]> git.sur5r.net Git - openocd/blob - src/target/arm7_9_common.c
79d91e7a3aa0b2c676cb7f11df44952c9365e587
[openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
38
39
40 int arm7_9_debug_entry(target_t *target);
41 int arm7_9_enable_sw_bkpts(struct target_s *target);
42
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52
53 /**
54  * Clear watchpoints for an ARM7/9 target.
55  *
56  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57  * @return JTAG error status after executing queue
58  */
59 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
60 {
61         LOG_DEBUG("-");
62         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
63         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
64         arm7_9->sw_breakpoints_added = 0;
65         arm7_9->wp0_used = 0;
66         arm7_9->wp1_used = arm7_9->wp1_used_default;
67         arm7_9->wp_available = arm7_9->wp_available_max;
68
69         return jtag_execute_queue();
70 }
71
72 /**
73  * Assign a watchpoint to one of the two available hardware comparators in an
74  * ARM7 or ARM9 target.
75  *
76  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
77  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
78  */
79 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
80 {
81         if (!arm7_9->wp0_used)
82         {
83                 arm7_9->wp0_used = 1;
84                 breakpoint->set = 1;
85                 arm7_9->wp_available--;
86         }
87         else if (!arm7_9->wp1_used)
88         {
89                 arm7_9->wp1_used = 1;
90                 breakpoint->set = 2;
91                 arm7_9->wp_available--;
92         }
93         else
94         {
95                 LOG_ERROR("BUG: no hardware comparator available");
96         }
97         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d", 
98                           breakpoint->unique_id,
99                           breakpoint->address,
100                           breakpoint->set );
101 }
102
103 /**
104  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
105  *
106  * @param arm7_9 Pointer to common struct for ARM7/9 targets
107  * @return Error codes if there is a problem finding a watchpoint or the result
108  *         of executing the JTAG queue
109  */
110 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
111 {
112         if (arm7_9->sw_breakpoints_added)
113         {
114                 return ERROR_OK;
115         }
116         if (arm7_9->wp_available < 1)
117         {
118                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
119                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
120         }
121         arm7_9->wp_available--;
122
123         /* pick a breakpoint unit */
124         if (!arm7_9->wp0_used)
125         {
126                 arm7_9->sw_breakpoints_added = 1;
127                 arm7_9->wp0_used = 3;
128         } else if (!arm7_9->wp1_used)
129         {
130                 arm7_9->sw_breakpoints_added = 2;
131                 arm7_9->wp1_used = 3;
132         }
133         else
134         {
135                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
136                 return ERROR_FAIL;
137         }
138
139         if (arm7_9->sw_breakpoints_added == 1)
140         {
141                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
146         }
147         else if (arm7_9->sw_breakpoints_added == 2)
148         {
149                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
154         }
155         else
156         {
157                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
158                 return ERROR_FAIL;
159         }
160         LOG_DEBUG("SW BP using hw wp: %d", 
161                           arm7_9->sw_breakpoints_added );
162
163         return jtag_execute_queue();
164 }
165
166 /**
167  * Setup the common pieces for an ARM7/9 target after reset or on startup.
168  *
169  * @param target Pointer to an ARM7/9 target to setup
170  * @return Result of clearing the watchpoints on the target
171  */
172 int arm7_9_setup(target_t *target)
173 {
174         armv4_5_common_t *armv4_5 = target->arch_info;
175         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
176
177         return arm7_9_clear_watchpoints(arm7_9);
178 }
179
180 /**
181  * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
182  * targets.  A return of ERROR_OK signifies that the target is a valid target
183  * and that the pointers have been set properly.
184  *
185  * @param target Pointer to the target device to get the pointers from
186  * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
187  *                  targets
188  * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
189  *                 targets
190  * @return ERROR_OK if successful
191  */
192 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
193 {
194         armv4_5_common_t *armv4_5 = target->arch_info;
195         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
196
197         if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
198         {
199                 return -1;
200         }
201
202         if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
203         {
204                 return -1;
205         }
206
207         *armv4_5_p = armv4_5;
208         *arm7_9_p = arm7_9;
209
210         return ERROR_OK;
211 }
212
213 /**
214  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
215  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
216  * might have erased the values in Embedded ICE.
217  *
218  * @param target Pointer to the target device to set the breakpoints on
219  * @param breakpoint Pointer to the breakpoint to be set
220  * @return For hardware breakpoints, this is the result of executing the JTAG
221  *         queue.  For software breakpoints, this will be the status of the
222  *         required memory reads and writes
223  */
224 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
225 {
226         armv4_5_common_t *armv4_5 = target->arch_info;
227         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
228         int retval = ERROR_OK;
229
230         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
231                           breakpoint->unique_id,
232                           breakpoint->address );
233
234         if (target->state != TARGET_HALTED)
235         {
236                 LOG_WARNING("target not halted");
237                 return ERROR_TARGET_NOT_HALTED;
238         }
239
240         if (breakpoint->type == BKPT_HARD)
241         {
242                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
243                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
244
245                 /* reassign a hw breakpoint */
246                 if (breakpoint->set == 0)
247                 {
248                         arm7_9_assign_wp(arm7_9, breakpoint);
249                 }
250
251                 if (breakpoint->set == 1)
252                 {
253                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
254                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
255                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
256                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
257                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
258                 }
259                 else if (breakpoint->set == 2)
260                 {
261                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
262                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
263                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
264                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
265                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
266                 }
267                 else
268                 {
269                         LOG_ERROR("BUG: no hardware comparator available");
270                         return ERROR_OK;
271                 }
272
273                 retval = jtag_execute_queue();
274         }
275         else if (breakpoint->type == BKPT_SOFT)
276         {
277                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
278                         return retval;
279
280                 /* did we already set this breakpoint? */
281                 if (breakpoint->set)
282                         return ERROR_OK;
283
284                 if (breakpoint->length == 4)
285                 {
286                         uint32_t verify = 0xffffffff;
287                         /* keep the original instruction in target endianness */
288                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
289                         {
290                                 return retval;
291                         }
292                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
293                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
294                         {
295                                 return retval;
296                         }
297
298                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
299                         {
300                                 return retval;
301                         }
302                         if (verify != arm7_9->arm_bkpt)
303                         {
304                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
305                                 return ERROR_OK;
306                         }
307                 }
308                 else
309                 {
310                         uint16_t verify = 0xffff;
311                         /* keep the original instruction in target endianness */
312                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
313                         {
314                                 return retval;
315                         }
316                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
317                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
318                         {
319                                 return retval;
320                         }
321
322                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
323                         {
324                                 return retval;
325                         }
326                         if (verify != arm7_9->thumb_bkpt)
327                         {
328                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
329                                 return ERROR_OK;
330                         }
331                 }
332                 breakpoint->set = 1;
333         }
334
335         return retval;
336 }
337
338 /**
339  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
340  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
341  * will be updated.  Otherwise, the software breakpoint will be restored to its
342  * original instruction if it hasn't already been modified.
343  *
344  * @param target Pointer to ARM7/9 target to unset the breakpoint from
345  * @param breakpoint Pointer to breakpoint to be unset
346  * @return For hardware breakpoints, this is the result of executing the JTAG
347  *         queue.  For software breakpoints, this will be the status of the
348  *         required memory reads and writes
349  */
350 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
351 {
352         int retval = ERROR_OK;
353
354         armv4_5_common_t *armv4_5 = target->arch_info;
355         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
356
357         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
358                           breakpoint->unique_id,
359                           breakpoint->address );
360
361         if (!breakpoint->set)
362         {
363                 LOG_WARNING("breakpoint not set");
364                 return ERROR_OK;
365         }
366
367         if (breakpoint->type == BKPT_HARD)
368         {
369                 LOG_DEBUG("BPID: %d Releasing hw wp: %d", 
370                                   breakpoint->unique_id,
371                                   breakpoint->set );
372                 if (breakpoint->set == 1)
373                 {
374                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
375                         arm7_9->wp0_used = 0;
376                         arm7_9->wp_available++;
377                 }
378                 else if (breakpoint->set == 2)
379                 {
380                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
381                         arm7_9->wp1_used = 0;
382                         arm7_9->wp_available++;
383                 }
384                 retval = jtag_execute_queue();
385                 breakpoint->set = 0;
386         }
387         else
388         {
389                 /* restore original instruction (kept in target endianness) */
390                 if (breakpoint->length == 4)
391                 {
392                         uint32_t current_instr;
393                         /* check that user program as not modified breakpoint instruction */
394                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
395                         {
396                                 return retval;
397                         }
398                         if (current_instr == arm7_9->arm_bkpt)
399                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
400                                 {
401                                         return retval;
402                                 }
403                 }
404                 else
405                 {
406                         uint16_t current_instr;
407                         /* check that user program as not modified breakpoint instruction */
408                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
409                         {
410                                 return retval;
411                         }
412                         if (current_instr == arm7_9->thumb_bkpt)
413                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
414                                 {
415                                         return retval;
416                                 }
417                 }
418                 breakpoint->set = 0;
419         }
420
421         return retval;
422 }
423
424 /**
425  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
426  * dangling breakpoints and that the desired breakpoint can be added.
427  *
428  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
429  * @param breakpoint Pointer to the breakpoint to be added
430  * @return An error status if there is a problem adding the breakpoint or the
431  *         result of setting the breakpoint
432  */
433 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
434 {
435         armv4_5_common_t *armv4_5 = target->arch_info;
436         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
437
438         if (target->state != TARGET_HALTED)
439         {
440                 LOG_WARNING("target not halted");
441                 return ERROR_TARGET_NOT_HALTED;
442         }
443
444         if (arm7_9->breakpoint_count == 0)
445         {
446                 /* make sure we don't have any dangling breakpoints. This is vital upon
447                  * GDB connect/disconnect
448                  */
449                 arm7_9_clear_watchpoints(arm7_9);
450         }
451
452         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
453         {
454                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
455                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
456         }
457
458         if ((breakpoint->length != 2) && (breakpoint->length != 4))
459         {
460                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
461                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
462         }
463
464         if (breakpoint->type == BKPT_HARD)
465         {
466                 arm7_9_assign_wp(arm7_9, breakpoint);
467         }
468
469         arm7_9->breakpoint_count++;
470
471         return arm7_9_set_breakpoint(target, breakpoint);
472 }
473
474 /**
475  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
476  * dangling breakpoints and updates available watchpoints if it is a hardware
477  * breakpoint.
478  *
479  * @param target Pointer to the target to have a breakpoint removed
480  * @param breakpoint Pointer to the breakpoint to be removed
481  * @return Error status if there was a problem unsetting the breakpoint or the
482  *         watchpoints could not be cleared
483  */
484 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
485 {
486         int retval = ERROR_OK;
487         armv4_5_common_t *armv4_5 = target->arch_info;
488         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
489
490         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
491         {
492                 return retval;
493         }
494
495         if (breakpoint->type == BKPT_HARD)
496                 arm7_9->wp_available++;
497
498         arm7_9->breakpoint_count--;
499         if (arm7_9->breakpoint_count == 0)
500         {
501                 /* make sure we don't have any dangling breakpoints */
502                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
503                 {
504                         return retval;
505                 }
506         }
507
508         return ERROR_OK;
509 }
510
511 /**
512  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
513  * considered a bug to call this function when there are no available watchpoint
514  * units.
515  *
516  * @param target Pointer to an ARM7/9 target to set a watchpoint on
517  * @param watchpoint Pointer to the watchpoint to be set
518  * @return Error status if watchpoint set fails or the result of executing the
519  *         JTAG queue
520  */
521 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
522 {
523         int retval = ERROR_OK;
524         armv4_5_common_t *armv4_5 = target->arch_info;
525         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
526         int rw_mask = 1;
527         uint32_t mask;
528
529         mask = watchpoint->length - 1;
530
531         if (target->state != TARGET_HALTED)
532         {
533                 LOG_WARNING("target not halted");
534                 return ERROR_TARGET_NOT_HALTED;
535         }
536
537         if (watchpoint->rw == WPT_ACCESS)
538                 rw_mask = 0;
539         else
540                 rw_mask = 1;
541
542         if (!arm7_9->wp0_used)
543         {
544                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
545                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
546                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
547                 if (watchpoint->mask != 0xffffffffu)
548                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
549                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
551
552                 if ((retval = jtag_execute_queue()) != ERROR_OK)
553                 {
554                         return retval;
555                 }
556                 watchpoint->set = 1;
557                 arm7_9->wp0_used = 2;
558         }
559         else if (!arm7_9->wp1_used)
560         {
561                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
562                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
563                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
564                 if (watchpoint->mask != 0xffffffffu)
565                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
566                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
567                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
568
569                 if ((retval = jtag_execute_queue()) != ERROR_OK)
570                 {
571                         return retval;
572                 }
573                 watchpoint->set = 2;
574                 arm7_9->wp1_used = 2;
575         }
576         else
577         {
578                 LOG_ERROR("BUG: no hardware comparator available");
579                 return ERROR_OK;
580         }
581
582         return ERROR_OK;
583 }
584
585 /**
586  * Unset an existing watchpoint and clear the used watchpoint unit.
587  *
588  * @param target Pointer to the target to have the watchpoint removed
589  * @param watchpoint Pointer to the watchpoint to be removed
590  * @return Error status while trying to unset the watchpoint or the result of
591  *         executing the JTAG queue
592  */
593 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
594 {
595         int retval = ERROR_OK;
596         armv4_5_common_t *armv4_5 = target->arch_info;
597         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
598
599         if (target->state != TARGET_HALTED)
600         {
601                 LOG_WARNING("target not halted");
602                 return ERROR_TARGET_NOT_HALTED;
603         }
604
605         if (!watchpoint->set)
606         {
607                 LOG_WARNING("breakpoint not set");
608                 return ERROR_OK;
609         }
610
611         if (watchpoint->set == 1)
612         {
613                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
614                 if ((retval = jtag_execute_queue()) != ERROR_OK)
615                 {
616                         return retval;
617                 }
618                 arm7_9->wp0_used = 0;
619         }
620         else if (watchpoint->set == 2)
621         {
622                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
623                 if ((retval = jtag_execute_queue()) != ERROR_OK)
624                 {
625                         return retval;
626                 }
627                 arm7_9->wp1_used = 0;
628         }
629         watchpoint->set = 0;
630
631         return ERROR_OK;
632 }
633
634 /**
635  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
636  * available, an error response is returned.
637  *
638  * @param target Pointer to the ARM7/9 target to add a watchpoint to
639  * @param watchpoint Pointer to the watchpoint to be added
640  * @return Error status while trying to add the watchpoint
641  */
642 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
643 {
644         armv4_5_common_t *armv4_5 = target->arch_info;
645         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
646
647         if (target->state != TARGET_HALTED)
648         {
649                 LOG_WARNING("target not halted");
650                 return ERROR_TARGET_NOT_HALTED;
651         }
652
653         if (arm7_9->wp_available < 1)
654         {
655                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
656         }
657
658         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
659         {
660                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
661         }
662
663         arm7_9->wp_available--;
664
665         return ERROR_OK;
666 }
667
668 /**
669  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
670  * the used watchpoint unit will be reopened.
671  *
672  * @param target Pointer to the target to remove a watchpoint from
673  * @param watchpoint Pointer to the watchpoint to be removed
674  * @return Result of trying to unset the watchpoint
675  */
676 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
677 {
678         int retval = ERROR_OK;
679         armv4_5_common_t *armv4_5 = target->arch_info;
680         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
681
682         if (watchpoint->set)
683         {
684                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
685                 {
686                         return retval;
687                 }
688         }
689
690         arm7_9->wp_available++;
691
692         return ERROR_OK;
693 }
694
695 /**
696  * Restarts the target by sending a RESTART instruction and moving the JTAG
697  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
698  * asserted by the processor.
699  *
700  * @param target Pointer to target to issue commands to
701  * @return Error status if there is a timeout or a problem while executing the
702  *         JTAG queue
703  */
704 int arm7_9_execute_sys_speed(struct target_s *target)
705 {
706         int retval;
707
708         armv4_5_common_t *armv4_5 = target->arch_info;
709         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
710         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
711         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
712
713         /* set RESTART instruction */
714         jtag_set_end_state(TAP_IDLE);
715         if (arm7_9->need_bypass_before_restart) {
716                 arm7_9->need_bypass_before_restart = 0;
717                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
718         }
719         arm_jtag_set_instr(jtag_info, 0x4, NULL);
720
721         long long then = timeval_ms();
722         int timeout;
723         while (!(timeout = ((timeval_ms()-then) > 1000)))
724         {
725                 /* read debug status register */
726                 embeddedice_read_reg(dbg_stat);
727                 if ((retval = jtag_execute_queue()) != ERROR_OK)
728                         return retval;
729                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
730                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
731                         break;
732                 if (debug_level >= 3)
733                 {
734                         alive_sleep(100);
735                 } else
736                 {
737                         keep_alive();
738                 }
739         }
740         if (timeout)
741         {
742                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
743                 return ERROR_TARGET_TIMEOUT;
744         }
745
746         return ERROR_OK;
747 }
748
749 /**
750  * Restarts the target by sending a RESTART instruction and moving the JTAG
751  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
752  * waiting until they are.
753  *
754  * @param target Pointer to the target to issue commands to
755  * @return Always ERROR_OK
756  */
757 int arm7_9_execute_fast_sys_speed(struct target_s *target)
758 {
759         static int set = 0;
760         static uint8_t check_value[4], check_mask[4];
761
762         armv4_5_common_t *armv4_5 = target->arch_info;
763         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
764         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
765         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
766
767         /* set RESTART instruction */
768         jtag_set_end_state(TAP_IDLE);
769         if (arm7_9->need_bypass_before_restart) {
770                 arm7_9->need_bypass_before_restart = 0;
771                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
772         }
773         arm_jtag_set_instr(jtag_info, 0x4, NULL);
774
775         if (!set)
776         {
777                 /* check for DBGACK and SYSCOMP set (others don't care) */
778
779                 /* NB! These are constants that must be available until after next jtag_execute() and
780                  * we evaluate the values upon first execution in lieu of setting up these constants
781                  * during early setup.
782                  * */
783                 buf_set_u32(check_value, 0, 32, 0x9);
784                 buf_set_u32(check_mask, 0, 32, 0x9);
785                 set = 1;
786         }
787
788         /* read debug status register */
789         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
790
791         return ERROR_OK;
792 }
793
794 /**
795  * Get some data from the ARM7/9 target.
796  *
797  * @param target Pointer to the ARM7/9 target to read data from
798  * @param size The number of 32bit words to be read
799  * @param buffer Pointer to the buffer that will hold the data
800  * @return The result of receiving data from the Embedded ICE unit
801  */
802 int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer)
803 {
804         armv4_5_common_t *armv4_5 = target->arch_info;
805         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
806         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
807         uint32_t *data;
808         int retval = ERROR_OK;
809         uint32_t i;
810
811         data = malloc(size * (sizeof(uint32_t)));
812
813         retval = embeddedice_receive(jtag_info, data, size);
814
815         /* return the 32-bit ints in the 8-bit array */
816         for (i = 0; i < size; i++)
817         {
818                 h_u32_to_le(buffer + (i * 4), data[i]);
819         }
820
821         free(data);
822
823         return retval;
824 }
825
826 /**
827  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
828  * target is running and the DCC control register has the W bit high, this will
829  * execute the request on the target.
830  *
831  * @param priv Void pointer expected to be a target_t pointer
832  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
833  *                  from the Embedded ICE unit
834  */
835 int arm7_9_handle_target_request(void *priv)
836 {
837         int retval = ERROR_OK;
838         target_t *target = priv;
839         if (!target_was_examined(target))
840                 return ERROR_OK;
841         armv4_5_common_t *armv4_5 = target->arch_info;
842         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
843         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
844         reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
845
846         if (!target->dbg_msg_enabled)
847                 return ERROR_OK;
848
849         if (target->state == TARGET_RUNNING)
850         {
851                 /* read DCC control register */
852                 embeddedice_read_reg(dcc_control);
853                 if ((retval = jtag_execute_queue()) != ERROR_OK)
854                 {
855                         return retval;
856                 }
857
858                 /* check W bit */
859                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
860                 {
861                         uint32_t request;
862
863                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
864                         {
865                                 return retval;
866                         }
867                         if ((retval = target_request(target, request)) != ERROR_OK)
868                         {
869                                 return retval;
870                         }
871                 }
872         }
873
874         return ERROR_OK;
875 }
876
877 /**
878  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
879  * is manipulated to the right halted state based on its current state.  This is
880  * what happens:
881  *
882  * <table>
883  *              <tr><th > State</th><th > Action</th></tr>
884  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
885  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
886  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
887  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
888  * </table>
889  *
890  * If the target does not end up in the halted state, a warning is produced.  If
891  * DBGACK is cleared, then the target is expected to either be running or
892  * running in debug.
893  *
894  * @param target Pointer to the ARM7/9 target to poll
895  * @return ERROR_OK or an error status if a command fails
896  */
897 int arm7_9_poll(target_t *target)
898 {
899         int retval;
900         armv4_5_common_t *armv4_5 = target->arch_info;
901         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
902         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
903
904         /* read debug status register */
905         embeddedice_read_reg(dbg_stat);
906         if ((retval = jtag_execute_queue()) != ERROR_OK)
907         {
908                 return retval;
909         }
910
911         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
912         {
913 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
914                 if (target->state == TARGET_UNKNOWN)
915                 {
916                         /* Starting OpenOCD with target in debug-halt */
917                         target->state = TARGET_RUNNING;
918                         LOG_DEBUG("DBGACK already set during server startup.");
919                 }
920                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
921                 {
922                         int check_pc = 0;
923                         if (target->state == TARGET_RESET)
924                         {
925                                 if (target->reset_halt)
926                                 {
927                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
928                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
929                                         {
930                                                 check_pc = 1;
931                                         }
932                                 }
933                         }
934
935                         target->state = TARGET_HALTED;
936
937                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
938                                 return retval;
939
940                         if (check_pc)
941                         {
942                                 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
943                                 uint32_t t=*((uint32_t *)reg->value);
944                                 if (t != 0)
945                                 {
946                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
947                                 }
948                         }
949
950                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
951                         {
952                                 return retval;
953                         }
954                 }
955                 if (target->state == TARGET_DEBUG_RUNNING)
956                 {
957                         target->state = TARGET_HALTED;
958                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
959                                 return retval;
960
961                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
962                         {
963                                 return retval;
964                         }
965                 }
966                 if (target->state != TARGET_HALTED)
967                 {
968                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
969                 }
970         }
971         else
972         {
973                 if (target->state != TARGET_DEBUG_RUNNING)
974                         target->state = TARGET_RUNNING;
975         }
976
977         return ERROR_OK;
978 }
979
980 /**
981  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
982  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
983  * affected) completely stop the JTAG clock while the core is held in reset
984  * (SRST).  It isn't possible to program the halt condition once reset is
985  * asserted, hence a hook that allows the target to set up its reset-halt
986  * condition is setup prior to asserting reset.
987  *
988  * @param target Pointer to an ARM7/9 target to assert reset on
989  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
990  */
991 int arm7_9_assert_reset(target_t *target)
992 {
993         armv4_5_common_t *armv4_5 = target->arch_info;
994         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
995         LOG_DEBUG("target->state: %s",
996                   target_state_name(target));
997
998         enum reset_types jtag_reset_config = jtag_get_reset_config();
999         if (!(jtag_reset_config & RESET_HAS_SRST))
1000         {
1001                 LOG_ERROR("Can't assert SRST");
1002                 return ERROR_FAIL;
1003         }
1004
1005         if (target->reset_halt)
1006         {
1007                 /*
1008                  * Some targets do not support communication while SRST is asserted. We need to
1009                  * set up the reset vector catch here.
1010                  *
1011                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1012                  * here is harmless.
1013                  */
1014                 if (arm7_9->has_vector_catch)
1015                 {
1016                         /* program vector catch register to catch reset vector */
1017                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1018                 }
1019                 else
1020                 {
1021                         /* program watchpoint unit to match on reset vector address */
1022                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1023                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1024                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1025                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1026                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1027                 }
1028         }
1029
1030         /* here we should issue an SRST only, but we may have to assert TRST as well */
1031         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1032         {
1033                 jtag_add_reset(1, 1);
1034         } else
1035         {
1036                 jtag_add_reset(0, 1);
1037         }
1038
1039         target->state = TARGET_RESET;
1040         jtag_add_sleep(50000);
1041
1042         armv4_5_invalidate_core_regs(target);
1043
1044         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1045         {
1046                 /* debug entry was already prepared in arm7_9_assert_reset() */
1047                 target->debug_reason = DBG_REASON_DBGRQ;
1048         }
1049
1050         return ERROR_OK;
1051 }
1052
1053 /**
1054  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1055  * and the target is being reset into a halt, a warning will be triggered
1056  * because it is not possible to reset into a halted mode in this case.  The
1057  * target is halted using the target's functions.
1058  *
1059  * @param target Pointer to the target to have the reset deasserted
1060  * @return ERROR_OK or an error from polling or halting the target
1061  */
1062 int arm7_9_deassert_reset(target_t *target)
1063 {
1064         int retval = ERROR_OK;
1065         LOG_DEBUG("target->state: %s",
1066                 target_state_name(target));
1067
1068         /* deassert reset lines */
1069         jtag_add_reset(0, 0);
1070
1071         enum reset_types jtag_reset_config = jtag_get_reset_config();
1072         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1073         {
1074                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1075                 /* set up embedded ice registers again */
1076                 if ((retval = target_examine_one(target)) != ERROR_OK)
1077                         return retval;
1078
1079                 if ((retval = target_poll(target)) != ERROR_OK)
1080                 {
1081                         return retval;
1082                 }
1083
1084                 if ((retval = target_halt(target)) != ERROR_OK)
1085                 {
1086                         return retval;
1087                 }
1088
1089         }
1090         return retval;
1091 }
1092
1093 /**
1094  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1095  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1096  * vector catch was used, it is restored.  Otherwise, the control value is
1097  * restored and the watchpoint unit is restored if it was in use.
1098  *
1099  * @param target Pointer to the ARM7/9 target to have halt cleared
1100  * @return Always ERROR_OK
1101  */
1102 int arm7_9_clear_halt(target_t *target)
1103 {
1104         armv4_5_common_t *armv4_5 = target->arch_info;
1105         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1106         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1107
1108         /* we used DBGRQ only if we didn't come out of reset */
1109         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1110         {
1111                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1112                  */
1113                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1114                 embeddedice_store_reg(dbg_ctrl);
1115         }
1116         else
1117         {
1118                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1119                 {
1120                         /* if we came out of reset, and vector catch is supported, we used
1121                          * vector catch to enter debug state
1122                          * restore the register in that case
1123                          */
1124                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1125                 }
1126                 else
1127                 {
1128                         /* restore registers if watchpoint unit 0 was in use
1129                          */
1130                         if (arm7_9->wp0_used)
1131                         {
1132                                 if (arm7_9->debug_entry_from_reset)
1133                                 {
1134                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1135                                 }
1136                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1137                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1138                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1139                         }
1140                         /* control value always has to be restored, as it was either disabled,
1141                          * or enabled with possibly different bits
1142                          */
1143                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1144                 }
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 /**
1151  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1152  * and then there is a wait until the processor shows the halt.  This wait can
1153  * timeout and results in an error being returned.  The software reset involves
1154  * clearing the halt, updating the debug control register, changing to ARM mode,
1155  * reset of the program counter, and reset of all of the registers.
1156  *
1157  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158  * @return Error status if any of the commands fail, otherwise ERROR_OK
1159  */
1160 int arm7_9_soft_reset_halt(struct target_s *target)
1161 {
1162         armv4_5_common_t *armv4_5 = target->arch_info;
1163         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1164         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1165         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1166         int i;
1167         int retval;
1168
1169         if ((retval = target_halt(target)) != ERROR_OK)
1170                 return retval;
1171
1172         long long then = timeval_ms();
1173         int timeout;
1174         while (!(timeout = ((timeval_ms()-then) > 1000)))
1175         {
1176                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1177                         break;
1178                 embeddedice_read_reg(dbg_stat);
1179                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1180                         return retval;
1181                 if (debug_level >= 3)
1182                 {
1183                         alive_sleep(100);
1184                 } else
1185                 {
1186                         keep_alive();
1187                 }
1188         }
1189         if (timeout)
1190         {
1191                 LOG_ERROR("Failed to halt CPU after 1 sec");
1192                 return ERROR_TARGET_TIMEOUT;
1193         }
1194         target->state = TARGET_HALTED;
1195
1196         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1197          * ensure that DBGRQ is cleared
1198          */
1199         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1200         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1201         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1202         embeddedice_store_reg(dbg_ctrl);
1203
1204         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1205         {
1206                 return retval;
1207         }
1208
1209         /* if the target is in Thumb state, change to ARM state */
1210         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1211         {
1212                 uint32_t r0_thumb, pc_thumb;
1213                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1214                 /* Entered debug from Thumb mode */
1215                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1216                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1217         }
1218
1219         /* all register content is now invalid */
1220         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1221         {
1222                 return retval;
1223         }
1224
1225         /* SVC, ARM state, IRQ and FIQ disabled */
1226         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1227         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1228         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1229
1230         /* start fetching from 0x0 */
1231         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1232         armv4_5->core_cache->reg_list[15].dirty = 1;
1233         armv4_5->core_cache->reg_list[15].valid = 1;
1234
1235         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1236         armv4_5->core_state = ARMV4_5_STATE_ARM;
1237
1238         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1239                 return ERROR_FAIL;
1240
1241         /* reset registers */
1242         for (i = 0; i <= 14; i++)
1243         {
1244                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1245                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1246                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1247         }
1248
1249         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1250         {
1251                 return retval;
1252         }
1253
1254         return ERROR_OK;
1255 }
1256
1257 /**
1258  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1259  * line or by programming a watchpoint to trigger on any address.  It is
1260  * considered a bug to call this function while the target is in the
1261  * TARGET_RESET state.
1262  *
1263  * @param target Pointer to the ARM7/9 target to be halted
1264  * @return Always ERROR_OK
1265  */
1266 int arm7_9_halt(target_t *target)
1267 {
1268         if (target->state == TARGET_RESET)
1269         {
1270                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1271                 return ERROR_OK;
1272         }
1273
1274         armv4_5_common_t *armv4_5 = target->arch_info;
1275         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1276         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1277
1278         LOG_DEBUG("target->state: %s",
1279                   target_state_name(target));
1280
1281         if (target->state == TARGET_HALTED)
1282         {
1283                 LOG_DEBUG("target was already halted");
1284                 return ERROR_OK;
1285         }
1286
1287         if (target->state == TARGET_UNKNOWN)
1288         {
1289                 LOG_WARNING("target was in unknown state when halt was requested");
1290         }
1291
1292         if (arm7_9->use_dbgrq)
1293         {
1294                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1295                  */
1296                 if (arm7_9->set_special_dbgrq) {
1297                         arm7_9->set_special_dbgrq(target);
1298                 } else {
1299                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1300                         embeddedice_store_reg(dbg_ctrl);
1301                 }
1302         }
1303         else
1304         {
1305                 /* program watchpoint unit to match on any address
1306                  */
1307                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1308                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1309                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1310                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1311         }
1312
1313         target->debug_reason = DBG_REASON_DBGRQ;
1314
1315         return ERROR_OK;
1316 }
1317
1318 /**
1319  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1320  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1321  * examined.  Once done, the target is verified to be halted and the processor
1322  * is forced into ARM mode.  The core registers are saved for the current core
1323  * mode and the program counter (register 15) is updated as needed.  The core
1324  * registers and CPSR and SPSR are saved for restoration later.
1325  *
1326  * @param target Pointer to target that is entering debug mode
1327  * @return Error code if anything fails, otherwise ERROR_OK
1328  */
1329 int arm7_9_debug_entry(target_t *target)
1330 {
1331         int i;
1332         uint32_t context[16];
1333         uint32_t* context_p[16];
1334         uint32_t r0_thumb, pc_thumb;
1335         uint32_t cpsr;
1336         int retval;
1337         /* get pointers to arch-specific information */
1338         armv4_5_common_t *armv4_5 = target->arch_info;
1339         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1340         reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1341         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1342
1343 #ifdef _DEBUG_ARM7_9_
1344         LOG_DEBUG("-");
1345 #endif
1346
1347         if (arm7_9->pre_debug_entry)
1348                 arm7_9->pre_debug_entry(target);
1349
1350         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1351          * ensure that DBGRQ is cleared
1352          */
1353         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1354         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1355         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1356         embeddedice_store_reg(dbg_ctrl);
1357
1358         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1359         {
1360                 return retval;
1361         }
1362
1363         if ((retval = jtag_execute_queue()) != ERROR_OK)
1364         {
1365                 return retval;
1366         }
1367
1368         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1369                 return retval;
1370
1371
1372         if (target->state != TARGET_HALTED)
1373         {
1374                 LOG_WARNING("target not halted");
1375                 return ERROR_TARGET_NOT_HALTED;
1376         }
1377
1378         /* if the target is in Thumb state, change to ARM state */
1379         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1380         {
1381                 LOG_DEBUG("target entered debug from Thumb state");
1382                 /* Entered debug from Thumb mode */
1383                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1384                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1385                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1386         }
1387         else
1388         {
1389                 LOG_DEBUG("target entered debug from ARM state");
1390                 /* Entered debug from ARM mode */
1391                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1392         }
1393
1394         for (i = 0; i < 16; i++)
1395                 context_p[i] = &context[i];
1396         /* save core registers (r0 - r15 of current core mode) */
1397         arm7_9->read_core_regs(target, 0xffff, context_p);
1398
1399         arm7_9->read_xpsr(target, &cpsr, 0);
1400
1401         if ((retval = jtag_execute_queue()) != ERROR_OK)
1402                 return retval;
1403
1404         /* if the core has been executing in Thumb state, set the T bit */
1405         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1406                 cpsr |= 0x20;
1407
1408         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1409         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1410         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1411
1412         armv4_5->core_mode = cpsr & 0x1f;
1413
1414         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1415         {
1416                 target->state = TARGET_UNKNOWN;
1417                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1418                 return ERROR_TARGET_FAILURE;
1419         }
1420
1421         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1422
1423         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1424         {
1425                 LOG_DEBUG("thumb state, applying fixups");
1426                 context[0] = r0_thumb;
1427                 context[15] = pc_thumb;
1428         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1429         {
1430                 /* adjust value stored by STM */
1431                 context[15] -= 3 * 4;
1432         }
1433
1434         if ((target->debug_reason == DBG_REASON_BREAKPOINT)
1435                         || (target->debug_reason == DBG_REASON_SINGLESTEP)
1436                         || (target->debug_reason == DBG_REASON_WATCHPOINT)
1437                         || (target->debug_reason == DBG_REASON_WPTANDBKPT)
1438                         || ((target->debug_reason == DBG_REASON_DBGRQ) && (arm7_9->use_dbgrq == 0)))
1439                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1440         else if (target->debug_reason == DBG_REASON_DBGRQ)
1441                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1442         else
1443         {
1444                 LOG_ERROR("unknown debug reason: %i", target->debug_reason);
1445         }
1446
1447         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1448                 return ERROR_FAIL;
1449
1450         for (i = 0; i <= 15; i++)
1451         {
1452                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1453                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1454                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1455                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1456         }
1457
1458         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1459
1460         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1461                 return ERROR_FAIL;
1462
1463         /* exceptions other than USR & SYS have a saved program status register */
1464         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1465         {
1466                 uint32_t spsr;
1467                 arm7_9->read_xpsr(target, &spsr, 1);
1468                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1469                 {
1470                         return retval;
1471                 }
1472                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1473                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1474                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1475         }
1476
1477         /* r0 and r15 (pc) have to be restored later */
1478         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1479         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1480
1481         if ((retval = jtag_execute_queue()) != ERROR_OK)
1482                 return retval;
1483
1484         if (arm7_9->post_debug_entry)
1485                 arm7_9->post_debug_entry(target);
1486
1487         return ERROR_OK;
1488 }
1489
1490 /**
1491  * Validate the full context for an ARM7/9 target in all processor modes.  If
1492  * there are any invalid registers for the target, they will all be read.  This
1493  * includes the PSR.
1494  *
1495  * @param target Pointer to the ARM7/9 target to capture the full context from
1496  * @return Error if the target is not halted, has an invalid core mode, or if
1497  *         the JTAG queue fails to execute
1498  */
1499 int arm7_9_full_context(target_t *target)
1500 {
1501         int i;
1502         int retval;
1503         armv4_5_common_t *armv4_5 = target->arch_info;
1504         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1505
1506         LOG_DEBUG("-");
1507
1508         if (target->state != TARGET_HALTED)
1509         {
1510                 LOG_WARNING("target not halted");
1511                 return ERROR_TARGET_NOT_HALTED;
1512         }
1513
1514         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1515                 return ERROR_FAIL;
1516
1517         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1518          * SYS shares registers with User, so we don't touch SYS
1519          */
1520         for (i = 0; i < 6; i++)
1521         {
1522                 uint32_t mask = 0;
1523                 uint32_t* reg_p[16];
1524                 int j;
1525                 int valid = 1;
1526
1527                 /* check if there are invalid registers in the current mode
1528                  */
1529                 for (j = 0; j <= 16; j++)
1530                 {
1531                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1532                                 valid = 0;
1533                 }
1534
1535                 if (!valid)
1536                 {
1537                         uint32_t tmp_cpsr;
1538
1539                         /* change processor mode (and mask T bit) */
1540                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1541                         tmp_cpsr |= armv4_5_number_to_mode(i);
1542                         tmp_cpsr &= ~0x20;
1543                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1544
1545                         for (j = 0; j < 15; j++)
1546                         {
1547                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1548                                 {
1549                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1550                                         mask |= 1 << j;
1551                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1552                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1553                                 }
1554                         }
1555
1556                         /* if only the PSR is invalid, mask is all zeroes */
1557                         if (mask)
1558                                 arm7_9->read_core_regs(target, mask, reg_p);
1559
1560                         /* check if the PSR has to be read */
1561                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1562                         {
1563                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1564                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1565                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1566                         }
1567                 }
1568         }
1569
1570         /* restore processor mode (mask T bit) */
1571         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1572
1573         if ((retval = jtag_execute_queue()) != ERROR_OK)
1574         {
1575                 return retval;
1576         }
1577         return ERROR_OK;
1578 }
1579
1580 /**
1581  * Restore the processor context on an ARM7/9 target.  The full processor
1582  * context is analyzed to see if any of the registers are dirty on this end, but
1583  * have a valid new value.  If this is the case, the processor is changed to the
1584  * appropriate mode and the new register values are written out to the
1585  * processor.  If there happens to be a dirty register with an invalid value, an
1586  * error will be logged.
1587  *
1588  * @param target Pointer to the ARM7/9 target to have its context restored
1589  * @return Error status if the target is not halted or the core mode in the
1590  *         armv4_5 struct is invalid.
1591  */
1592 int arm7_9_restore_context(target_t *target)
1593 {
1594         armv4_5_common_t *armv4_5 = target->arch_info;
1595         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1596         reg_t *reg;
1597         armv4_5_core_reg_t *reg_arch_info;
1598         enum armv4_5_mode current_mode = armv4_5->core_mode;
1599         int i, j;
1600         int dirty;
1601         int mode_change;
1602
1603         LOG_DEBUG("-");
1604
1605         if (target->state != TARGET_HALTED)
1606         {
1607                 LOG_WARNING("target not halted");
1608                 return ERROR_TARGET_NOT_HALTED;
1609         }
1610
1611         if (arm7_9->pre_restore_context)
1612                 arm7_9->pre_restore_context(target);
1613
1614         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1615                 return ERROR_FAIL;
1616
1617         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1618          * SYS shares registers with User, so we don't touch SYS
1619          */
1620         for (i = 0; i < 6; i++)
1621         {
1622                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1623                 dirty = 0;
1624                 mode_change = 0;
1625                 /* check if there are dirty registers in the current mode
1626                 */
1627                 for (j = 0; j <= 16; j++)
1628                 {
1629                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1630                         reg_arch_info = reg->arch_info;
1631                         if (reg->dirty == 1)
1632                         {
1633                                 if (reg->valid == 1)
1634                                 {
1635                                         dirty = 1;
1636                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1637                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1638                                                 && (reg_arch_info->mode != current_mode)
1639                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1640                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1641                                         {
1642                                                 mode_change = 1;
1643                                                 LOG_DEBUG("require mode change");
1644                                         }
1645                                 }
1646                                 else
1647                                 {
1648                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1649                                 }
1650                         }
1651                 }
1652
1653                 if (dirty)
1654                 {
1655                         uint32_t mask = 0x0;
1656                         int num_regs = 0;
1657                         uint32_t regs[16];
1658
1659                         if (mode_change)
1660                         {
1661                                 uint32_t tmp_cpsr;
1662
1663                                 /* change processor mode (mask T bit) */
1664                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1665                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1666                                 tmp_cpsr &= ~0x20;
1667                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1668                                 current_mode = armv4_5_number_to_mode(i);
1669                         }
1670
1671                         for (j = 0; j <= 14; j++)
1672                         {
1673                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1674                                 reg_arch_info = reg->arch_info;
1675
1676
1677                                 if (reg->dirty == 1)
1678                                 {
1679                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1680                                         mask |= 1 << j;
1681                                         num_regs++;
1682                                         reg->dirty = 0;
1683                                         reg->valid = 1;
1684                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1685                                 }
1686                         }
1687
1688                         if (mask)
1689                         {
1690                                 arm7_9->write_core_regs(target, mask, regs);
1691                         }
1692
1693                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1694                         reg_arch_info = reg->arch_info;
1695                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1696                         {
1697                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1698                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1699                         }
1700                 }
1701         }
1702
1703         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1704         {
1705                 /* restore processor mode (mask T bit) */
1706                 uint32_t tmp_cpsr;
1707
1708                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1709                 tmp_cpsr |= armv4_5_number_to_mode(i);
1710                 tmp_cpsr &= ~0x20;
1711                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1712                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1713         }
1714         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1715         {
1716                 /* CPSR has been changed, full restore necessary (mask T bit) */
1717                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1718                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1719                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1720                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1721         }
1722
1723         /* restore PC */
1724         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1725         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1726         armv4_5->core_cache->reg_list[15].dirty = 0;
1727
1728         if (arm7_9->post_restore_context)
1729                 arm7_9->post_restore_context(target);
1730
1731         return ERROR_OK;
1732 }
1733
1734 /**
1735  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1736  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1737  * restart.
1738  *
1739  * @param target Pointer to the ARM7/9 target to be restarted
1740  * @return Result of executing the JTAG queue
1741  */
1742 int arm7_9_restart_core(struct target_s *target)
1743 {
1744         armv4_5_common_t *armv4_5 = target->arch_info;
1745         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1746         arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1747
1748         /* set RESTART instruction */
1749         jtag_set_end_state(TAP_IDLE);
1750         if (arm7_9->need_bypass_before_restart) {
1751                 arm7_9->need_bypass_before_restart = 0;
1752                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1753         }
1754         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1755
1756         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1757         return jtag_execute_queue();
1758 }
1759
1760 /**
1761  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1762  * iterated through and are set on the target if they aren't already set.
1763  *
1764  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1765  */
1766 void arm7_9_enable_watchpoints(struct target_s *target)
1767 {
1768         watchpoint_t *watchpoint = target->watchpoints;
1769
1770         while (watchpoint)
1771         {
1772                 if (watchpoint->set == 0)
1773                         arm7_9_set_watchpoint(target, watchpoint);
1774                 watchpoint = watchpoint->next;
1775         }
1776 }
1777
1778 /**
1779  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1780  * iterated through and are set on the target.
1781  *
1782  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1783  */
1784 void arm7_9_enable_breakpoints(struct target_s *target)
1785 {
1786         breakpoint_t *breakpoint = target->breakpoints;
1787
1788         /* set any pending breakpoints */
1789         while (breakpoint)
1790         {
1791                 arm7_9_set_breakpoint(target, breakpoint);
1792                 breakpoint = breakpoint->next;
1793         }
1794 }
1795
1796 int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1797 {
1798         armv4_5_common_t *armv4_5 = target->arch_info;
1799         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1800         breakpoint_t *breakpoint = target->breakpoints;
1801         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1802         int err, retval = ERROR_OK;
1803
1804         LOG_DEBUG("-");
1805
1806         if (target->state != TARGET_HALTED)
1807         {
1808                 LOG_WARNING("target not halted");
1809                 return ERROR_TARGET_NOT_HALTED;
1810         }
1811
1812         if (!debug_execution)
1813         {
1814                 target_free_all_working_areas(target);
1815         }
1816
1817         /* current = 1: continue on current pc, otherwise continue at <address> */
1818         if (!current)
1819                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1820
1821         uint32_t current_pc;
1822         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1823
1824         /* the front-end may request us not to handle breakpoints */
1825         if (handle_breakpoints)
1826         {
1827                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1828                 {
1829                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1830                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1831                         {
1832                                 return retval;
1833                         }
1834
1835                         /* calculate PC of next instruction */
1836                         uint32_t next_pc;
1837                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1838                         {
1839                                 uint32_t current_opcode;
1840                                 target_read_u32(target, current_pc, &current_opcode);
1841                                 LOG_ERROR("BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1842                                 return retval;
1843                         }
1844
1845                         LOG_DEBUG("enable single-step");
1846                         arm7_9->enable_single_step(target, next_pc);
1847
1848                         target->debug_reason = DBG_REASON_SINGLESTEP;
1849
1850                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1851                         {
1852                                 return retval;
1853                         }
1854
1855                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1856                                 arm7_9->branch_resume(target);
1857                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1858                         {
1859                                 arm7_9->branch_resume_thumb(target);
1860                         }
1861                         else
1862                         {
1863                                 LOG_ERROR("unhandled core state");
1864                                 return ERROR_FAIL;
1865                         }
1866
1867                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1868                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1869                         err = arm7_9_execute_sys_speed(target);
1870
1871                         LOG_DEBUG("disable single-step");
1872                         arm7_9->disable_single_step(target);
1873
1874                         if (err != ERROR_OK)
1875                         {
1876                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1877                                 {
1878                                         return retval;
1879                                 }
1880                                 target->state = TARGET_UNKNOWN;
1881                                 return err;
1882                         }
1883
1884                         arm7_9_debug_entry(target);
1885                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1886
1887                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1888                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1889                         {
1890                                 return retval;
1891                         }
1892                 }
1893         }
1894
1895         /* enable any pending breakpoints and watchpoints */
1896         arm7_9_enable_breakpoints(target);
1897         arm7_9_enable_watchpoints(target);
1898
1899         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1900         {
1901                 return retval;
1902         }
1903
1904         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1905         {
1906                 arm7_9->branch_resume(target);
1907         }
1908         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1909         {
1910                 arm7_9->branch_resume_thumb(target);
1911         }
1912         else
1913         {
1914                 LOG_ERROR("unhandled core state");
1915                 return ERROR_FAIL;
1916         }
1917
1918         /* deassert DBGACK and INTDIS */
1919         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1920         /* INTDIS only when we really resume, not during debug execution */
1921         if (!debug_execution)
1922                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1923         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1924
1925         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1926         {
1927                 return retval;
1928         }
1929
1930         target->debug_reason = DBG_REASON_NOTHALTED;
1931
1932         if (!debug_execution)
1933         {
1934                 /* registers are now invalid */
1935                 armv4_5_invalidate_core_regs(target);
1936                 target->state = TARGET_RUNNING;
1937                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1938                 {
1939                         return retval;
1940                 }
1941         }
1942         else
1943         {
1944                 target->state = TARGET_DEBUG_RUNNING;
1945                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1946                 {
1947                         return retval;
1948                 }
1949         }
1950
1951         LOG_DEBUG("target resumed");
1952
1953         return ERROR_OK;
1954 }
1955
1956 void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc)
1957 {
1958         armv4_5_common_t *armv4_5 = target->arch_info;
1959         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1960
1961         uint32_t current_pc;
1962         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1963
1964         if (next_pc != current_pc)
1965         {
1966                 /* setup an inverse breakpoint on the current PC
1967                 * - comparator 1 matches the current address
1968                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1969                 * - comparator 0 matches any address, as long as rangein is low */
1970                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1971                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1972                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1973                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1979         }
1980         else
1981         {
1982                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1983                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1984                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1985                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1986                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1987                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1988                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1989                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1990                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1991         }
1992 }
1993
1994 void arm7_9_disable_eice_step(target_t *target)
1995 {
1996         armv4_5_common_t *armv4_5 = target->arch_info;
1997         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1998
1999         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2000         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2001         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2002         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2003         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2004         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2005         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2006         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2007         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2008 }
2009
2010 int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints)
2011 {
2012         armv4_5_common_t *armv4_5 = target->arch_info;
2013         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2014         breakpoint_t *breakpoint = NULL;
2015         int err, retval;
2016
2017         if (target->state != TARGET_HALTED)
2018         {
2019                 LOG_WARNING("target not halted");
2020                 return ERROR_TARGET_NOT_HALTED;
2021         }
2022
2023         /* current = 1: continue on current pc, otherwise continue at <address> */
2024         if (!current)
2025                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2026
2027         uint32_t current_pc;
2028         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2029
2030         /* the front-end may request us not to handle breakpoints */
2031         if (handle_breakpoints)
2032                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2033                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2034                         {
2035                                 return retval;
2036                         }
2037
2038         target->debug_reason = DBG_REASON_SINGLESTEP;
2039
2040         /* calculate PC of next instruction */
2041         uint32_t next_pc;
2042         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2043         {
2044                 uint32_t current_opcode;
2045                 target_read_u32(target, current_pc, &current_opcode);
2046                 LOG_ERROR("BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2047                 return retval;
2048         }
2049
2050         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2051         {
2052                 return retval;
2053         }
2054
2055         arm7_9->enable_single_step(target, next_pc);
2056
2057         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2058         {
2059                 arm7_9->branch_resume(target);
2060         }
2061         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2062         {
2063                 arm7_9->branch_resume_thumb(target);
2064         }
2065         else
2066         {
2067                 LOG_ERROR("unhandled core state");
2068                 return ERROR_FAIL;
2069         }
2070
2071         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2072         {
2073                 return retval;
2074         }
2075
2076         err = arm7_9_execute_sys_speed(target);
2077         arm7_9->disable_single_step(target);
2078
2079         /* registers are now invalid */
2080         armv4_5_invalidate_core_regs(target);
2081
2082         if (err != ERROR_OK)
2083         {
2084                 target->state = TARGET_UNKNOWN;
2085         } else {
2086                 arm7_9_debug_entry(target);
2087                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2088                 {
2089                         return retval;
2090                 }
2091                 LOG_DEBUG("target stepped");
2092         }
2093
2094         if (breakpoint)
2095                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2096                 {
2097                         return retval;
2098                 }
2099
2100         return err;
2101 }
2102
2103 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2104 {
2105         uint32_t* reg_p[16];
2106         uint32_t value;
2107         int retval;
2108         armv4_5_common_t *armv4_5 = target->arch_info;
2109         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2110
2111         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2112                 return ERROR_FAIL;
2113
2114         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2115
2116         if ((num < 0) || (num > 16))
2117                 return ERROR_INVALID_ARGUMENTS;
2118
2119         if ((mode != ARMV4_5_MODE_ANY)
2120                         && (mode != armv4_5->core_mode)
2121                         && (reg_mode != ARMV4_5_MODE_ANY))
2122         {
2123                 uint32_t tmp_cpsr;
2124
2125                 /* change processor mode (mask T bit) */
2126                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2127                 tmp_cpsr |= mode;
2128                 tmp_cpsr &= ~0x20;
2129                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2130         }
2131
2132         if ((num >= 0) && (num <= 15))
2133         {
2134                 /* read a normal core register */
2135                 reg_p[num] = &value;
2136
2137                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2138         }
2139         else
2140         {
2141                 /* read a program status register
2142                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2143                  */
2144                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2145                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2146
2147                 arm7_9->read_xpsr(target, &value, spsr);
2148         }
2149
2150         if ((retval = jtag_execute_queue()) != ERROR_OK)
2151         {
2152                 return retval;
2153         }
2154
2155         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2156         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2157         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2158
2159         if ((mode != ARMV4_5_MODE_ANY)
2160                         && (mode != armv4_5->core_mode)
2161                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2162                 /* restore processor mode (mask T bit) */
2163                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2164         }
2165
2166         return ERROR_OK;
2167 }
2168
2169 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value)
2170 {
2171         uint32_t reg[16];
2172         armv4_5_common_t *armv4_5 = target->arch_info;
2173         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2174
2175         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2176                 return ERROR_FAIL;
2177
2178         enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2179
2180         if ((num < 0) || (num > 16))
2181                 return ERROR_INVALID_ARGUMENTS;
2182
2183         if ((mode != ARMV4_5_MODE_ANY)
2184                         && (mode != armv4_5->core_mode)
2185                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2186                 uint32_t tmp_cpsr;
2187
2188                 /* change processor mode (mask T bit) */
2189                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2190                 tmp_cpsr |= mode;
2191                 tmp_cpsr &= ~0x20;
2192                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2193         }
2194
2195         if ((num >= 0) && (num <= 15))
2196         {
2197                 /* write a normal core register */
2198                 reg[num] = value;
2199
2200                 arm7_9->write_core_regs(target, 1 << num, reg);
2201         }
2202         else
2203         {
2204                 /* write a program status register
2205                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2206                 */
2207                 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2208                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2209
2210                 /* if we're writing the CPSR, mask the T bit */
2211                 if (!spsr)
2212                         value &= ~0x20;
2213
2214                 arm7_9->write_xpsr(target, value, spsr);
2215         }
2216
2217         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2218         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2219
2220         if ((mode != ARMV4_5_MODE_ANY)
2221                         && (mode != armv4_5->core_mode)
2222                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2223                 /* restore processor mode (mask T bit) */
2224                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2225         }
2226
2227         return jtag_execute_queue();
2228 }
2229
2230 int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2231 {
2232         armv4_5_common_t *armv4_5 = target->arch_info;
2233         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2234
2235         uint32_t reg[16];
2236         uint32_t num_accesses = 0;
2237         int thisrun_accesses;
2238         int i;
2239         uint32_t cpsr;
2240         int retval;
2241         int last_reg = 0;
2242
2243         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2244
2245         if (target->state != TARGET_HALTED)
2246         {
2247                 LOG_WARNING("target not halted");
2248                 return ERROR_TARGET_NOT_HALTED;
2249         }
2250
2251         /* sanitize arguments */
2252         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2253                 return ERROR_INVALID_ARGUMENTS;
2254
2255         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2256                 return ERROR_TARGET_UNALIGNED_ACCESS;
2257
2258         /* load the base register with the address of the first word */
2259         reg[0] = address;
2260         arm7_9->write_core_regs(target, 0x1, reg);
2261
2262         int j = 0;
2263
2264         switch (size)
2265         {
2266                 case 4:
2267                         while (num_accesses < count)
2268                         {
2269                                 uint32_t reg_list;
2270                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2271                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2272
2273                                 if (last_reg <= thisrun_accesses)
2274                                         last_reg = thisrun_accesses;
2275
2276                                 arm7_9->load_word_regs(target, reg_list);
2277
2278                                 /* fast memory reads are only safe when the target is running
2279                                  * from a sufficiently high clock (32 kHz is usually too slow)
2280                                  */
2281                                 if (arm7_9->fast_memory_access)
2282                                         retval = arm7_9_execute_fast_sys_speed(target);
2283                                 else
2284                                         retval = arm7_9_execute_sys_speed(target);
2285                                 if (retval != ERROR_OK)
2286                                         return retval;
2287
2288                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2289
2290                                 /* advance buffer, count number of accesses */
2291                                 buffer += thisrun_accesses * 4;
2292                                 num_accesses += thisrun_accesses;
2293
2294                                 if ((j++%1024) == 0)
2295                                 {
2296                                         keep_alive();
2297                                 }
2298                         }
2299                         break;
2300                 case 2:
2301                         while (num_accesses < count)
2302                         {
2303                                 uint32_t reg_list;
2304                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2305                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2306
2307                                 for (i = 1; i <= thisrun_accesses; i++)
2308                                 {
2309                                         if (i > last_reg)
2310                                                 last_reg = i;
2311                                         arm7_9->load_hword_reg(target, i);
2312                                         /* fast memory reads are only safe when the target is running
2313                                          * from a sufficiently high clock (32 kHz is usually too slow)
2314                                          */
2315                                         if (arm7_9->fast_memory_access)
2316                                                 retval = arm7_9_execute_fast_sys_speed(target);
2317                                         else
2318                                                 retval = arm7_9_execute_sys_speed(target);
2319                                         if (retval != ERROR_OK)
2320                                         {
2321                                                 return retval;
2322                                         }
2323
2324                                 }
2325
2326                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2327
2328                                 /* advance buffer, count number of accesses */
2329                                 buffer += thisrun_accesses * 2;
2330                                 num_accesses += thisrun_accesses;
2331
2332                                 if ((j++%1024) == 0)
2333                                 {
2334                                         keep_alive();
2335                                 }
2336                         }
2337                         break;
2338                 case 1:
2339                         while (num_accesses < count)
2340                         {
2341                                 uint32_t reg_list;
2342                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2343                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2344
2345                                 for (i = 1; i <= thisrun_accesses; i++)
2346                                 {
2347                                         if (i > last_reg)
2348                                                 last_reg = i;
2349                                         arm7_9->load_byte_reg(target, i);
2350                                         /* fast memory reads are only safe when the target is running
2351                                          * from a sufficiently high clock (32 kHz is usually too slow)
2352                                          */
2353                                         if (arm7_9->fast_memory_access)
2354                                                 retval = arm7_9_execute_fast_sys_speed(target);
2355                                         else
2356                                                 retval = arm7_9_execute_sys_speed(target);
2357                                         if (retval != ERROR_OK)
2358                                         {
2359                                                 return retval;
2360                                         }
2361                                 }
2362
2363                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2364
2365                                 /* advance buffer, count number of accesses */
2366                                 buffer += thisrun_accesses * 1;
2367                                 num_accesses += thisrun_accesses;
2368
2369                                 if ((j++%1024) == 0)
2370                                 {
2371                                         keep_alive();
2372                                 }
2373                         }
2374                         break;
2375                 default:
2376                         LOG_ERROR("BUG: we shouldn't get here");
2377                         exit(-1);
2378                         break;
2379         }
2380
2381         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2382                 return ERROR_FAIL;
2383
2384         for (i = 0; i <= last_reg; i++)
2385                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2386
2387         arm7_9->read_xpsr(target, &cpsr, 0);
2388         if ((retval = jtag_execute_queue()) != ERROR_OK)
2389         {
2390                 LOG_ERROR("JTAG error while reading cpsr");
2391                 return ERROR_TARGET_DATA_ABORT;
2392         }
2393
2394         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2395         {
2396                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2397
2398                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2399
2400                 return ERROR_TARGET_DATA_ABORT;
2401         }
2402
2403         return ERROR_OK;
2404 }
2405
2406 int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2407 {
2408         armv4_5_common_t *armv4_5 = target->arch_info;
2409         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2410         reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2411
2412         uint32_t reg[16];
2413         uint32_t num_accesses = 0;
2414         int thisrun_accesses;
2415         int i;
2416         uint32_t cpsr;
2417         int retval;
2418         int last_reg = 0;
2419
2420 #ifdef _DEBUG_ARM7_9_
2421         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2422 #endif
2423
2424         if (target->state != TARGET_HALTED)
2425         {
2426                 LOG_WARNING("target not halted");
2427                 return ERROR_TARGET_NOT_HALTED;
2428         }
2429
2430         /* sanitize arguments */
2431         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2432                 return ERROR_INVALID_ARGUMENTS;
2433
2434         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2435                 return ERROR_TARGET_UNALIGNED_ACCESS;
2436
2437         /* load the base register with the address of the first word */
2438         reg[0] = address;
2439         arm7_9->write_core_regs(target, 0x1, reg);
2440
2441         /* Clear DBGACK, to make sure memory fetches work as expected */
2442         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2443         embeddedice_store_reg(dbg_ctrl);
2444
2445         switch (size)
2446         {
2447                 case 4:
2448                         while (num_accesses < count)
2449                         {
2450                                 uint32_t reg_list;
2451                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2452                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2453
2454                                 for (i = 1; i <= thisrun_accesses; i++)
2455                                 {
2456                                         if (i > last_reg)
2457                                                 last_reg = i;
2458                                         reg[i] = target_buffer_get_u32(target, buffer);
2459                                         buffer += 4;
2460                                 }
2461
2462                                 arm7_9->write_core_regs(target, reg_list, reg);
2463
2464                                 arm7_9->store_word_regs(target, reg_list);
2465
2466                                 /* fast memory writes are only safe when the target is running
2467                                  * from a sufficiently high clock (32 kHz is usually too slow)
2468                                  */
2469                                 if (arm7_9->fast_memory_access)
2470                                         retval = arm7_9_execute_fast_sys_speed(target);
2471                                 else
2472                                         retval = arm7_9_execute_sys_speed(target);
2473                                 if (retval != ERROR_OK)
2474                                 {
2475                                         return retval;
2476                                 }
2477
2478                                 num_accesses += thisrun_accesses;
2479                         }
2480                         break;
2481                 case 2:
2482                         while (num_accesses < count)
2483                         {
2484                                 uint32_t reg_list;
2485                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2486                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2487
2488                                 for (i = 1; i <= thisrun_accesses; i++)
2489                                 {
2490                                         if (i > last_reg)
2491                                                 last_reg = i;
2492                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2493                                         buffer += 2;
2494                                 }
2495
2496                                 arm7_9->write_core_regs(target, reg_list, reg);
2497
2498                                 for (i = 1; i <= thisrun_accesses; i++)
2499                                 {
2500                                         arm7_9->store_hword_reg(target, i);
2501
2502                                         /* fast memory writes are only safe when the target is running
2503                                          * from a sufficiently high clock (32 kHz is usually too slow)
2504                                          */
2505                                         if (arm7_9->fast_memory_access)
2506                                                 retval = arm7_9_execute_fast_sys_speed(target);
2507                                         else
2508                                                 retval = arm7_9_execute_sys_speed(target);
2509                                         if (retval != ERROR_OK)
2510                                         {
2511                                                 return retval;
2512                                         }
2513                                 }
2514
2515                                 num_accesses += thisrun_accesses;
2516                         }
2517                         break;
2518                 case 1:
2519                         while (num_accesses < count)
2520                         {
2521                                 uint32_t reg_list;
2522                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2523                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2524
2525                                 for (i = 1; i <= thisrun_accesses; i++)
2526                                 {
2527                                         if (i > last_reg)
2528                                                 last_reg = i;
2529                                         reg[i] = *buffer++ & 0xff;
2530                                 }
2531
2532                                 arm7_9->write_core_regs(target, reg_list, reg);
2533
2534                                 for (i = 1; i <= thisrun_accesses; i++)
2535                                 {
2536                                         arm7_9->store_byte_reg(target, i);
2537                                         /* fast memory writes are only safe when the target is running
2538                                          * from a sufficiently high clock (32 kHz is usually too slow)
2539                                          */
2540                                         if (arm7_9->fast_memory_access)
2541                                                 retval = arm7_9_execute_fast_sys_speed(target);
2542                                         else
2543                                                 retval = arm7_9_execute_sys_speed(target);
2544                                         if (retval != ERROR_OK)
2545                                         {
2546                                                 return retval;
2547                                         }
2548
2549                                 }
2550
2551                                 num_accesses += thisrun_accesses;
2552                         }
2553                         break;
2554                 default:
2555                         LOG_ERROR("BUG: we shouldn't get here");
2556                         exit(-1);
2557                         break;
2558         }
2559
2560         /* Re-Set DBGACK */
2561         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2562         embeddedice_store_reg(dbg_ctrl);
2563
2564         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2565                 return ERROR_FAIL;
2566
2567         for (i = 0; i <= last_reg; i++)
2568                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2569
2570         arm7_9->read_xpsr(target, &cpsr, 0);
2571         if ((retval = jtag_execute_queue()) != ERROR_OK)
2572         {
2573                 LOG_ERROR("JTAG error while reading cpsr");
2574                 return ERROR_TARGET_DATA_ABORT;
2575         }
2576
2577         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2578         {
2579                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2580
2581                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2582
2583                 return ERROR_TARGET_DATA_ABORT;
2584         }
2585
2586         return ERROR_OK;
2587 }
2588
2589 static int dcc_count;
2590 static uint8_t *dcc_buffer;
2591
2592 static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2593 {
2594         int retval = ERROR_OK;
2595         armv4_5_common_t *armv4_5 = target->arch_info;
2596         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2597
2598         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2599                 return retval;
2600
2601         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2602         int count = dcc_count;
2603         uint8_t *buffer = dcc_buffer;
2604         if (count > 2)
2605         {
2606                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2607                  * core function repeated. */
2608                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2609                 buffer += 4;
2610
2611                 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2612                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2613                 jtag_tap_t *tap;
2614                 tap = ice_reg->jtag_info->tap;
2615
2616                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2617                 buffer += (count-2)*4;
2618
2619                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2620         } else
2621         {
2622                 int i;
2623                 for (i = 0; i < count; i++)
2624                 {
2625                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2626                         buffer += 4;
2627                 }
2628         }
2629
2630         if ((retval = target_halt(target))!= ERROR_OK)
2631         {
2632                 return retval;
2633         }
2634         return target_wait_state(target, TARGET_HALTED, 500);
2635 }
2636
2637 static const uint32_t dcc_code[] =
2638 {
2639         /* MRC      TST         BNE         MRC         STR         B */
2640         0xee101e10, 0xe3110001, 0x0afffffc, 0xee111e10, 0xe4801004, 0xeafffff9
2641 };
2642
2643 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2644
2645 int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer)
2646 {
2647         int retval;
2648         armv4_5_common_t *armv4_5 = target->arch_info;
2649         arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2650         int i;
2651
2652         if (!arm7_9->dcc_downloads)
2653                 return target_write_memory(target, address, 4, count, buffer);
2654
2655         /* regrab previously allocated working_area, or allocate a new one */
2656         if (!arm7_9->dcc_working_area)
2657         {
2658                 uint8_t dcc_code_buf[6 * 4];
2659
2660                 /* make sure we have a working area */
2661                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2662                 {
2663                         LOG_INFO("no working area available, falling back to memory writes");
2664                         return target_write_memory(target, address, 4, count, buffer);
2665                 }
2666
2667                 /* copy target instructions to target endianness */
2668                 for (i = 0; i < 6; i++)
2669                 {
2670                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2671                 }
2672
2673                 /* write DCC code to working area */
2674                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2675                 {
2676                         return retval;
2677                 }
2678         }
2679
2680         armv4_5_algorithm_t armv4_5_info;
2681         reg_param_t reg_params[1];
2682
2683         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2684         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2685         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2686
2687         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2688
2689         buf_set_u32(reg_params[0].value, 0, 32, address);
2690
2691         dcc_count = count;
2692         dcc_buffer = buffer;
2693         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2694                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2695
2696         if (retval == ERROR_OK)
2697         {
2698                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2699                 if (endaddress != (address + count*4))
2700                 {
2701                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2702                         retval = ERROR_FAIL;
2703                 }
2704         }
2705
2706         destroy_reg_param(&reg_params[0]);
2707
2708         return retval;
2709 }
2710
2711 int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
2712 {
2713         working_area_t *crc_algorithm;
2714         armv4_5_algorithm_t armv4_5_info;
2715         reg_param_t reg_params[2];
2716         int retval;
2717
2718         uint32_t arm7_9_crc_code[] = {
2719                 0xE1A02000,                             /* mov          r2, r0 */
2720                 0xE3E00000,                             /* mov          r0, #0xffffffff */
2721                 0xE1A03001,                             /* mov          r3, r1 */
2722                 0xE3A04000,                             /* mov          r4, #0 */
2723                 0xEA00000B,                             /* b            ncomp */
2724                                                                 /* nbyte: */
2725                 0xE7D21004,                             /* ldrb r1, [r2, r4] */
2726                 0xE59F7030,                             /* ldr          r7, CRC32XOR */
2727                 0xE0200C01,                             /* eor          r0, r0, r1, asl 24 */
2728                 0xE3A05000,                             /* mov          r5, #0 */
2729                                                                 /* loop: */
2730                 0xE3500000,                             /* cmp          r0, #0 */
2731                 0xE1A06080,                             /* mov          r6, r0, asl #1 */
2732                 0xE2855001,                             /* add          r5, r5, #1 */
2733                 0xE1A00006,                             /* mov          r0, r6 */
2734                 0xB0260007,                             /* eorlt        r0, r6, r7 */
2735                 0xE3550008,                             /* cmp          r5, #8 */
2736                 0x1AFFFFF8,                             /* bne          loop */
2737                 0xE2844001,                             /* add          r4, r4, #1 */
2738                                                                 /* ncomp: */
2739                 0xE1540003,                             /* cmp          r4, r3 */
2740                 0x1AFFFFF1,                             /* bne          nbyte */
2741                                                                 /* end: */
2742                 0xEAFFFFFE,                             /* b            end */
2743                 0x04C11DB7                              /* CRC32XOR:    .word 0x04C11DB7 */
2744         };
2745
2746         uint32_t i;
2747
2748         if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2749         {
2750                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2751         }
2752
2753         /* convert flash writing code into a buffer in target endianness */
2754         for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2755         {
2756                 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2757                 {
2758                         return retval;
2759                 }
2760         }
2761
2762         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2763         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2764         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2765
2766         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2767         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2768
2769         buf_set_u32(reg_params[0].value, 0, 32, address);
2770         buf_set_u32(reg_params[1].value, 0, 32, count);
2771
2772         if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2773                 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), 20000, &armv4_5_info)) != ERROR_OK)
2774         {
2775                 LOG_ERROR("error executing arm7_9 crc algorithm");
2776                 destroy_reg_param(&reg_params[0]);
2777                 destroy_reg_param(&reg_params[1]);
2778                 target_free_working_area(target, crc_algorithm);
2779                 return retval;
2780         }
2781
2782         *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2783
2784         destroy_reg_param(&reg_params[0]);
2785         destroy_reg_param(&reg_params[1]);
2786
2787         target_free_working_area(target, crc_algorithm);
2788
2789         return ERROR_OK;
2790 }
2791
2792 int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
2793 {
2794         working_area_t *erase_check_algorithm;
2795         reg_param_t reg_params[3];
2796         armv4_5_algorithm_t armv4_5_info;
2797         int retval;
2798         uint32_t i;
2799
2800         uint32_t erase_check_code[] =
2801         {
2802                                                 /* loop: */
2803                 0xe4d03001,             /* ldrb r3, [r0], #1    */
2804                 0xe0022003,             /* and r2, r2, r3               */
2805                 0xe2511001,     /* subs r1, r1, #1              */
2806                 0x1afffffb,             /* bne loop                             */
2807                                                 /* end: */
2808                 0xeafffffe              /* b end                                */
2809         };
2810
2811         /* make sure we have a working area */
2812         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2813         {
2814                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2815         }
2816
2817         /* convert flash writing code into a buffer in target endianness */
2818         for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2819                 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2820                 {
2821                         return retval;
2822                 }
2823
2824         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2825         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2826         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2827
2828         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2829         buf_set_u32(reg_params[0].value, 0, 32, address);
2830
2831         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2832         buf_set_u32(reg_params[1].value, 0, 32, count);
2833
2834         init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2835         buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2836
2837         if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2838                         erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2839         {
2840                 destroy_reg_param(&reg_params[0]);
2841                 destroy_reg_param(&reg_params[1]);
2842                 destroy_reg_param(&reg_params[2]);
2843                 target_free_working_area(target, erase_check_algorithm);
2844                 return 0;
2845         }
2846
2847         *blank = buf_get_u32(reg_params[2].value, 0, 32);
2848
2849         destroy_reg_param(&reg_params[0]);
2850         destroy_reg_param(&reg_params[1]);
2851         destroy_reg_param(&reg_params[2]);
2852
2853         target_free_working_area(target, erase_check_algorithm);
2854
2855         return ERROR_OK;
2856 }
2857
2858 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
2859 {
2860         command_t *arm7_9_cmd;
2861
2862         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
2863
2864         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr | spsr>");
2865         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr | spsr>");
2866
2867         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
2868
2869         register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
2870                 COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable | disable>");
2871         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
2872                  COMMAND_ANY, "use fast memory accesses instead of slower but potentially safer accesses <enable | disable>");
2873         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
2874                 COMMAND_ANY, "use DCC downloads for larger memory writes <enable | disable>");
2875
2876         armv4_5_register_commands(cmd_ctx);
2877
2878         etm_register_commands(cmd_ctx);
2879
2880         return ERROR_OK;
2881 }
2882
2883 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2884 {
2885         uint32_t value;
2886         int spsr;
2887         int retval;
2888         target_t *target = get_current_target(cmd_ctx);
2889         armv4_5_common_t *armv4_5;
2890         arm7_9_common_t *arm7_9;
2891
2892         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2893         {
2894                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2895                 return ERROR_OK;
2896         }
2897
2898         if (target->state != TARGET_HALTED)
2899         {
2900                 command_print(cmd_ctx, "can't write registers while running");
2901                 return ERROR_OK;
2902         }
2903
2904         if (argc < 2)
2905         {
2906                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2907                 return ERROR_OK;
2908         }
2909
2910         value = strtoul(args[0], NULL, 0);
2911         spsr = strtol(args[1], NULL, 0);
2912
2913         /* if we're writing the CPSR, mask the T bit */
2914         if (!spsr)
2915                 value &= ~0x20;
2916
2917         arm7_9->write_xpsr(target, value, spsr);
2918         if ((retval = jtag_execute_queue()) != ERROR_OK)
2919         {
2920                 LOG_ERROR("JTAG error while writing to xpsr");
2921                 return retval;
2922         }
2923
2924         return ERROR_OK;
2925 }
2926
2927 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2928 {
2929         uint32_t value;
2930         int rotate;
2931         int spsr;
2932         int retval;
2933         target_t *target = get_current_target(cmd_ctx);
2934         armv4_5_common_t *armv4_5;
2935         arm7_9_common_t *arm7_9;
2936
2937         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2938         {
2939                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2940                 return ERROR_OK;
2941         }
2942
2943         if (target->state != TARGET_HALTED)
2944         {
2945                 command_print(cmd_ctx, "can't write registers while running");
2946                 return ERROR_OK;
2947         }
2948
2949         if (argc < 3)
2950         {
2951                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2952                 return ERROR_OK;
2953         }
2954
2955         value = strtoul(args[0], NULL, 0);
2956         rotate = strtol(args[1], NULL, 0);
2957         spsr = strtol(args[2], NULL, 0);
2958
2959         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2960         if ((retval = jtag_execute_queue()) != ERROR_OK)
2961         {
2962                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2963                 return retval;
2964         }
2965
2966         return ERROR_OK;
2967 }
2968
2969 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2970 {
2971         uint32_t value;
2972         uint32_t mode;
2973         int num;
2974         target_t *target = get_current_target(cmd_ctx);
2975         armv4_5_common_t *armv4_5;
2976         arm7_9_common_t *arm7_9;
2977
2978         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2979         {
2980                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2981                 return ERROR_OK;
2982         }
2983
2984         if (target->state != TARGET_HALTED)
2985         {
2986                 command_print(cmd_ctx, "can't write registers while running");
2987                 return ERROR_OK;
2988         }
2989
2990         if (argc < 3)
2991         {
2992                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
2993                 return ERROR_OK;
2994         }
2995
2996         num = strtol(args[0], NULL, 0);
2997         mode = strtoul(args[1], NULL, 0);
2998         value = strtoul(args[2], NULL, 0);
2999
3000         return arm7_9_write_core_reg(target, num, mode, value);
3001 }
3002
3003 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3004 {
3005         target_t *target = get_current_target(cmd_ctx);
3006         armv4_5_common_t *armv4_5;
3007         arm7_9_common_t *arm7_9;
3008
3009         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3010         {
3011                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3012                 return ERROR_OK;
3013         }
3014
3015         if (argc > 0)
3016         {
3017                 if (strcmp("enable", args[0]) == 0)
3018                 {
3019                         arm7_9->use_dbgrq = 1;
3020                 }
3021                 else if (strcmp("disable", args[0]) == 0)
3022                 {
3023                         arm7_9->use_dbgrq = 0;
3024                 }
3025                 else
3026                 {
3027                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
3028                 }
3029         }
3030
3031         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3032
3033         return ERROR_OK;
3034 }
3035
3036 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3037 {
3038         target_t *target = get_current_target(cmd_ctx);
3039         armv4_5_common_t *armv4_5;
3040         arm7_9_common_t *arm7_9;
3041
3042         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3043         {
3044                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3045                 return ERROR_OK;
3046         }
3047
3048         if (argc > 0)
3049         {
3050                 if (strcmp("enable", args[0]) == 0)
3051                 {
3052                         arm7_9->fast_memory_access = 1;
3053                 }
3054                 else if (strcmp("disable", args[0]) == 0)
3055                 {
3056                         arm7_9->fast_memory_access = 0;
3057                 }
3058                 else
3059                 {
3060                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3061                 }
3062         }
3063
3064         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3065
3066         return ERROR_OK;
3067 }
3068
3069 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3070 {
3071         target_t *target = get_current_target(cmd_ctx);
3072         armv4_5_common_t *armv4_5;
3073         arm7_9_common_t *arm7_9;
3074
3075         if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3076         {
3077                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3078                 return ERROR_OK;
3079         }
3080
3081         if (argc > 0)
3082         {
3083                 if (strcmp("enable", args[0]) == 0)
3084                 {
3085                         arm7_9->dcc_downloads = 1;
3086                 }
3087                 else if (strcmp("disable", args[0]) == 0)
3088                 {
3089                         arm7_9->dcc_downloads = 0;
3090                 }
3091                 else
3092                 {
3093                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3094                 }
3095         }
3096
3097         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3098
3099         return ERROR_OK;
3100 }
3101
3102 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3103 {
3104         int retval = ERROR_OK;
3105         armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3106
3107         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3108
3109         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3110         {
3111                 return retval;
3112         }
3113
3114         arm7_9->wp_available = 0; /* this is set up in arm7_9_clear_watchpoints() */
3115         arm7_9->wp_available_max = 2;
3116         arm7_9->sw_breakpoints_added = 0;
3117         arm7_9->breakpoint_count = 0;
3118         arm7_9->wp0_used = 0;
3119         arm7_9->wp1_used = 0;
3120         arm7_9->wp1_used_default = 0;
3121         arm7_9->use_dbgrq = 0;
3122
3123         arm7_9->etm_ctx = NULL;
3124         arm7_9->has_single_step = 0;
3125         arm7_9->has_monitor_mode = 0;
3126         arm7_9->has_vector_catch = 0;
3127
3128         arm7_9->debug_entry_from_reset = 0;
3129
3130         arm7_9->dcc_working_area = NULL;
3131
3132         arm7_9->fast_memory_access = fast_and_dangerous;
3133         arm7_9->dcc_downloads = fast_and_dangerous;
3134
3135         arm7_9->need_bypass_before_restart = 0;
3136
3137         armv4_5->arch_info = arm7_9;
3138         armv4_5->read_core_reg = arm7_9_read_core_reg;
3139         armv4_5->write_core_reg = arm7_9_write_core_reg;
3140         armv4_5->full_context = arm7_9_full_context;
3141
3142         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3143         {
3144                 return retval;
3145         }
3146
3147         if ((retval = target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target)) != ERROR_OK)
3148         {
3149                 return retval;
3150         }
3151
3152         return ERROR_OK;
3153 }