");
2577                         exit(-1);
2578                         break;
2579         }
2580
2581         /* Re-Set DBGACK */
2582         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2583         embeddedice_store_reg(dbg_ctrl);
2584
2585         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2586                 return ERROR_FAIL;
2587
2588         for (i = 0; i <= last_reg; i++)
2589                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2590
2591         arm7_9->read_xpsr(target, &cpsr, 0);
2592         if ((retval = jtag_execute_queue()) != ERROR_OK)
2593         {
2594                 LOG_ERROR("JTAG error while reading cpsr");
2595                 return ERROR_TARGET_DATA_ABORT;
2596         }
2597
2598         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2599         {
2600                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2601
2602                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2603
2604                 return ERROR_TARGET_DATA_ABORT;
2605         }
2606
2607         return ERROR_OK;
2608 }
2609
2610 static int dcc_count;
2611 static uint8_t *dcc_buffer;
2612
2613 static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2614 {
2615         int retval = ERROR_OK;
2616         armv4_5_common_t *armv4_5 = target->arch_info;
2617         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2618
2619         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2620                 return retval;
2621
2622         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2623         int count = dcc_count;
2624         uint8_t *buffer = dcc_buffer;
2625         if (count > 2)
2626         {
2627                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2628                  * core function repeated. */
2629                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2630                 buffer += 4;
2631
2632                 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2633                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2634                 jtag_tap_t *tap;
2635                 tap = ice_reg->jtag_info->tap;
2636
2637                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2638                 buffer += (count-2)*4;
2639
2640                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2641         } else
2642         {
2643                 int i;
2644                 for (i = 0; i < count; i++)
2645                 {
2646                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2647                         buffer += 4;
2648                 }
2649         }
2650
2651         if ((retval = target_halt(target))!= ERROR_OK)
2652         {
2653                 return retval;
2654         }
2655         return target_wait_state(target, TARGET_HALTED, 500);
2656 }
2657
2658 static const uint32_t dcc_code[] =
2659 {
2660         /* MRC      TST         BNE         MRC         STR         B */
2661         0xee101e10, 0xe3110001, 0x0afffffc, 0xee111e10, 0xe4801004, 0xeafffff9
2662 };
2663
2664 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2665
2666 int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer)
2667 {
2668         int retval;
2669         armv4_5_common_t *armv4_5 = target->arch_info;
2670         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2671         int i;
2672
2673         if (!arm7_9->dcc_downloads)
2674                 return target_write_memory(target, address, 4, count, buffer);
2675
2676         /* regrab previously allocated working_area, or allocate a new one */
2677         if (!arm7_9->dcc_working_area)
2678         {
2679                 uint8_t dcc_code_buf[6 * 4];
2680
2681                 /* make sure we have a working area */
2682                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2683                 {
2684                         LOG_INFO("no working area available, falling back to memory writes");
2685                         return target_write_memory(target, address, 4, count, buffer);
2686                 }
2687
2688                 /* copy target instructions to target endianness */
2689                 for (i = 0; i < 6; i++)
2690                 {
2691                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2692                 }
2693
2694                 /* write DCC code to working area */
2695                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2696                 {
2697                         return retval;
2698                 }
2699         }
2700
2701         armv4_5_algorithm_t armv4_5_info;
2702         reg_param_t reg_params[1];
2703
2704         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2705         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2706         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2707
2708         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2709
2710         buf_set_u32(reg_params[0].value, 0, 32, address);
2711
2712         dcc_count = count;
2713         dcc_buffer = buffer;
2714         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2715                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2716
2717         if (retval == ERROR_OK)
2718         {
2719                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2720                 if (endaddress != (address + count*4))
2721                 {
2722                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2723                         retval = ERROR_FAIL;
2724                 }
2725         }
2726
2727         destroy_reg_param(&reg_params[0]);
2728
2729         return retval;
2730 }
2731
2732 int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
2733 {
2734         working_area_t *crc_algorithm;
2735         armv4_5_algorithm_t armv4_5_info;
2736         reg_param_t reg_params[2];
2737         int retval;
2738
2739         uint32_t arm7_9_crc_code[] = {
2740                 0xE1A02000,                             /* mov          r2, r0 */
2741                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2742                 0xE1A03001,                             /* mov          r3, r1 */
2743                 0xE3A04000,                             /* mov          r4, #0 */
2744                 0xEA00000B,                             /* b            ncomp */
2745                                                                 /* nbyte: */
2746                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2747                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2748                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2749                 0xE3A05000,                             /* mov          r5, #0 */
2750                                                                 /* loop: */
2751                 0xE3500000,                             /* cmp          r0, #0 */
2752                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2753                 0xE2855001,                             /* add          r5, r5, #1 */
2754                 0xE1A00006,                             /* mov          r0, r6 */
2755                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2756                 0xE3550008,                             /* cmp          r5, #8 */
2757                 0x1AFFFFF8,                             /* bne          loop */
2758                 0xE2844001,                             /* add          r4, r4, #1 */
2759                                                                 /* ncomp: */
2760                 0xE1540003,                             /* cmp          r4, r3 */
2761                 0x1AFFFFF1,                             /* bne          nbyte */
2762                                                                 /* end: */
2763                 0xEAFFFFFE,                             /* b            end */
2764                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2765         };
2766
2767         uint32_t i;
2768
2769         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2770         {
2771                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2772         }
2773
2774         /* convert flash writing code into a buffer in target endianness */
2775         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2776         {
2777                 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2778                 {
2779                         return retval;
2780                 }
2781         }
2782
2783         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2784         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2785         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2786
2787         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2788         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2789
2790         buf_set_u32(reg_params[0].value, 0, 32, address);
2791         buf_set_u32(reg_params[1].value, 0, 32, count);
2792
2793         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2794                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), 20000, &armv4_5_info)) != ERROR_OK)
2795         {
2796                 LOG_ERROR("error executing arm7_9 crc algorithm");
2797                 destroy_reg_param(&reg_params[0]);
2798                 destroy_reg_param(&reg_params[1]);
2799                 target_free_working_area(target, crc_algorithm);
2800                 return retval;
2801         }
2802
2803         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2804
2805         destroy_reg_param(&reg_params[0]);
2806         destroy_reg_param(&reg_params[1]);
2807
2808         target_free_working_area(target, crc_algorithm);
2809
2810         return ERROR_OK;
2811 }
2812
2813 int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
2814 {
2815         working_area_t *erase_check_algorithm;
2816         reg_param_t reg_params[3];
2817         armv4_5_algorithm_t armv4_5_info;
2818         int retval;
2819         uint32_t i;
2820
2821         uint32_t erase_check_code[] =
2822         {
2823                                                 /* loop: */
2824                 0xe4d03001,             /* ldrb r3, [r0], #1    */
2825                 0xe0022003,             /* and r2, r2, r3               */
2826                 0xe2511001,     /* subs r1, r1, #1              */
2827                 0x1afffffb,             /* bne loop                             */
2828                                                 /* end: */
2829                 0xeafffffe              /* b end                                */
2830         };
2831
2832         /* make sure we have a working area */
2833         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2834         {
2835                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2836         }
2837
2838         /* convert flash writing code into a buffer in target endianness */
2839         for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2840                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2841                 {
2842                         return retval;
2843                 }
2844
2845         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2846         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2847         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2848
2849         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2850         buf_set_u32(reg_params[0].value, 0, 32, address);
2851
2852         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2853         buf_set_u32(reg_params[1].value, 0, 32, count);
2854
2855         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2856         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2857
2858         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2859                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2860         {
2861                 destroy_reg_param(&reg_params[0]);
2862                 destroy_reg_param(&reg_params[1]);
2863                 destroy_reg_param(&reg_params[2]);
2864                 target_free_working_area(target, erase_check_algorithm);
2865                 return 0;
2866         }
2867
2868         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2869
2870         destroy_reg_param(&reg_params[0]);
2871         destroy_reg_param(&reg_params[1]);
2872         destroy_reg_param(&reg_params[2]);
2873
2874         target_free_working_area(target, erase_check_algorithm);
2875
2876         return ERROR_OK;
2877 }
2878
2879 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
2880 {
2881         command_t *arm7_9_cmd;
2882
2883         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
2884
2885         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr | spsr>");
2886         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr | spsr>");
2887
2888         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
2889
2890         register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
2891                 COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable | disable>");
2892         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
2893                  COMMAND_ANY, "use fast memory accesses instead of slower but potentially safer accesses <enable | disable>");
2894         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
2895                 COMMAND_ANY, "use DCC downloads for larger memory writes <enable | disable>");
2896
2897         armv4_5_register_commands(cmd_ctx);
2898
2899         etm_register_commands(cmd_ctx);
2900
2901         return ERROR_OK;
2902 }
2903
2904 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2905 {
2906         uint32_t value;
2907         int spsr;
2908         int retval;
2909         target_t *target = get_current_target(cmd_ctx);
2910         armv4_5_common_t *armv4_5;
2911         arm7_9_common_t *arm7_9;
2912
2913         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2914         {
2915                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2916                 return ERROR_OK;
2917         }
2918
2919         if (target->state != TARGET_HALTED)
2920         {
2921                 command_print(cmd_ctx, "can't write registers while running");
2922                 return ERROR_OK;
2923         }
2924
2925         if (argc < 2)
2926         {
2927                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2928                 return ERROR_OK;
2929         }
2930
2931         value = strtoul(args[0], NULL, 0);
2932         spsr = strtol(args[1], NULL, 0);
2933
2934         /* if we're writing the CPSR, mask the T bit */
2935         if (!spsr)
2936                 value &= ~0x20;
2937
2938         arm7_9->write_xpsr(target, value, spsr);
2939         if ((retval = jtag_execute_queue()) != ERROR_OK)
2940         {
2941                 LOG_ERROR("JTAG error while writing to xpsr");
2942                 return retval;
2943         }
2944
2945         return ERROR_OK;
2946 }
2947
2948 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2949 {
2950         uint32_t value;
2951         int rotate;
2952         int spsr;
2953         int retval;
2954         target_t *target = get_current_target(cmd_ctx);
2955         armv4_5_common_t *armv4_5;
2956         arm7_9_common_t *arm7_9;
2957
2958         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2959         {
2960                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2961                 return ERROR_OK;
2962         }
2963
2964         if (target->state != TARGET_HALTED)
2965         {
2966                 command_print(cmd_ctx, "can't write registers while running");
2967                 return ERROR_OK;
2968         }
2969
2970         if (argc < 3)
2971         {
2972                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2973                 return ERROR_OK;
2974         }
2975
2976         value = strtoul(args[0], NULL, 0);
2977         rotate = strtol(args[1], NULL, 0);
2978         spsr = strtol(args[2], NULL, 0);
2979
2980         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2981         if ((retval = jtag_execute_queue()) != ERROR_OK)
2982         {
2983                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2984                 return retval;
2985         }
2986
2987         return ERROR_OK;
2988 }
2989
2990 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2991 {
2992         uint32_t value;
2993         uint32_t mode;
2994         int num;
2995         target_t *target = get_current_target(cmd_ctx);
2996         armv4_5_common_t *armv4_5;
2997         arm7_9_common_t *arm7_9;
2998
2999         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3000         {
3001                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3002                 return ERROR_OK;
3003         }
3004
3005         if (target->state != TARGET_HALTED)
3006         {
3007                 command_print(cmd_ctx, "can't write registers while running");
3008                 return ERROR_OK;
3009         }
3010
3011         if (argc < 3)
3012         {
3013                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
3014                 return ERROR_OK;
3015         }
3016
3017         num = strtol(args[0], NULL, 0);
3018         mode = strtoul(args[1], NULL, 0);
3019         value = strtoul(args[2], NULL, 0);
3020
3021         return arm7_9_write_core_reg(target, num, mode, value);
3022 }
3023
3024 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3025 {
3026         target_t *target = get_current_target(cmd_ctx);
3027         armv4_5_common_t *armv4_5;
3028         arm7_9_common_t *arm7_9;
3029
3030         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3031         {
3032                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3033                 return ERROR_OK;
3034         }
3035
3036         if (argc > 0)
3037         {
3038                 if (strcmp("enable", args[0]) == 0)
3039                 {
3040                         arm7_9->use_dbgrq = 1;
3041                 }
3042                 else if (strcmp("disable", args[0]) == 0)
3043                 {
3044                         arm7_9->use_dbgrq = 0;
3045                 }
3046                 else
3047                 {
3048                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
3049                 }
3050         }
3051
3052         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3053
3054         return ERROR_OK;
3055 }
3056
3057 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3058 {
3059         target_t *target = get_current_target(cmd_ctx);
3060         armv4_5_common_t *armv4_5;
3061         arm7_9_common_t *arm7_9;
3062
3063         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3064         {
3065                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3066                 return ERROR_OK;
3067         }
3068
3069         if (argc > 0)
3070         {
3071                 if (strcmp("enable", args[0]) == 0)
3072                 {
3073                         arm7_9->fast_memory_access = 1;
3074                 }
3075                 else if (strcmp("disable", args[0]) == 0)
3076                 {
3077                         arm7_9->fast_memory_access = 0;
3078                 }
3079                 else
3080                 {
3081                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3082                 }
3083         }
3084
3085         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3086
3087         return ERROR_OK;
3088 }
3089
3090 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3091 {
3092         target_t *target = get_current_target(cmd_ctx);
3093         armv4_5_common_t *armv4_5;
3094         arm7_9_common_t *arm7_9;
3095
3096         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3097         {
3098                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3099                 return ERROR_OK;
3100         }
3101
3102         if (argc > 0)
3103         {
3104                 if (strcmp("enable", args[0]) == 0)
3105                 {
3106                         arm7_9->dcc_downloads = 1;
3107                 }
3108                 else if (strcmp("disable", args[0]) == 0)
3109                 {
3110                         arm7_9->dcc_downloads = 0;
3111                 }
3112                 else
3113                 {
3114                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3115                 }
3116         }
3117
3118         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3119
3120         return ERROR_OK;
3121 }
3122
3123 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3124 {
3125         int retval = ERROR_OK;
3126         armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3127
3128         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3129
3130         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3131         {
3132                 return retval;
3133         }
3134
3135         arm7_9->wp_available = 0; /* this is set up in arm7_9_clear_watchpoints() */
3136         arm7_9->wp_available_max = 2;
3137         arm7_9->sw_breakpoints_added = 0;
3138         arm7_9->sw_breakpoint_count = 0;
3139         arm7_9->breakpoint_count = 0;
3140         arm7_9->wp0_used = 0;
3141         arm7_9->wp1_used = 0;
3142         arm7_9->wp1_used_default = 0;
3143         arm7_9->use_dbgrq = 0;
3144
3145         arm7_9->etm_ctx = NULL;
3146         arm7_9->has_single_step = 0;
3147         arm7_9->has_monitor_mode = 0;
3148         arm7_9->has_vector_catch = 0;
3149
3150         arm7_9->debug_entry_from_reset = 0;
3151
3152         arm7_9->dcc_working_area = NULL;
3153
3154         arm7_9->fast_memory_access = fast_and_dangerous;
3155         arm7_9->dcc_downloads = fast_and_dangerous;
3156
3157         arm7_9->need_bypass_before_restart = 0;
3158
3159         armv4_5->arch_info = arm7_9;
3160         armv4_5->read_core_reg = arm7_9_read_core_reg;
3161         armv4_5->write_core_reg = arm7_9_write_core_reg;
3162         armv4_5->full_context = arm7_9_full_context;
3163
3164         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3165         {
3166                 return retval;
3167         }
3168
3169         if ((retval = target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target)) != ERROR_OK)
3170         {
3171                 return retval;
3172         }
3173
3174         return ERROR_OK;
3175 }