]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
9f7e38efc69e1d01cd93ccb33bac3c2e9c08082b
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "jtag/swd.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64         struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68         struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72         uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74         uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78         target_addr_t virt, target_addr_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /*  restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86         int retval = ERROR_OK;
87         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88         struct armv7a_common *armv7a = target_to_armv7a(target);
89
90         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93                 retval = armv7a->arm.mcr(target, 15,
94                                 0, 0,   /* op1, op2 */
95                                 1, 0,   /* CRn, CRm */
96                                 cortex_a->cp15_control_reg);
97         }
98         return retval;
99 }
100
101 /*
102  * Set up ARM core for memory access.
103  * If !phys_access, switch to SVC mode and make sure MMU is on
104  * If phys_access, switch off mmu
105  */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108         struct armv7a_common *armv7a = target_to_armv7a(target);
109         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110         int mmu_enabled = 0;
111
112         if (phys_access == 0) {
113                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114                 cortex_a_mmu(target, &mmu_enabled);
115                 if (mmu_enabled)
116                         cortex_a_mmu_modify(target, 1);
117                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118                         /* overwrite DACR to all-manager */
119                         armv7a->arm.mcr(target, 15,
120                                         0, 0, 3, 0,
121                                         0xFFFFFFFF);
122                 }
123         } else {
124                 cortex_a_mmu(target, &mmu_enabled);
125                 if (mmu_enabled)
126                         cortex_a_mmu_modify(target, 0);
127         }
128         return ERROR_OK;
129 }
130
131 /*
132  * Restore ARM core after memory access.
133  * If !phys_access, switch to previous mode
134  * If phys_access, restore MMU setting
135  */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138         struct armv7a_common *armv7a = target_to_armv7a(target);
139         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141         if (phys_access == 0) {
142                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143                         /* restore */
144                         armv7a->arm.mcr(target, 15,
145                                         0, 0, 3, 0,
146                                         cortex_a->cp15_dacr_reg);
147                 }
148                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149         } else {
150                 int mmu_enabled = 0;
151                 cortex_a_mmu(target, &mmu_enabled);
152                 if (mmu_enabled)
153                         cortex_a_mmu_modify(target, 1);
154         }
155         return ERROR_OK;
156 }
157
158
159 /*  modify cp15_control_reg in order to enable or disable mmu for :
160  *  - virt2phys address conversion
161  *  - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165         struct armv7a_common *armv7a = target_to_armv7a(target);
166         int retval = ERROR_OK;
167         int need_write = 0;
168
169         if (enable) {
170                 /*  if mmu enabled at target stop and mmu not enable */
171                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173                         return ERROR_FAIL;
174                 }
175                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176                         cortex_a->cp15_control_reg_curr |= 0x1U;
177                         need_write = 1;
178                 }
179         } else {
180                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181                         cortex_a->cp15_control_reg_curr &= ~0x1U;
182                         need_write = 1;
183                 }
184         }
185
186         if (need_write) {
187                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188                         enable ? "enable mmu" : "disable mmu",
189                         cortex_a->cp15_control_reg_curr);
190
191                 retval = armv7a->arm.mcr(target, 15,
192                                 0, 0,   /* op1, op2 */
193                                 1, 0,   /* CRn, CRm */
194                                 cortex_a->cp15_control_reg_curr);
195         }
196         return retval;
197 }
198
199 /*
200  * Cortex-A Basic debug access, very low level assumes state is saved
201  */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204         struct armv7a_common *armv7a = target_to_armv7a(target);
205         int retval;
206
207         /* lock memory-mapped access to debug registers to prevent
208          * software interference */
209         retval = mem_ap_write_u32(armv7a->debug_ap,
210                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
211         if (retval != ERROR_OK)
212                 return retval;
213
214         /* Disable cacheline fills and force cache write-through in debug state */
215         retval = mem_ap_write_u32(armv7a->debug_ap,
216                         armv7a->debug_base + CPUDBG_DSCCR, 0);
217         if (retval != ERROR_OK)
218                 return retval;
219
220         /* Disable TLB lookup and refill/eviction in debug state */
221         retval = mem_ap_write_u32(armv7a->debug_ap,
222                         armv7a->debug_base + CPUDBG_DSMCR, 0);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         retval = dap_run(armv7a->debug_ap->dap);
227         if (retval != ERROR_OK)
228                 return retval;
229
230         /* Enabling of instruction execution in debug mode is done in debug_entry code */
231
232         /* Resync breakpoint registers */
233
234         /* Since this is likely called from init or reset, update target state information*/
235         return cortex_a_poll(target);
236 }
237
238 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
239 {
240         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
241          * Writes final value of DSCR into *dscr. Pass force to force always
242          * reading DSCR at least once. */
243         struct armv7a_common *armv7a = target_to_armv7a(target);
244         int64_t then = timeval_ms();
245         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
246                 force = false;
247                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
248                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
249                 if (retval != ERROR_OK) {
250                         LOG_ERROR("Could not read DSCR register");
251                         return retval;
252                 }
253                 if (timeval_ms() > then + 1000) {
254                         LOG_ERROR("Timeout waiting for InstrCompl=1");
255                         return ERROR_FAIL;
256                 }
257         }
258         return ERROR_OK;
259 }
260
261 /* To reduce needless round-trips, pass in a pointer to the current
262  * DSCR value.  Initialize it to zero if you just need to know the
263  * value on return from this function; or DSCR_INSTR_COMP if you
264  * happen to know that no instruction is pending.
265  */
266 static int cortex_a_exec_opcode(struct target *target,
267         uint32_t opcode, uint32_t *dscr_p)
268 {
269         uint32_t dscr;
270         int retval;
271         struct armv7a_common *armv7a = target_to_armv7a(target);
272
273         dscr = dscr_p ? *dscr_p : 0;
274
275         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
276
277         /* Wait for InstrCompl bit to be set */
278         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
279         if (retval != ERROR_OK)
280                 return retval;
281
282         retval = mem_ap_write_u32(armv7a->debug_ap,
283                         armv7a->debug_base + CPUDBG_ITR, opcode);
284         if (retval != ERROR_OK)
285                 return retval;
286
287         int64_t then = timeval_ms();
288         do {
289                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
290                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
291                 if (retval != ERROR_OK) {
292                         LOG_ERROR("Could not read DSCR register");
293                         return retval;
294                 }
295                 if (timeval_ms() > then + 1000) {
296                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
297                         return ERROR_FAIL;
298                 }
299         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
300
301         if (dscr_p)
302                 *dscr_p = dscr;
303
304         return retval;
305 }
306
307 /**************************************************************************
308 Read core register with very few exec_opcode, fast but needs work_area.
309 This can cause problems with MMU active.
310 **************************************************************************/
311 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
312         uint32_t *regfile)
313 {
314         int retval = ERROR_OK;
315         struct armv7a_common *armv7a = target_to_armv7a(target);
316
317         retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
318         if (retval != ERROR_OK)
319                 return retval;
320         retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
321         if (retval != ERROR_OK)
322                 return retval;
323         retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
324         if (retval != ERROR_OK)
325                 return retval;
326
327         retval = mem_ap_read_buf(armv7a->memory_ap,
328                         (uint8_t *)(&regfile[1]), 4, 15, address);
329
330         return retval;
331 }
332
333 static int cortex_a_dap_read_coreregister_u32(struct target *target,
334         uint32_t *value, int regnum)
335 {
336         int retval = ERROR_OK;
337         uint8_t reg = regnum&0xFF;
338         uint32_t dscr = 0;
339         struct armv7a_common *armv7a = target_to_armv7a(target);
340
341         if (reg > 17)
342                 return retval;
343
344         if (reg < 15) {
345                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
346                 retval = cortex_a_exec_opcode(target,
347                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
348                                 &dscr);
349                 if (retval != ERROR_OK)
350                         return retval;
351         } else if (reg == 15) {
352                 /* "MOV r0, r15"; then move r0 to DCCTX */
353                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
354                 if (retval != ERROR_OK)
355                         return retval;
356                 retval = cortex_a_exec_opcode(target,
357                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
358                                 &dscr);
359                 if (retval != ERROR_OK)
360                         return retval;
361         } else {
362                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
363                  * then move r0 to DCCTX
364                  */
365                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
366                 if (retval != ERROR_OK)
367                         return retval;
368                 retval = cortex_a_exec_opcode(target,
369                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
370                                 &dscr);
371                 if (retval != ERROR_OK)
372                         return retval;
373         }
374
375         /* Wait for DTRRXfull then read DTRRTX */
376         int64_t then = timeval_ms();
377         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
378                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
379                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
380                 if (retval != ERROR_OK)
381                         return retval;
382                 if (timeval_ms() > then + 1000) {
383                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
384                         return ERROR_FAIL;
385                 }
386         }
387
388         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
389                         armv7a->debug_base + CPUDBG_DTRTX, value);
390         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
391
392         return retval;
393 }
394
395 static int cortex_a_dap_write_coreregister_u32(struct target *target,
396         uint32_t value, int regnum)
397 {
398         int retval = ERROR_OK;
399         uint8_t Rd = regnum&0xFF;
400         uint32_t dscr;
401         struct armv7a_common *armv7a = target_to_armv7a(target);
402
403         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
404
405         /* Check that DCCRX is not full */
406         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
407                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
408         if (retval != ERROR_OK)
409                 return retval;
410         if (dscr & DSCR_DTR_RX_FULL) {
411                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
412                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
413                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
414                                 &dscr);
415                 if (retval != ERROR_OK)
416                         return retval;
417         }
418
419         if (Rd > 17)
420                 return retval;
421
422         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
423         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
424         retval = mem_ap_write_u32(armv7a->debug_ap,
425                         armv7a->debug_base + CPUDBG_DTRRX, value);
426         if (retval != ERROR_OK)
427                 return retval;
428
429         if (Rd < 15) {
430                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
431                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
432                                 &dscr);
433
434                 if (retval != ERROR_OK)
435                         return retval;
436         } else if (Rd == 15) {
437                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
438                  * then "mov r15, r0"
439                  */
440                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
441                                 &dscr);
442                 if (retval != ERROR_OK)
443                         return retval;
444                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
445                 if (retval != ERROR_OK)
446                         return retval;
447         } else {
448                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
449                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
450                  */
451                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
452                                 &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
456                                 &dscr);
457                 if (retval != ERROR_OK)
458                         return retval;
459
460                 /* "Prefetch flush" after modifying execution status in CPSR */
461                 if (Rd == 16) {
462                         retval = cortex_a_exec_opcode(target,
463                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
464                                         &dscr);
465                         if (retval != ERROR_OK)
466                                 return retval;
467                 }
468         }
469
470         return retval;
471 }
472
473 /* Write to memory mapped registers directly with no cache or mmu handling */
474 static int cortex_a_dap_write_memap_register_u32(struct target *target,
475         uint32_t address,
476         uint32_t value)
477 {
478         int retval;
479         struct armv7a_common *armv7a = target_to_armv7a(target);
480
481         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
482
483         return retval;
484 }
485
486 /*
487  * Cortex-A implementation of Debug Programmer's Model
488  *
489  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
490  * so there's no need to poll for it before executing an instruction.
491  *
492  * NOTE that in several of these cases the "stall" mode might be useful.
493  * It'd let us queue a few operations together... prepare/finish might
494  * be the places to enable/disable that mode.
495  */
496
497 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
498 {
499         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
500 }
501
502 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
503 {
504         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
505         return mem_ap_write_u32(a->armv7a_common.debug_ap,
506                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
507 }
508
509 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
510         uint32_t *dscr_p)
511 {
512         uint32_t dscr = DSCR_INSTR_COMP;
513         int retval;
514
515         if (dscr_p)
516                 dscr = *dscr_p;
517
518         /* Wait for DTRRXfull */
519         int64_t then = timeval_ms();
520         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
521                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
522                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
523                                 &dscr);
524                 if (retval != ERROR_OK)
525                         return retval;
526                 if (timeval_ms() > then + 1000) {
527                         LOG_ERROR("Timeout waiting for read dcc");
528                         return ERROR_FAIL;
529                 }
530         }
531
532         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
533                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
534         if (retval != ERROR_OK)
535                 return retval;
536         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
537
538         if (dscr_p)
539                 *dscr_p = dscr;
540
541         return retval;
542 }
543
544 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
545 {
546         struct cortex_a_common *a = dpm_to_a(dpm);
547         uint32_t dscr;
548         int retval;
549
550         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
551         int64_t then = timeval_ms();
552         for (;; ) {
553                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
554                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
555                                 &dscr);
556                 if (retval != ERROR_OK)
557                         return retval;
558                 if ((dscr & DSCR_INSTR_COMP) != 0)
559                         break;
560                 if (timeval_ms() > then + 1000) {
561                         LOG_ERROR("Timeout waiting for dpm prepare");
562                         return ERROR_FAIL;
563                 }
564         }
565
566         /* this "should never happen" ... */
567         if (dscr & DSCR_DTR_RX_FULL) {
568                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
569                 /* Clear DCCRX */
570                 retval = cortex_a_exec_opcode(
571                                 a->armv7a_common.arm.target,
572                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
573                                 &dscr);
574                 if (retval != ERROR_OK)
575                         return retval;
576         }
577
578         return retval;
579 }
580
581 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
582 {
583         /* REVISIT what could be done here? */
584         return ERROR_OK;
585 }
586
587 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
588         uint32_t opcode, uint32_t data)
589 {
590         struct cortex_a_common *a = dpm_to_a(dpm);
591         int retval;
592         uint32_t dscr = DSCR_INSTR_COMP;
593
594         retval = cortex_a_write_dcc(a, data);
595         if (retval != ERROR_OK)
596                 return retval;
597
598         return cortex_a_exec_opcode(
599                         a->armv7a_common.arm.target,
600                         opcode,
601                         &dscr);
602 }
603
604 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
605         uint32_t opcode, uint32_t data)
606 {
607         struct cortex_a_common *a = dpm_to_a(dpm);
608         uint32_t dscr = DSCR_INSTR_COMP;
609         int retval;
610
611         retval = cortex_a_write_dcc(a, data);
612         if (retval != ERROR_OK)
613                 return retval;
614
615         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
616         retval = cortex_a_exec_opcode(
617                         a->armv7a_common.arm.target,
618                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
619                         &dscr);
620         if (retval != ERROR_OK)
621                 return retval;
622
623         /* then the opcode, taking data from R0 */
624         retval = cortex_a_exec_opcode(
625                         a->armv7a_common.arm.target,
626                         opcode,
627                         &dscr);
628
629         return retval;
630 }
631
632 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
633 {
634         struct target *target = dpm->arm->target;
635         uint32_t dscr = DSCR_INSTR_COMP;
636
637         /* "Prefetch flush" after modifying execution status in CPSR */
638         return cortex_a_exec_opcode(target,
639                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
640                         &dscr);
641 }
642
643 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
644         uint32_t opcode, uint32_t *data)
645 {
646         struct cortex_a_common *a = dpm_to_a(dpm);
647         int retval;
648         uint32_t dscr = DSCR_INSTR_COMP;
649
650         /* the opcode, writing data to DCC */
651         retval = cortex_a_exec_opcode(
652                         a->armv7a_common.arm.target,
653                         opcode,
654                         &dscr);
655         if (retval != ERROR_OK)
656                 return retval;
657
658         return cortex_a_read_dcc(a, data, &dscr);
659 }
660
661
662 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
663         uint32_t opcode, uint32_t *data)
664 {
665         struct cortex_a_common *a = dpm_to_a(dpm);
666         uint32_t dscr = DSCR_INSTR_COMP;
667         int retval;
668
669         /* the opcode, writing data to R0 */
670         retval = cortex_a_exec_opcode(
671                         a->armv7a_common.arm.target,
672                         opcode,
673                         &dscr);
674         if (retval != ERROR_OK)
675                 return retval;
676
677         /* write R0 to DCC */
678         retval = cortex_a_exec_opcode(
679                         a->armv7a_common.arm.target,
680                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
681                         &dscr);
682         if (retval != ERROR_OK)
683                 return retval;
684
685         return cortex_a_read_dcc(a, data, &dscr);
686 }
687
688 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
689         uint32_t addr, uint32_t control)
690 {
691         struct cortex_a_common *a = dpm_to_a(dpm);
692         uint32_t vr = a->armv7a_common.debug_base;
693         uint32_t cr = a->armv7a_common.debug_base;
694         int retval;
695
696         switch (index_t) {
697                 case 0 ... 15:  /* breakpoints */
698                         vr += CPUDBG_BVR_BASE;
699                         cr += CPUDBG_BCR_BASE;
700                         break;
701                 case 16 ... 31: /* watchpoints */
702                         vr += CPUDBG_WVR_BASE;
703                         cr += CPUDBG_WCR_BASE;
704                         index_t -= 16;
705                         break;
706                 default:
707                         return ERROR_FAIL;
708         }
709         vr += 4 * index_t;
710         cr += 4 * index_t;
711
712         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
713                 (unsigned) vr, (unsigned) cr);
714
715         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
716                         vr, addr);
717         if (retval != ERROR_OK)
718                 return retval;
719         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
720                         cr, control);
721         return retval;
722 }
723
724 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
725 {
726         struct cortex_a_common *a = dpm_to_a(dpm);
727         uint32_t cr;
728
729         switch (index_t) {
730                 case 0 ... 15:
731                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
732                         break;
733                 case 16 ... 31:
734                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
735                         index_t -= 16;
736                         break;
737                 default:
738                         return ERROR_FAIL;
739         }
740         cr += 4 * index_t;
741
742         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
743
744         /* clear control register */
745         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
746 }
747
748 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
749 {
750         struct arm_dpm *dpm = &a->armv7a_common.dpm;
751         int retval;
752
753         dpm->arm = &a->armv7a_common.arm;
754         dpm->didr = didr;
755
756         dpm->prepare = cortex_a_dpm_prepare;
757         dpm->finish = cortex_a_dpm_finish;
758
759         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
760         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
761         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
762
763         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
764         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
765
766         dpm->bpwp_enable = cortex_a_bpwp_enable;
767         dpm->bpwp_disable = cortex_a_bpwp_disable;
768
769         retval = arm_dpm_setup(dpm);
770         if (retval == ERROR_OK)
771                 retval = arm_dpm_initialize(dpm);
772
773         return retval;
774 }
775 static struct target *get_cortex_a(struct target *target, int32_t coreid)
776 {
777         struct target_list *head;
778         struct target *curr;
779
780         head = target->head;
781         while (head != (struct target_list *)NULL) {
782                 curr = head->target;
783                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
784                         return curr;
785                 head = head->next;
786         }
787         return target;
788 }
789 static int cortex_a_halt(struct target *target);
790
791 static int cortex_a_halt_smp(struct target *target)
792 {
793         int retval = 0;
794         struct target_list *head;
795         struct target *curr;
796         head = target->head;
797         while (head != (struct target_list *)NULL) {
798                 curr = head->target;
799                 if ((curr != target) && (curr->state != TARGET_HALTED)
800                         && target_was_examined(curr))
801                         retval += cortex_a_halt(curr);
802                 head = head->next;
803         }
804         return retval;
805 }
806
807 static int update_halt_gdb(struct target *target)
808 {
809         int retval = 0;
810         if (target->gdb_service && target->gdb_service->core[0] == -1) {
811                 target->gdb_service->target = target;
812                 target->gdb_service->core[0] = target->coreid;
813                 retval += cortex_a_halt_smp(target);
814         }
815         return retval;
816 }
817
818 /*
819  * Cortex-A Run control
820  */
821
822 static int cortex_a_poll(struct target *target)
823 {
824         int retval = ERROR_OK;
825         uint32_t dscr;
826         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
827         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
828         enum target_state prev_target_state = target->state;
829         /*  toggle to another core is done by gdb as follow */
830         /*  maint packet J core_id */
831         /*  continue */
832         /*  the next polling trigger an halt event sent to gdb */
833         if ((target->state == TARGET_HALTED) && (target->smp) &&
834                 (target->gdb_service) &&
835                 (target->gdb_service->target == NULL)) {
836                 target->gdb_service->target =
837                         get_cortex_a(target, target->gdb_service->core[1]);
838                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
839                 return retval;
840         }
841         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
842                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
843         if (retval != ERROR_OK)
844                 return retval;
845         cortex_a->cpudbg_dscr = dscr;
846
847         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
848                 if (prev_target_state != TARGET_HALTED) {
849                         /* We have a halting debug event */
850                         LOG_DEBUG("Target halted");
851                         target->state = TARGET_HALTED;
852                         if ((prev_target_state == TARGET_RUNNING)
853                                 || (prev_target_state == TARGET_UNKNOWN)
854                                 || (prev_target_state == TARGET_RESET)) {
855                                 retval = cortex_a_debug_entry(target);
856                                 if (retval != ERROR_OK)
857                                         return retval;
858                                 if (target->smp) {
859                                         retval = update_halt_gdb(target);
860                                         if (retval != ERROR_OK)
861                                                 return retval;
862                                 }
863
864                                 if (arm_semihosting(target, &retval) != 0)
865                                         return retval;
866
867                                 target_call_event_callbacks(target,
868                                         TARGET_EVENT_HALTED);
869                         }
870                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
871                                 LOG_DEBUG(" ");
872
873                                 retval = cortex_a_debug_entry(target);
874                                 if (retval != ERROR_OK)
875                                         return retval;
876                                 if (target->smp) {
877                                         retval = update_halt_gdb(target);
878                                         if (retval != ERROR_OK)
879                                                 return retval;
880                                 }
881
882                                 target_call_event_callbacks(target,
883                                         TARGET_EVENT_DEBUG_HALTED);
884                         }
885                 }
886         } else
887                 target->state = TARGET_RUNNING;
888
889         return retval;
890 }
891
892 static int cortex_a_halt(struct target *target)
893 {
894         int retval = ERROR_OK;
895         uint32_t dscr;
896         struct armv7a_common *armv7a = target_to_armv7a(target);
897
898         /*
899          * Tell the core to be halted by writing DRCR with 0x1
900          * and then wait for the core to be halted.
901          */
902         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
903                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
904         if (retval != ERROR_OK)
905                 return retval;
906
907         /*
908          * enter halting debug mode
909          */
910         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
911                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
912         if (retval != ERROR_OK)
913                 return retval;
914
915         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
916                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
917         if (retval != ERROR_OK)
918                 return retval;
919
920         int64_t then = timeval_ms();
921         for (;; ) {
922                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
923                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
924                 if (retval != ERROR_OK)
925                         return retval;
926                 if ((dscr & DSCR_CORE_HALTED) != 0)
927                         break;
928                 if (timeval_ms() > then + 1000) {
929                         LOG_ERROR("Timeout waiting for halt");
930                         return ERROR_FAIL;
931                 }
932         }
933
934         target->debug_reason = DBG_REASON_DBGRQ;
935
936         return ERROR_OK;
937 }
938
939 static int cortex_a_internal_restore(struct target *target, int current,
940         target_addr_t *address, int handle_breakpoints, int debug_execution)
941 {
942         struct armv7a_common *armv7a = target_to_armv7a(target);
943         struct arm *arm = &armv7a->arm;
944         int retval;
945         uint32_t resume_pc;
946
947         if (!debug_execution)
948                 target_free_all_working_areas(target);
949
950 #if 0
951         if (debug_execution) {
952                 /* Disable interrupts */
953                 /* We disable interrupts in the PRIMASK register instead of
954                  * masking with C_MASKINTS,
955                  * This is probably the same issue as Cortex-M3 Errata 377493:
956                  * C_MASKINTS in parallel with disabled interrupts can cause
957                  * local faults to not be taken. */
958                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
959                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
960                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
961
962                 /* Make sure we are in Thumb mode */
963                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
964                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
965                         32) | (1 << 24));
966                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
967                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
968         }
969 #endif
970
971         /* current = 1: continue on current pc, otherwise continue at <address> */
972         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
973         if (!current)
974                 resume_pc = *address;
975         else
976                 *address = resume_pc;
977
978         /* Make sure that the Armv7 gdb thumb fixups does not
979          * kill the return address
980          */
981         switch (arm->core_state) {
982                 case ARM_STATE_ARM:
983                         resume_pc &= 0xFFFFFFFC;
984                         break;
985                 case ARM_STATE_THUMB:
986                 case ARM_STATE_THUMB_EE:
987                         /* When the return address is loaded into PC
988                          * bit 0 must be 1 to stay in Thumb state
989                          */
990                         resume_pc |= 0x1;
991                         break;
992                 case ARM_STATE_JAZELLE:
993                         LOG_ERROR("How do I resume into Jazelle state??");
994                         return ERROR_FAIL;
995                 case ARM_STATE_AARCH64:
996                         LOG_ERROR("Shoudn't be in AARCH64 state");
997                         return ERROR_FAIL;
998         }
999         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1000         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1001         arm->pc->dirty = 1;
1002         arm->pc->valid = 1;
1003
1004         /* restore dpm_mode at system halt */
1005         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1006         /* called it now before restoring context because it uses cpu
1007          * register r0 for restoring cp15 control register */
1008         retval = cortex_a_restore_cp15_control_reg(target);
1009         if (retval != ERROR_OK)
1010                 return retval;
1011         retval = cortex_a_restore_context(target, handle_breakpoints);
1012         if (retval != ERROR_OK)
1013                 return retval;
1014         target->debug_reason = DBG_REASON_NOTHALTED;
1015         target->state = TARGET_RUNNING;
1016
1017         /* registers are now invalid */
1018         register_cache_invalidate(arm->core_cache);
1019
1020 #if 0
1021         /* the front-end may request us not to handle breakpoints */
1022         if (handle_breakpoints) {
1023                 /* Single step past breakpoint at current address */
1024                 breakpoint = breakpoint_find(target, resume_pc);
1025                 if (breakpoint) {
1026                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1027                         cortex_m3_unset_breakpoint(target, breakpoint);
1028                         cortex_m3_single_step_core(target);
1029                         cortex_m3_set_breakpoint(target, breakpoint);
1030                 }
1031         }
1032
1033 #endif
1034         return retval;
1035 }
1036
1037 static int cortex_a_internal_restart(struct target *target)
1038 {
1039         struct armv7a_common *armv7a = target_to_armv7a(target);
1040         struct arm *arm = &armv7a->arm;
1041         int retval;
1042         uint32_t dscr;
1043         /*
1044          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1045          * * exception flags: see ARMv7 ARM, C5.9.
1046          *
1047          * REVISIT: for single stepping, we probably want to
1048          * disable IRQs by default, with optional override...
1049          */
1050
1051         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1052                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1053         if (retval != ERROR_OK)
1054                 return retval;
1055
1056         if ((dscr & DSCR_INSTR_COMP) == 0)
1057                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1058
1059         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1060                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1061         if (retval != ERROR_OK)
1062                 return retval;
1063
1064         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1065                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1066                         DRCR_CLEAR_EXCEPTIONS);
1067         if (retval != ERROR_OK)
1068                 return retval;
1069
1070         int64_t then = timeval_ms();
1071         for (;; ) {
1072                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1073                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1074                 if (retval != ERROR_OK)
1075                         return retval;
1076                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1077                         break;
1078                 if (timeval_ms() > then + 1000) {
1079                         LOG_ERROR("Timeout waiting for resume");
1080                         return ERROR_FAIL;
1081                 }
1082         }
1083
1084         target->debug_reason = DBG_REASON_NOTHALTED;
1085         target->state = TARGET_RUNNING;
1086
1087         /* registers are now invalid */
1088         register_cache_invalidate(arm->core_cache);
1089
1090         return ERROR_OK;
1091 }
1092
1093 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1094 {
1095         int retval = 0;
1096         struct target_list *head;
1097         struct target *curr;
1098         target_addr_t address;
1099         head = target->head;
1100         while (head != (struct target_list *)NULL) {
1101                 curr = head->target;
1102                 if ((curr != target) && (curr->state != TARGET_RUNNING)
1103                         && target_was_examined(curr)) {
1104                         /*  resume current address , not in step mode */
1105                         retval += cortex_a_internal_restore(curr, 1, &address,
1106                                         handle_breakpoints, 0);
1107                         retval += cortex_a_internal_restart(curr);
1108                 }
1109                 head = head->next;
1110
1111         }
1112         return retval;
1113 }
1114
1115 static int cortex_a_resume(struct target *target, int current,
1116         target_addr_t address, int handle_breakpoints, int debug_execution)
1117 {
1118         int retval = 0;
1119         /* dummy resume for smp toggle in order to reduce gdb impact  */
1120         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1121                 /*   simulate a start and halt of target */
1122                 target->gdb_service->target = NULL;
1123                 target->gdb_service->core[0] = target->gdb_service->core[1];
1124                 /*  fake resume at next poll we play the  target core[1], see poll*/
1125                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1126                 return 0;
1127         }
1128         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1129         if (target->smp) {
1130                 target->gdb_service->core[0] = -1;
1131                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1132                 if (retval != ERROR_OK)
1133                         return retval;
1134         }
1135         cortex_a_internal_restart(target);
1136
1137         if (!debug_execution) {
1138                 target->state = TARGET_RUNNING;
1139                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1140                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1141         } else {
1142                 target->state = TARGET_DEBUG_RUNNING;
1143                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1144                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 static int cortex_a_debug_entry(struct target *target)
1151 {
1152         int i;
1153         uint32_t regfile[16], cpsr, spsr, dscr;
1154         int retval = ERROR_OK;
1155         struct working_area *regfile_working_area = NULL;
1156         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1157         struct armv7a_common *armv7a = target_to_armv7a(target);
1158         struct arm *arm = &armv7a->arm;
1159         struct reg *reg;
1160
1161         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1162
1163         /* REVISIT surely we should not re-read DSCR !! */
1164         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1165                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1166         if (retval != ERROR_OK)
1167                 return retval;
1168
1169         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1170          * imprecise data aborts get discarded by issuing a Data
1171          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1172          */
1173
1174         /* Enable the ITR execution once we are in debug mode */
1175         dscr |= DSCR_ITR_EN;
1176         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1177                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1178         if (retval != ERROR_OK)
1179                 return retval;
1180
1181         /* Examine debug reason */
1182         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1183
1184         /* save address of instruction that triggered the watchpoint? */
1185         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1186                 uint32_t wfar;
1187
1188                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1189                                 armv7a->debug_base + CPUDBG_WFAR,
1190                                 &wfar);
1191                 if (retval != ERROR_OK)
1192                         return retval;
1193                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1194         }
1195
1196         /* REVISIT fast_reg_read is never set ... */
1197
1198         /* Examine target state and mode */
1199         if (cortex_a->fast_reg_read)
1200                 target_alloc_working_area(target, 64, &regfile_working_area);
1201
1202
1203         /* First load register acessible through core debug port*/
1204         if (!regfile_working_area)
1205                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1206         else {
1207                 retval = cortex_a_read_regs_through_mem(target,
1208                                 regfile_working_area->address, regfile);
1209
1210                 target_free_working_area(target, regfile_working_area);
1211                 if (retval != ERROR_OK)
1212                         return retval;
1213
1214                 /* read Current PSR */
1215                 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1216                 /*  store current cpsr */
1217                 if (retval != ERROR_OK)
1218                         return retval;
1219
1220                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1221
1222                 arm_set_cpsr(arm, cpsr);
1223
1224                 /* update cache */
1225                 for (i = 0; i <= ARM_PC; i++) {
1226                         reg = arm_reg_current(arm, i);
1227
1228                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1229                         reg->valid = 1;
1230                         reg->dirty = 0;
1231                 }
1232
1233                 /* Fixup PC Resume Address */
1234                 if (cpsr & (1 << 5)) {
1235                         /* T bit set for Thumb or ThumbEE state */
1236                         regfile[ARM_PC] -= 4;
1237                 } else {
1238                         /* ARM state */
1239                         regfile[ARM_PC] -= 8;
1240                 }
1241
1242                 reg = arm->pc;
1243                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1244                 reg->dirty = reg->valid;
1245         }
1246
1247         if (arm->spsr) {
1248                 /* read Saved PSR */
1249                 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1250                 /*  store current spsr */
1251                 if (retval != ERROR_OK)
1252                         return retval;
1253
1254                 reg = arm->spsr;
1255                 buf_set_u32(reg->value, 0, 32, spsr);
1256                 reg->valid = 1;
1257                 reg->dirty = 0;
1258         }
1259
1260 #if 0
1261 /* TODO, Move this */
1262         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1263         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1264         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1265
1266         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1267         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1268
1269         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1270         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1271 #endif
1272
1273         /* Are we in an exception handler */
1274 /*      armv4_5->exception_number = 0; */
1275         if (armv7a->post_debug_entry) {
1276                 retval = armv7a->post_debug_entry(target);
1277                 if (retval != ERROR_OK)
1278                         return retval;
1279         }
1280
1281         return retval;
1282 }
1283
1284 static int cortex_a_post_debug_entry(struct target *target)
1285 {
1286         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1287         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1288         int retval;
1289
1290         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1291         retval = armv7a->arm.mrc(target, 15,
1292                         0, 0,   /* op1, op2 */
1293                         1, 0,   /* CRn, CRm */
1294                         &cortex_a->cp15_control_reg);
1295         if (retval != ERROR_OK)
1296                 return retval;
1297         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1298         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1299
1300         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1301                 armv7a_identify_cache(target);
1302
1303         if (armv7a->is_armv7r) {
1304                 armv7a->armv7a_mmu.mmu_enabled = 0;
1305         } else {
1306                 armv7a->armv7a_mmu.mmu_enabled =
1307                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1308         }
1309         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1310                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1311         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1312                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1313         cortex_a->curr_mode = armv7a->arm.core_mode;
1314
1315         /* switch to SVC mode to read DACR */
1316         dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1317         armv7a->arm.mrc(target, 15,
1318                         0, 0, 3, 0,
1319                         &cortex_a->cp15_dacr_reg);
1320
1321         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1322                         cortex_a->cp15_dacr_reg);
1323
1324         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1325         return ERROR_OK;
1326 }
1327
1328 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1329 {
1330         struct armv7a_common *armv7a = target_to_armv7a(target);
1331         uint32_t dscr;
1332
1333         /* Read DSCR */
1334         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1335                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1336         if (ERROR_OK != retval)
1337                 return retval;
1338
1339         /* clear bitfield */
1340         dscr &= ~bit_mask;
1341         /* put new value */
1342         dscr |= value & bit_mask;
1343
1344         /* write new DSCR */
1345         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1346                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1347         return retval;
1348 }
1349
1350 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1351         int handle_breakpoints)
1352 {
1353         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1354         struct armv7a_common *armv7a = target_to_armv7a(target);
1355         struct arm *arm = &armv7a->arm;
1356         struct breakpoint *breakpoint = NULL;
1357         struct breakpoint stepbreakpoint;
1358         struct reg *r;
1359         int retval;
1360
1361         if (target->state != TARGET_HALTED) {
1362                 LOG_WARNING("target not halted");
1363                 return ERROR_TARGET_NOT_HALTED;
1364         }
1365
1366         /* current = 1: continue on current pc, otherwise continue at <address> */
1367         r = arm->pc;
1368         if (!current)
1369                 buf_set_u32(r->value, 0, 32, address);
1370         else
1371                 address = buf_get_u32(r->value, 0, 32);
1372
1373         /* The front-end may request us not to handle breakpoints.
1374          * But since Cortex-A uses breakpoint for single step,
1375          * we MUST handle breakpoints.
1376          */
1377         handle_breakpoints = 1;
1378         if (handle_breakpoints) {
1379                 breakpoint = breakpoint_find(target, address);
1380                 if (breakpoint)
1381                         cortex_a_unset_breakpoint(target, breakpoint);
1382         }
1383
1384         /* Setup single step breakpoint */
1385         stepbreakpoint.address = address;
1386         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1387                 ? 2 : 4;
1388         stepbreakpoint.type = BKPT_HARD;
1389         stepbreakpoint.set = 0;
1390
1391         /* Disable interrupts during single step if requested */
1392         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1393                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1394                 if (ERROR_OK != retval)
1395                         return retval;
1396         }
1397
1398         /* Break on IVA mismatch */
1399         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1400
1401         target->debug_reason = DBG_REASON_SINGLESTEP;
1402
1403         retval = cortex_a_resume(target, 1, address, 0, 0);
1404         if (retval != ERROR_OK)
1405                 return retval;
1406
1407         int64_t then = timeval_ms();
1408         while (target->state != TARGET_HALTED) {
1409                 retval = cortex_a_poll(target);
1410                 if (retval != ERROR_OK)
1411                         return retval;
1412                 if (timeval_ms() > then + 1000) {
1413                         LOG_ERROR("timeout waiting for target halt");
1414                         return ERROR_FAIL;
1415                 }
1416         }
1417
1418         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1419
1420         /* Re-enable interrupts if they were disabled */
1421         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1422                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1423                 if (ERROR_OK != retval)
1424                         return retval;
1425         }
1426
1427
1428         target->debug_reason = DBG_REASON_BREAKPOINT;
1429
1430         if (breakpoint)
1431                 cortex_a_set_breakpoint(target, breakpoint, 0);
1432
1433         if (target->state != TARGET_HALTED)
1434                 LOG_DEBUG("target stepped");
1435
1436         return ERROR_OK;
1437 }
1438
1439 static int cortex_a_restore_context(struct target *target, bool bpwp)
1440 {
1441         struct armv7a_common *armv7a = target_to_armv7a(target);
1442
1443         LOG_DEBUG(" ");
1444
1445         if (armv7a->pre_restore_context)
1446                 armv7a->pre_restore_context(target);
1447
1448         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1449 }
1450
1451 /*
1452  * Cortex-A Breakpoint and watchpoint functions
1453  */
1454
1455 /* Setup hardware Breakpoint Register Pair */
1456 static int cortex_a_set_breakpoint(struct target *target,
1457         struct breakpoint *breakpoint, uint8_t matchmode)
1458 {
1459         int retval;
1460         int brp_i = 0;
1461         uint32_t control;
1462         uint8_t byte_addr_select = 0x0F;
1463         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1464         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1465         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1466
1467         if (breakpoint->set) {
1468                 LOG_WARNING("breakpoint already set");
1469                 return ERROR_OK;
1470         }
1471
1472         if (breakpoint->type == BKPT_HARD) {
1473                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1474                         brp_i++;
1475                 if (brp_i >= cortex_a->brp_num) {
1476                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1477                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1478                 }
1479                 breakpoint->set = brp_i + 1;
1480                 if (breakpoint->length == 2)
1481                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1482                 control = ((matchmode & 0x7) << 20)
1483                         | (byte_addr_select << 5)
1484                         | (3 << 1) | 1;
1485                 brp_list[brp_i].used = 1;
1486                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1487                 brp_list[brp_i].control = control;
1488                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1489                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1490                                 brp_list[brp_i].value);
1491                 if (retval != ERROR_OK)
1492                         return retval;
1493                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1494                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1495                                 brp_list[brp_i].control);
1496                 if (retval != ERROR_OK)
1497                         return retval;
1498                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1499                         brp_list[brp_i].control,
1500                         brp_list[brp_i].value);
1501         } else if (breakpoint->type == BKPT_SOFT) {
1502                 uint8_t code[4];
1503                 /* length == 2: Thumb breakpoint */
1504                 if (breakpoint->length == 2)
1505                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1506                 else
1507                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1508                  * a regular Thumb BKPT instruction but we replace a
1509                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1510                  * length
1511                  */
1512                 if (breakpoint->length == 3) {
1513                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1514                         breakpoint->length = 4;
1515                 } else
1516                         /* length == 4, normal ARM breakpoint */
1517                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1518
1519                 retval = target_read_memory(target,
1520                                 breakpoint->address & 0xFFFFFFFE,
1521                                 breakpoint->length, 1,
1522                                 breakpoint->orig_instr);
1523                 if (retval != ERROR_OK)
1524                         return retval;
1525
1526                 /* make sure data cache is cleaned & invalidated down to PoC */
1527                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1528                         armv7a_cache_flush_virt(target, breakpoint->address,
1529                                                 breakpoint->length);
1530                 }
1531
1532                 retval = target_write_memory(target,
1533                                 breakpoint->address & 0xFFFFFFFE,
1534                                 breakpoint->length, 1, code);
1535                 if (retval != ERROR_OK)
1536                         return retval;
1537
1538                 /* update i-cache at breakpoint location */
1539                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1540                                         breakpoint->length);
1541                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1542                                                  breakpoint->length);
1543
1544                 breakpoint->set = 0x11; /* Any nice value but 0 */
1545         }
1546
1547         return ERROR_OK;
1548 }
1549
1550 static int cortex_a_set_context_breakpoint(struct target *target,
1551         struct breakpoint *breakpoint, uint8_t matchmode)
1552 {
1553         int retval = ERROR_FAIL;
1554         int brp_i = 0;
1555         uint32_t control;
1556         uint8_t byte_addr_select = 0x0F;
1557         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1558         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1559         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1560
1561         if (breakpoint->set) {
1562                 LOG_WARNING("breakpoint already set");
1563                 return retval;
1564         }
1565         /*check available context BRPs*/
1566         while ((brp_list[brp_i].used ||
1567                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1568                 brp_i++;
1569
1570         if (brp_i >= cortex_a->brp_num) {
1571                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1572                 return ERROR_FAIL;
1573         }
1574
1575         breakpoint->set = brp_i + 1;
1576         control = ((matchmode & 0x7) << 20)
1577                 | (byte_addr_select << 5)
1578                 | (3 << 1) | 1;
1579         brp_list[brp_i].used = 1;
1580         brp_list[brp_i].value = (breakpoint->asid);
1581         brp_list[brp_i].control = control;
1582         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1583                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1584                         brp_list[brp_i].value);
1585         if (retval != ERROR_OK)
1586                 return retval;
1587         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1588                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1589                         brp_list[brp_i].control);
1590         if (retval != ERROR_OK)
1591                 return retval;
1592         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1593                 brp_list[brp_i].control,
1594                 brp_list[brp_i].value);
1595         return ERROR_OK;
1596
1597 }
1598
1599 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1600 {
1601         int retval = ERROR_FAIL;
1602         int brp_1 = 0;  /* holds the contextID pair */
1603         int brp_2 = 0;  /* holds the IVA pair */
1604         uint32_t control_CTX, control_IVA;
1605         uint8_t CTX_byte_addr_select = 0x0F;
1606         uint8_t IVA_byte_addr_select = 0x0F;
1607         uint8_t CTX_machmode = 0x03;
1608         uint8_t IVA_machmode = 0x01;
1609         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1610         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1611         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1612
1613         if (breakpoint->set) {
1614                 LOG_WARNING("breakpoint already set");
1615                 return retval;
1616         }
1617         /*check available context BRPs*/
1618         while ((brp_list[brp_1].used ||
1619                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1620                 brp_1++;
1621
1622         printf("brp(CTX) found num: %d\n", brp_1);
1623         if (brp_1 >= cortex_a->brp_num) {
1624                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1625                 return ERROR_FAIL;
1626         }
1627
1628         while ((brp_list[brp_2].used ||
1629                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1630                 brp_2++;
1631
1632         printf("brp(IVA) found num: %d\n", brp_2);
1633         if (brp_2 >= cortex_a->brp_num) {
1634                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1635                 return ERROR_FAIL;
1636         }
1637
1638         breakpoint->set = brp_1 + 1;
1639         breakpoint->linked_BRP = brp_2;
1640         control_CTX = ((CTX_machmode & 0x7) << 20)
1641                 | (brp_2 << 16)
1642                 | (0 << 14)
1643                 | (CTX_byte_addr_select << 5)
1644                 | (3 << 1) | 1;
1645         brp_list[brp_1].used = 1;
1646         brp_list[brp_1].value = (breakpoint->asid);
1647         brp_list[brp_1].control = control_CTX;
1648         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1649                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1650                         brp_list[brp_1].value);
1651         if (retval != ERROR_OK)
1652                 return retval;
1653         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1654                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1655                         brp_list[brp_1].control);
1656         if (retval != ERROR_OK)
1657                 return retval;
1658
1659         control_IVA = ((IVA_machmode & 0x7) << 20)
1660                 | (brp_1 << 16)
1661                 | (IVA_byte_addr_select << 5)
1662                 | (3 << 1) | 1;
1663         brp_list[brp_2].used = 1;
1664         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1665         brp_list[brp_2].control = control_IVA;
1666         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1667                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1668                         brp_list[brp_2].value);
1669         if (retval != ERROR_OK)
1670                 return retval;
1671         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1672                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1673                         brp_list[brp_2].control);
1674         if (retval != ERROR_OK)
1675                 return retval;
1676
1677         return ERROR_OK;
1678 }
1679
1680 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1681 {
1682         int retval;
1683         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1684         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1685         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1686
1687         if (!breakpoint->set) {
1688                 LOG_WARNING("breakpoint not set");
1689                 return ERROR_OK;
1690         }
1691
1692         if (breakpoint->type == BKPT_HARD) {
1693                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1694                         int brp_i = breakpoint->set - 1;
1695                         int brp_j = breakpoint->linked_BRP;
1696                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1697                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1698                                 return ERROR_OK;
1699                         }
1700                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1701                                 brp_list[brp_i].control, brp_list[brp_i].value);
1702                         brp_list[brp_i].used = 0;
1703                         brp_list[brp_i].value = 0;
1704                         brp_list[brp_i].control = 0;
1705                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1706                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1707                                         brp_list[brp_i].control);
1708                         if (retval != ERROR_OK)
1709                                 return retval;
1710                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1711                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1712                                         brp_list[brp_i].value);
1713                         if (retval != ERROR_OK)
1714                                 return retval;
1715                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1716                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1717                                 return ERROR_OK;
1718                         }
1719                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1720                                 brp_list[brp_j].control, brp_list[brp_j].value);
1721                         brp_list[brp_j].used = 0;
1722                         brp_list[brp_j].value = 0;
1723                         brp_list[brp_j].control = 0;
1724                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1725                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1726                                         brp_list[brp_j].control);
1727                         if (retval != ERROR_OK)
1728                                 return retval;
1729                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1730                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1731                                         brp_list[brp_j].value);
1732                         if (retval != ERROR_OK)
1733                                 return retval;
1734                         breakpoint->linked_BRP = 0;
1735                         breakpoint->set = 0;
1736                         return ERROR_OK;
1737
1738                 } else {
1739                         int brp_i = breakpoint->set - 1;
1740                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1741                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1742                                 return ERROR_OK;
1743                         }
1744                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1745                                 brp_list[brp_i].control, brp_list[brp_i].value);
1746                         brp_list[brp_i].used = 0;
1747                         brp_list[brp_i].value = 0;
1748                         brp_list[brp_i].control = 0;
1749                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1750                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1751                                         brp_list[brp_i].control);
1752                         if (retval != ERROR_OK)
1753                                 return retval;
1754                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1755                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1756                                         brp_list[brp_i].value);
1757                         if (retval != ERROR_OK)
1758                                 return retval;
1759                         breakpoint->set = 0;
1760                         return ERROR_OK;
1761                 }
1762         } else {
1763
1764                 /* make sure data cache is cleaned & invalidated down to PoC */
1765                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1766                         armv7a_cache_flush_virt(target, breakpoint->address,
1767                                                 breakpoint->length);
1768                 }
1769
1770                 /* restore original instruction (kept in target endianness) */
1771                 if (breakpoint->length == 4) {
1772                         retval = target_write_memory(target,
1773                                         breakpoint->address & 0xFFFFFFFE,
1774                                         4, 1, breakpoint->orig_instr);
1775                         if (retval != ERROR_OK)
1776                                 return retval;
1777                 } else {
1778                         retval = target_write_memory(target,
1779                                         breakpoint->address & 0xFFFFFFFE,
1780                                         2, 1, breakpoint->orig_instr);
1781                         if (retval != ERROR_OK)
1782                                 return retval;
1783                 }
1784
1785                 /* update i-cache at breakpoint location */
1786                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1787                                                  breakpoint->length);
1788                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1789                                                  breakpoint->length);
1790         }
1791         breakpoint->set = 0;
1792
1793         return ERROR_OK;
1794 }
1795
1796 static int cortex_a_add_breakpoint(struct target *target,
1797         struct breakpoint *breakpoint)
1798 {
1799         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1800
1801         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1802                 LOG_INFO("no hardware breakpoint available");
1803                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1804         }
1805
1806         if (breakpoint->type == BKPT_HARD)
1807                 cortex_a->brp_num_available--;
1808
1809         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1810 }
1811
1812 static int cortex_a_add_context_breakpoint(struct target *target,
1813         struct breakpoint *breakpoint)
1814 {
1815         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1816
1817         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1818                 LOG_INFO("no hardware breakpoint available");
1819                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1820         }
1821
1822         if (breakpoint->type == BKPT_HARD)
1823                 cortex_a->brp_num_available--;
1824
1825         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1826 }
1827
1828 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1829         struct breakpoint *breakpoint)
1830 {
1831         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1832
1833         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1834                 LOG_INFO("no hardware breakpoint available");
1835                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1836         }
1837
1838         if (breakpoint->type == BKPT_HARD)
1839                 cortex_a->brp_num_available--;
1840
1841         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1842 }
1843
1844
1845 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1846 {
1847         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1848
1849 #if 0
1850 /* It is perfectly possible to remove breakpoints while the target is running */
1851         if (target->state != TARGET_HALTED) {
1852                 LOG_WARNING("target not halted");
1853                 return ERROR_TARGET_NOT_HALTED;
1854         }
1855 #endif
1856
1857         if (breakpoint->set) {
1858                 cortex_a_unset_breakpoint(target, breakpoint);
1859                 if (breakpoint->type == BKPT_HARD)
1860                         cortex_a->brp_num_available++;
1861         }
1862
1863
1864         return ERROR_OK;
1865 }
1866
1867 /*
1868  * Cortex-A Reset functions
1869  */
1870
1871 static int cortex_a_assert_reset(struct target *target)
1872 {
1873         struct armv7a_common *armv7a = target_to_armv7a(target);
1874
1875         LOG_DEBUG(" ");
1876
1877         /* FIXME when halt is requested, make it work somehow... */
1878
1879         /* This function can be called in "target not examined" state */
1880
1881         /* Issue some kind of warm reset. */
1882         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1883                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1884         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1885                 /* REVISIT handle "pulls" cases, if there's
1886                  * hardware that needs them to work.
1887                  */
1888
1889                 /*
1890                  * FIXME: fix reset when transport is SWD. This is a temporary
1891                  * work-around for release v0.10 that is not intended to stay!
1892                  */
1893                 if (transport_is_swd() ||
1894                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1895                         jtag_add_reset(0, 1);
1896
1897         } else {
1898                 LOG_ERROR("%s: how to reset?", target_name(target));
1899                 return ERROR_FAIL;
1900         }
1901
1902         /* registers are now invalid */
1903         if (target_was_examined(target))
1904                 register_cache_invalidate(armv7a->arm.core_cache);
1905
1906         target->state = TARGET_RESET;
1907
1908         return ERROR_OK;
1909 }
1910
1911 static int cortex_a_deassert_reset(struct target *target)
1912 {
1913         int retval;
1914
1915         LOG_DEBUG(" ");
1916
1917         /* be certain SRST is off */
1918         jtag_add_reset(0, 0);
1919
1920         if (target_was_examined(target)) {
1921                 retval = cortex_a_poll(target);
1922                 if (retval != ERROR_OK)
1923                         return retval;
1924         }
1925
1926         if (target->reset_halt) {
1927                 if (target->state != TARGET_HALTED) {
1928                         LOG_WARNING("%s: ran after reset and before halt ...",
1929                                 target_name(target));
1930                         if (target_was_examined(target)) {
1931                                 retval = target_halt(target);
1932                                 if (retval != ERROR_OK)
1933                                         return retval;
1934                         } else
1935                                 target->state = TARGET_UNKNOWN;
1936                 }
1937         }
1938
1939         return ERROR_OK;
1940 }
1941
1942 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1943 {
1944         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1945          * New desired mode must be in mode. Current value of DSCR must be in
1946          * *dscr, which is updated with new value.
1947          *
1948          * This function elides actually sending the mode-change over the debug
1949          * interface if the mode is already set as desired.
1950          */
1951         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1952         if (new_dscr != *dscr) {
1953                 struct armv7a_common *armv7a = target_to_armv7a(target);
1954                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1955                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1956                 if (retval == ERROR_OK)
1957                         *dscr = new_dscr;
1958                 return retval;
1959         } else {
1960                 return ERROR_OK;
1961         }
1962 }
1963
1964 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1965         uint32_t value, uint32_t *dscr)
1966 {
1967         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1968         struct armv7a_common *armv7a = target_to_armv7a(target);
1969         int64_t then = timeval_ms();
1970         int retval;
1971
1972         while ((*dscr & mask) != value) {
1973                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1974                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1975                 if (retval != ERROR_OK)
1976                         return retval;
1977                 if (timeval_ms() > then + 1000) {
1978                         LOG_ERROR("timeout waiting for DSCR bit change");
1979                         return ERROR_FAIL;
1980                 }
1981         }
1982         return ERROR_OK;
1983 }
1984
1985 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1986         uint32_t *data, uint32_t *dscr)
1987 {
1988         int retval;
1989         struct armv7a_common *armv7a = target_to_armv7a(target);
1990
1991         /* Move from coprocessor to R0. */
1992         retval = cortex_a_exec_opcode(target, opcode, dscr);
1993         if (retval != ERROR_OK)
1994                 return retval;
1995
1996         /* Move from R0 to DTRTX. */
1997         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1998         if (retval != ERROR_OK)
1999                 return retval;
2000
2001         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2002          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2003          * must also check TXfull_l). Most of the time this will be free
2004          * because TXfull_l will be set immediately and cached in dscr. */
2005         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2006                         DSCR_DTRTX_FULL_LATCHED, dscr);
2007         if (retval != ERROR_OK)
2008                 return retval;
2009
2010         /* Read the value transferred to DTRTX. */
2011         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2012                         armv7a->debug_base + CPUDBG_DTRTX, data);
2013         if (retval != ERROR_OK)
2014                 return retval;
2015
2016         return ERROR_OK;
2017 }
2018
2019 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2020         uint32_t *dfsr, uint32_t *dscr)
2021 {
2022         int retval;
2023
2024         if (dfar) {
2025                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2026                 if (retval != ERROR_OK)
2027                         return retval;
2028         }
2029
2030         if (dfsr) {
2031                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2032                 if (retval != ERROR_OK)
2033                         return retval;
2034         }
2035
2036         return ERROR_OK;
2037 }
2038
2039 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2040         uint32_t data, uint32_t *dscr)
2041 {
2042         int retval;
2043         struct armv7a_common *armv7a = target_to_armv7a(target);
2044
2045         /* Write the value into DTRRX. */
2046         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2047                         armv7a->debug_base + CPUDBG_DTRRX, data);
2048         if (retval != ERROR_OK)
2049                 return retval;
2050
2051         /* Move from DTRRX to R0. */
2052         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2053         if (retval != ERROR_OK)
2054                 return retval;
2055
2056         /* Move from R0 to coprocessor. */
2057         retval = cortex_a_exec_opcode(target, opcode, dscr);
2058         if (retval != ERROR_OK)
2059                 return retval;
2060
2061         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2062          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2063          * check RXfull_l). Most of the time this will be free because RXfull_l
2064          * will be cleared immediately and cached in dscr. */
2065         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2066         if (retval != ERROR_OK)
2067                 return retval;
2068
2069         return ERROR_OK;
2070 }
2071
2072 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2073         uint32_t dfsr, uint32_t *dscr)
2074 {
2075         int retval;
2076
2077         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2078         if (retval != ERROR_OK)
2079                 return retval;
2080
2081         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2082         if (retval != ERROR_OK)
2083                 return retval;
2084
2085         return ERROR_OK;
2086 }
2087
2088 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2089 {
2090         uint32_t status, upper4;
2091
2092         if (dfsr & (1 << 9)) {
2093                 /* LPAE format. */
2094                 status = dfsr & 0x3f;
2095                 upper4 = status >> 2;
2096                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2097                         return ERROR_TARGET_TRANSLATION_FAULT;
2098                 else if (status == 33)
2099                         return ERROR_TARGET_UNALIGNED_ACCESS;
2100                 else
2101                         return ERROR_TARGET_DATA_ABORT;
2102         } else {
2103                 /* Normal format. */
2104                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2105                 if (status == 1)
2106                         return ERROR_TARGET_UNALIGNED_ACCESS;
2107                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2108                                 status == 9 || status == 11 || status == 13 || status == 15)
2109                         return ERROR_TARGET_TRANSLATION_FAULT;
2110                 else
2111                         return ERROR_TARGET_DATA_ABORT;
2112         }
2113 }
2114
2115 static int cortex_a_write_cpu_memory_slow(struct target *target,
2116         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2117 {
2118         /* Writes count objects of size size from *buffer. Old value of DSCR must
2119          * be in *dscr; updated to new value. This is slow because it works for
2120          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2121          * the address is aligned, cortex_a_write_cpu_memory_fast should be
2122          * preferred.
2123          * Preconditions:
2124          * - Address is in R0.
2125          * - R0 is marked dirty.
2126          */
2127         struct armv7a_common *armv7a = target_to_armv7a(target);
2128         struct arm *arm = &armv7a->arm;
2129         int retval;
2130
2131         /* Mark register R1 as dirty, to use for transferring data. */
2132         arm_reg_current(arm, 1)->dirty = true;
2133
2134         /* Switch to non-blocking mode if not already in that mode. */
2135         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2136         if (retval != ERROR_OK)
2137                 return retval;
2138
2139         /* Go through the objects. */
2140         while (count) {
2141                 /* Write the value to store into DTRRX. */
2142                 uint32_t data, opcode;
2143                 if (size == 1)
2144                         data = *buffer;
2145                 else if (size == 2)
2146                         data = target_buffer_get_u16(target, buffer);
2147                 else
2148                         data = target_buffer_get_u32(target, buffer);
2149                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2150                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2151                 if (retval != ERROR_OK)
2152                         return retval;
2153
2154                 /* Transfer the value from DTRRX to R1. */
2155                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2156                 if (retval != ERROR_OK)
2157                         return retval;
2158
2159                 /* Write the value transferred to R1 into memory. */
2160                 if (size == 1)
2161                         opcode = ARMV4_5_STRB_IP(1, 0);
2162                 else if (size == 2)
2163                         opcode = ARMV4_5_STRH_IP(1, 0);
2164                 else
2165                         opcode = ARMV4_5_STRW_IP(1, 0);
2166                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2167                 if (retval != ERROR_OK)
2168                         return retval;
2169
2170                 /* Check for faults and return early. */
2171                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2172                         return ERROR_OK; /* A data fault is not considered a system failure. */
2173
2174                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2175                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2176                  * must also check RXfull_l). Most of the time this will be free
2177                  * because RXfull_l will be cleared immediately and cached in dscr. */
2178                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2179                 if (retval != ERROR_OK)
2180                         return retval;
2181
2182                 /* Advance. */
2183                 buffer += size;
2184                 --count;
2185         }
2186
2187         return ERROR_OK;
2188 }
2189
2190 static int cortex_a_write_cpu_memory_fast(struct target *target,
2191         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2192 {
2193         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2194          * in *dscr; updated to new value. This is fast but only works for
2195          * word-sized objects at aligned addresses.
2196          * Preconditions:
2197          * - Address is in R0 and must be a multiple of 4.
2198          * - R0 is marked dirty.
2199          */
2200         struct armv7a_common *armv7a = target_to_armv7a(target);
2201         int retval;
2202
2203         /* Switch to fast mode if not already in that mode. */
2204         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2205         if (retval != ERROR_OK)
2206                 return retval;
2207
2208         /* Latch STC instruction. */
2209         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2210                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2211         if (retval != ERROR_OK)
2212                 return retval;
2213
2214         /* Transfer all the data and issue all the instructions. */
2215         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2216                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2217 }
2218
2219 static int cortex_a_write_cpu_memory(struct target *target,
2220         uint32_t address, uint32_t size,
2221         uint32_t count, const uint8_t *buffer)
2222 {
2223         /* Write memory through the CPU. */
2224         int retval, final_retval;
2225         struct armv7a_common *armv7a = target_to_armv7a(target);
2226         struct arm *arm = &armv7a->arm;
2227         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2228
2229         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2230                           address, size, count);
2231         if (target->state != TARGET_HALTED) {
2232                 LOG_WARNING("target not halted");
2233                 return ERROR_TARGET_NOT_HALTED;
2234         }
2235
2236         if (!count)
2237                 return ERROR_OK;
2238
2239         /* Clear any abort. */
2240         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2241                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2242         if (retval != ERROR_OK)
2243                 return retval;
2244
2245         /* Read DSCR. */
2246         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2247                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2248         if (retval != ERROR_OK)
2249                 return retval;
2250
2251         /* Switch to non-blocking mode if not already in that mode. */
2252         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2253         if (retval != ERROR_OK)
2254                 goto out;
2255
2256         /* Mark R0 as dirty. */
2257         arm_reg_current(arm, 0)->dirty = true;
2258
2259         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2260         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2261         if (retval != ERROR_OK)
2262                 goto out;
2263
2264         /* Get the memory address into R0. */
2265         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2266                         armv7a->debug_base + CPUDBG_DTRRX, address);
2267         if (retval != ERROR_OK)
2268                 goto out;
2269         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2270         if (retval != ERROR_OK)
2271                 goto out;
2272
2273         if (size == 4 && (address % 4) == 0) {
2274                 /* We are doing a word-aligned transfer, so use fast mode. */
2275                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2276         } else {
2277                 /* Use slow path. */
2278                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2279         }
2280
2281 out:
2282         final_retval = retval;
2283
2284         /* Switch to non-blocking mode if not already in that mode. */
2285         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2286         if (final_retval == ERROR_OK)
2287                 final_retval = retval;
2288
2289         /* Wait for last issued instruction to complete. */
2290         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2291         if (final_retval == ERROR_OK)
2292                 final_retval = retval;
2293
2294         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2295          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2296          * check RXfull_l). Most of the time this will be free because RXfull_l
2297          * will be cleared immediately and cached in dscr. However, don't do this
2298          * if there is fault, because then the instruction might not have completed
2299          * successfully. */
2300         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2301                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2302                 if (retval != ERROR_OK)
2303                         return retval;
2304         }
2305
2306         /* If there were any sticky abort flags, clear them. */
2307         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2308                 fault_dscr = dscr;
2309                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2310                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2311                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2312         } else {
2313                 fault_dscr = 0;
2314         }
2315
2316         /* Handle synchronous data faults. */
2317         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2318                 if (final_retval == ERROR_OK) {
2319                         /* Final return value will reflect cause of fault. */
2320                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2321                         if (retval == ERROR_OK) {
2322                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2323                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2324                         } else
2325                                 final_retval = retval;
2326                 }
2327                 /* Fault destroyed DFAR/DFSR; restore them. */
2328                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2329                 if (retval != ERROR_OK)
2330                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2331         }
2332
2333         /* Handle asynchronous data faults. */
2334         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2335                 if (final_retval == ERROR_OK)
2336                         /* No other error has been recorded so far, so keep this one. */
2337                         final_retval = ERROR_TARGET_DATA_ABORT;
2338         }
2339
2340         /* If the DCC is nonempty, clear it. */
2341         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2342                 uint32_t dummy;
2343                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2344                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2345                 if (final_retval == ERROR_OK)
2346                         final_retval = retval;
2347         }
2348         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2349                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2350                 if (final_retval == ERROR_OK)
2351                         final_retval = retval;
2352         }
2353
2354         /* Done. */
2355         return final_retval;
2356 }
2357
2358 static int cortex_a_read_cpu_memory_slow(struct target *target,
2359         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2360 {
2361         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2362          * in *dscr; updated to new value. This is slow because it works for
2363          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2364          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2365          * preferred.
2366          * Preconditions:
2367          * - Address is in R0.
2368          * - R0 is marked dirty.
2369          */
2370         struct armv7a_common *armv7a = target_to_armv7a(target);
2371         struct arm *arm = &armv7a->arm;
2372         int retval;
2373
2374         /* Mark register R1 as dirty, to use for transferring data. */
2375         arm_reg_current(arm, 1)->dirty = true;
2376
2377         /* Switch to non-blocking mode if not already in that mode. */
2378         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2379         if (retval != ERROR_OK)
2380                 return retval;
2381
2382         /* Go through the objects. */
2383         while (count) {
2384                 /* Issue a load of the appropriate size to R1. */
2385                 uint32_t opcode, data;
2386                 if (size == 1)
2387                         opcode = ARMV4_5_LDRB_IP(1, 0);
2388                 else if (size == 2)
2389                         opcode = ARMV4_5_LDRH_IP(1, 0);
2390                 else
2391                         opcode = ARMV4_5_LDRW_IP(1, 0);
2392                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2393                 if (retval != ERROR_OK)
2394                         return retval;
2395
2396                 /* Issue a write of R1 to DTRTX. */
2397                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2398                 if (retval != ERROR_OK)
2399                         return retval;
2400
2401                 /* Check for faults and return early. */
2402                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2403                         return ERROR_OK; /* A data fault is not considered a system failure. */
2404
2405                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2406                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2407                  * must also check TXfull_l). Most of the time this will be free
2408                  * because TXfull_l will be set immediately and cached in dscr. */
2409                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2410                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2411                 if (retval != ERROR_OK)
2412                         return retval;
2413
2414                 /* Read the value transferred to DTRTX into the buffer. */
2415                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2416                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2417                 if (retval != ERROR_OK)
2418                         return retval;
2419                 if (size == 1)
2420                         *buffer = (uint8_t) data;
2421                 else if (size == 2)
2422                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2423                 else
2424                         target_buffer_set_u32(target, buffer, data);
2425
2426                 /* Advance. */
2427                 buffer += size;
2428                 --count;
2429         }
2430
2431         return ERROR_OK;
2432 }
2433
2434 static int cortex_a_read_cpu_memory_fast(struct target *target,
2435         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2436 {
2437         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2438          * *dscr; updated to new value. This is fast but only works for word-sized
2439          * objects at aligned addresses.
2440          * Preconditions:
2441          * - Address is in R0 and must be a multiple of 4.
2442          * - R0 is marked dirty.
2443          */
2444         struct armv7a_common *armv7a = target_to_armv7a(target);
2445         uint32_t u32;
2446         int retval;
2447
2448         /* Switch to non-blocking mode if not already in that mode. */
2449         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2450         if (retval != ERROR_OK)
2451                 return retval;
2452
2453         /* Issue the LDC instruction via a write to ITR. */
2454         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2455         if (retval != ERROR_OK)
2456                 return retval;
2457
2458         count--;
2459
2460         if (count > 0) {
2461                 /* Switch to fast mode if not already in that mode. */
2462                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2463                 if (retval != ERROR_OK)
2464                         return retval;
2465
2466                 /* Latch LDC instruction. */
2467                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2468                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2469                 if (retval != ERROR_OK)
2470                         return retval;
2471
2472                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2473                  * mode rules, this blocks until the instruction finishes executing and
2474                  * then reissues the read instruction to read the next word from
2475                  * memory. The last read of DTRTX in this call reads the second-to-last
2476                  * word from memory and issues the read instruction for the last word.
2477                  */
2478                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2479                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2480                 if (retval != ERROR_OK)
2481                         return retval;
2482
2483                 /* Advance. */
2484                 buffer += count * 4;
2485         }
2486
2487         /* Wait for last issued instruction to complete. */
2488         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2489         if (retval != ERROR_OK)
2490                 return retval;
2491
2492         /* Switch to non-blocking mode if not already in that mode. */
2493         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2494         if (retval != ERROR_OK)
2495                 return retval;
2496
2497         /* Check for faults and return early. */
2498         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2499                 return ERROR_OK; /* A data fault is not considered a system failure. */
2500
2501         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2502          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2503          * check TXfull_l). Most of the time this will be free because TXfull_l
2504          * will be set immediately and cached in dscr. */
2505         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2506                         DSCR_DTRTX_FULL_LATCHED, dscr);
2507         if (retval != ERROR_OK)
2508                 return retval;
2509
2510         /* Read the value transferred to DTRTX into the buffer. This is the last
2511          * word. */
2512         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2513                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2514         if (retval != ERROR_OK)
2515                 return retval;
2516         target_buffer_set_u32(target, buffer, u32);
2517
2518         return ERROR_OK;
2519 }
2520
2521 static int cortex_a_read_cpu_memory(struct target *target,
2522         uint32_t address, uint32_t size,
2523         uint32_t count, uint8_t *buffer)
2524 {
2525         /* Read memory through the CPU. */
2526         int retval, final_retval;
2527         struct armv7a_common *armv7a = target_to_armv7a(target);
2528         struct arm *arm = &armv7a->arm;
2529         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2530
2531         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2532                           address, size, count);
2533         if (target->state != TARGET_HALTED) {
2534                 LOG_WARNING("target not halted");
2535                 return ERROR_TARGET_NOT_HALTED;
2536         }
2537
2538         if (!count)
2539                 return ERROR_OK;
2540
2541         /* Clear any abort. */
2542         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2543                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2544         if (retval != ERROR_OK)
2545                 return retval;
2546
2547         /* Read DSCR */
2548         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2549                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2550         if (retval != ERROR_OK)
2551                 return retval;
2552
2553         /* Switch to non-blocking mode if not already in that mode. */
2554         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2555         if (retval != ERROR_OK)
2556                 goto out;
2557
2558         /* Mark R0 as dirty. */
2559         arm_reg_current(arm, 0)->dirty = true;
2560
2561         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2562         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2563         if (retval != ERROR_OK)
2564                 goto out;
2565
2566         /* Get the memory address into R0. */
2567         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2568                         armv7a->debug_base + CPUDBG_DTRRX, address);
2569         if (retval != ERROR_OK)
2570                 goto out;
2571         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2572         if (retval != ERROR_OK)
2573                 goto out;
2574
2575         if (size == 4 && (address % 4) == 0) {
2576                 /* We are doing a word-aligned transfer, so use fast mode. */
2577                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2578         } else {
2579                 /* Use slow path. */
2580                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2581         }
2582
2583 out:
2584         final_retval = retval;
2585
2586         /* Switch to non-blocking mode if not already in that mode. */
2587         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2588         if (final_retval == ERROR_OK)
2589                 final_retval = retval;
2590
2591         /* Wait for last issued instruction to complete. */
2592         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2593         if (final_retval == ERROR_OK)
2594                 final_retval = retval;
2595
2596         /* If there were any sticky abort flags, clear them. */
2597         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2598                 fault_dscr = dscr;
2599                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2600                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2601                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2602         } else {
2603                 fault_dscr = 0;
2604         }
2605
2606         /* Handle synchronous data faults. */
2607         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2608                 if (final_retval == ERROR_OK) {
2609                         /* Final return value will reflect cause of fault. */
2610                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2611                         if (retval == ERROR_OK) {
2612                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2613                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2614                         } else
2615                                 final_retval = retval;
2616                 }
2617                 /* Fault destroyed DFAR/DFSR; restore them. */
2618                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2619                 if (retval != ERROR_OK)
2620                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2621         }
2622
2623         /* Handle asynchronous data faults. */
2624         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2625                 if (final_retval == ERROR_OK)
2626                         /* No other error has been recorded so far, so keep this one. */
2627                         final_retval = ERROR_TARGET_DATA_ABORT;
2628         }
2629
2630         /* If the DCC is nonempty, clear it. */
2631         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2632                 uint32_t dummy;
2633                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2634                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2635                 if (final_retval == ERROR_OK)
2636                         final_retval = retval;
2637         }
2638         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2639                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2640                 if (final_retval == ERROR_OK)
2641                         final_retval = retval;
2642         }
2643
2644         /* Done. */
2645         return final_retval;
2646 }
2647
2648
2649 /*
2650  * Cortex-A Memory access
2651  *
2652  * This is same Cortex-M3 but we must also use the correct
2653  * ap number for every access.
2654  */
2655
2656 static int cortex_a_read_phys_memory(struct target *target,
2657         target_addr_t address, uint32_t size,
2658         uint32_t count, uint8_t *buffer)
2659 {
2660         struct armv7a_common *armv7a = target_to_armv7a(target);
2661         struct adiv5_dap *swjdp = armv7a->arm.dap;
2662         uint8_t apsel = swjdp->apsel;
2663         int retval;
2664
2665         if (!count || !buffer)
2666                 return ERROR_COMMAND_SYNTAX_ERROR;
2667
2668         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2669                 address, size, count);
2670
2671         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2672                 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2673
2674         /* read memory through the CPU */
2675         cortex_a_prep_memaccess(target, 1);
2676         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2677         cortex_a_post_memaccess(target, 1);
2678
2679         return retval;
2680 }
2681
2682 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2683         uint32_t size, uint32_t count, uint8_t *buffer)
2684 {
2685         int retval;
2686
2687         /* cortex_a handles unaligned memory access */
2688         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2689                 address, size, count);
2690
2691         cortex_a_prep_memaccess(target, 0);
2692         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2693         cortex_a_post_memaccess(target, 0);
2694
2695         return retval;
2696 }
2697
2698 static int cortex_a_read_memory_ahb(struct target *target, target_addr_t address,
2699         uint32_t size, uint32_t count, uint8_t *buffer)
2700 {
2701         int mmu_enabled = 0;
2702         target_addr_t virt, phys;
2703         int retval;
2704         struct armv7a_common *armv7a = target_to_armv7a(target);
2705         struct adiv5_dap *swjdp = armv7a->arm.dap;
2706         uint8_t apsel = swjdp->apsel;
2707
2708         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2709                 return target_read_memory(target, address, size, count, buffer);
2710
2711         /* cortex_a handles unaligned memory access */
2712         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2713                 address, size, count);
2714
2715         /* determine if MMU was enabled on target stop */
2716         if (!armv7a->is_armv7r) {
2717                 retval = cortex_a_mmu(target, &mmu_enabled);
2718                 if (retval != ERROR_OK)
2719                         return retval;
2720         }
2721
2722         if (mmu_enabled) {
2723                 virt = address;
2724                 retval = cortex_a_virt2phys(target, virt, &phys);
2725                 if (retval != ERROR_OK)
2726                         return retval;
2727
2728                 LOG_DEBUG("Reading at virtual address. "
2729                           "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2730                           virt, phys);
2731                 address = phys;
2732         }
2733
2734         if (!count || !buffer)
2735                 return ERROR_COMMAND_SYNTAX_ERROR;
2736
2737         retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2738
2739         return retval;
2740 }
2741
2742 static int cortex_a_write_phys_memory(struct target *target,
2743         target_addr_t address, uint32_t size,
2744         uint32_t count, const uint8_t *buffer)
2745 {
2746         struct armv7a_common *armv7a = target_to_armv7a(target);
2747         struct adiv5_dap *swjdp = armv7a->arm.dap;
2748         uint8_t apsel = swjdp->apsel;
2749         int retval;
2750
2751         if (!count || !buffer)
2752                 return ERROR_COMMAND_SYNTAX_ERROR;
2753
2754         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2755                 address, size, count);
2756
2757         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2758                 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2759
2760         /* write memory through the CPU */
2761         cortex_a_prep_memaccess(target, 1);
2762         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2763         cortex_a_post_memaccess(target, 1);
2764
2765         return retval;
2766 }
2767
2768 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2769         uint32_t size, uint32_t count, const uint8_t *buffer)
2770 {
2771         int retval;
2772
2773         /* cortex_a handles unaligned memory access */
2774         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2775                 address, size, count);
2776
2777         /* memory writes bypass the caches, must flush before writing */
2778         armv7a_cache_auto_flush_on_write(target, address, size * count);
2779
2780         cortex_a_prep_memaccess(target, 0);
2781         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2782         cortex_a_post_memaccess(target, 0);
2783         return retval;
2784 }
2785
2786 static int cortex_a_write_memory_ahb(struct target *target, target_addr_t address,
2787         uint32_t size, uint32_t count, const uint8_t *buffer)
2788 {
2789         int mmu_enabled = 0;
2790         target_addr_t virt, phys;
2791         int retval;
2792         struct armv7a_common *armv7a = target_to_armv7a(target);
2793         struct adiv5_dap *swjdp = armv7a->arm.dap;
2794         uint8_t apsel = swjdp->apsel;
2795
2796         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2797                 return target_write_memory(target, address, size, count, buffer);
2798
2799         /* cortex_a handles unaligned memory access */
2800         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2801                 address, size, count);
2802
2803         /* determine if MMU was enabled on target stop */
2804         if (!armv7a->is_armv7r) {
2805                 retval = cortex_a_mmu(target, &mmu_enabled);
2806                 if (retval != ERROR_OK)
2807                         return retval;
2808         }
2809
2810         if (mmu_enabled) {
2811                 virt = address;
2812                 retval = cortex_a_virt2phys(target, virt, &phys);
2813                 if (retval != ERROR_OK)
2814                         return retval;
2815
2816                 LOG_DEBUG("Writing to virtual address. "
2817                           "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2818                           virt,
2819                           phys);
2820                 address = phys;
2821         }
2822
2823         if (!count || !buffer)
2824                 return ERROR_COMMAND_SYNTAX_ERROR;
2825
2826         retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2827
2828         return retval;
2829 }
2830
2831 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2832                                 uint32_t count, uint8_t *buffer)
2833 {
2834         uint32_t size;
2835
2836         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2837          * will have something to do with the size we leave to it. */
2838         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2839                 if (address & size) {
2840                         int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2841                         if (retval != ERROR_OK)
2842                                 return retval;
2843                         address += size;
2844                         count -= size;
2845                         buffer += size;
2846                 }
2847         }
2848
2849         /* Read the data with as large access size as possible. */
2850         for (; size > 0; size /= 2) {
2851                 uint32_t aligned = count - count % size;
2852                 if (aligned > 0) {
2853                         int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2854                         if (retval != ERROR_OK)
2855                                 return retval;
2856                         address += aligned;
2857                         count -= aligned;
2858                         buffer += aligned;
2859                 }
2860         }
2861
2862         return ERROR_OK;
2863 }
2864
2865 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2866                                  uint32_t count, const uint8_t *buffer)
2867 {
2868         uint32_t size;
2869
2870         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2871          * will have something to do with the size we leave to it. */
2872         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2873                 if (address & size) {
2874                         int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2875                         if (retval != ERROR_OK)
2876                                 return retval;
2877                         address += size;
2878                         count -= size;
2879                         buffer += size;
2880                 }
2881         }
2882
2883         /* Write the data with as large access size as possible. */
2884         for (; size > 0; size /= 2) {
2885                 uint32_t aligned = count - count % size;
2886                 if (aligned > 0) {
2887                         int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2888                         if (retval != ERROR_OK)
2889                                 return retval;
2890                         address += aligned;
2891                         count -= aligned;
2892                         buffer += aligned;
2893                 }
2894         }
2895
2896         return ERROR_OK;
2897 }
2898
2899 static int cortex_a_handle_target_request(void *priv)
2900 {
2901         struct target *target = priv;
2902         struct armv7a_common *armv7a = target_to_armv7a(target);
2903         int retval;
2904
2905         if (!target_was_examined(target))
2906                 return ERROR_OK;
2907         if (!target->dbg_msg_enabled)
2908                 return ERROR_OK;
2909
2910         if (target->state == TARGET_RUNNING) {
2911                 uint32_t request;
2912                 uint32_t dscr;
2913                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2914                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2915
2916                 /* check if we have data */
2917                 int64_t then = timeval_ms();
2918                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2919                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2920                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2921                         if (retval == ERROR_OK) {
2922                                 target_request(target, request);
2923                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2924                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2925                         }
2926                         if (timeval_ms() > then + 1000) {
2927                                 LOG_ERROR("Timeout waiting for dtr tx full");
2928                                 return ERROR_FAIL;
2929                         }
2930                 }
2931         }
2932
2933         return ERROR_OK;
2934 }
2935
2936 /*
2937  * Cortex-A target information and configuration
2938  */
2939
2940 static int cortex_a_examine_first(struct target *target)
2941 {
2942         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2943         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2944         struct adiv5_dap *swjdp = armv7a->arm.dap;
2945
2946         int i;
2947         int retval = ERROR_OK;
2948         uint32_t didr, cpuid, dbg_osreg;
2949
2950         retval = dap_dp_init(swjdp);
2951         if (retval != ERROR_OK) {
2952                 LOG_ERROR("Could not initialize the debug port");
2953                 return retval;
2954         }
2955
2956         /* Search for the APB-AP - it is needed for access to debug registers */
2957         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2958         if (retval != ERROR_OK) {
2959                 LOG_ERROR("Could not find APB-AP for debug access");
2960                 return retval;
2961         }
2962
2963         retval = mem_ap_init(armv7a->debug_ap);
2964         if (retval != ERROR_OK) {
2965                 LOG_ERROR("Could not initialize the APB-AP");
2966                 return retval;
2967         }
2968
2969         armv7a->debug_ap->memaccess_tck = 80;
2970
2971         /* Search for the AHB-AB.
2972          * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2973          * can access system memory. */
2974         armv7a->memory_ap_available = false;
2975         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2976         if (retval == ERROR_OK) {
2977                 retval = mem_ap_init(armv7a->memory_ap);
2978                 if (retval == ERROR_OK)
2979                         armv7a->memory_ap_available = true;
2980         }
2981         if (retval != ERROR_OK) {
2982                 /* AHB-AP not found or unavailable - use the CPU */
2983                 LOG_DEBUG("No AHB-AP available for memory access");
2984         }
2985
2986         if (!target->dbgbase_set) {
2987                 uint32_t dbgbase;
2988                 /* Get ROM Table base */
2989                 uint32_t apid;
2990                 int32_t coreidx = target->coreid;
2991                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2992                           target->cmd_name);
2993                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2994                 if (retval != ERROR_OK)
2995                         return retval;
2996                 /* Lookup 0x15 -- Processor DAP */
2997                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2998                                 &armv7a->debug_base, &coreidx);
2999                 if (retval != ERROR_OK) {
3000                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
3001                                   target->cmd_name);
3002                         return retval;
3003                 }
3004                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
3005                           target->coreid, armv7a->debug_base);
3006         } else
3007                 armv7a->debug_base = target->dbgbase;
3008
3009         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3010                         armv7a->debug_base + CPUDBG_DIDR, &didr);
3011         if (retval != ERROR_OK) {
3012                 LOG_DEBUG("Examine %s failed", "DIDR");
3013                 return retval;
3014         }
3015
3016         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3017                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3018         if (retval != ERROR_OK) {
3019                 LOG_DEBUG("Examine %s failed", "CPUID");
3020                 return retval;
3021         }
3022
3023         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3024         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3025
3026         cortex_a->didr = didr;
3027         cortex_a->cpuid = cpuid;
3028
3029         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3030                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3031         if (retval != ERROR_OK)
3032                 return retval;
3033         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
3034
3035         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3036                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3037                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3038                 return ERROR_TARGET_INIT_FAILED;
3039         }
3040
3041         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3042                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3043
3044         /* Read DBGOSLSR and check if OSLK is implemented */
3045         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3046                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3047         if (retval != ERROR_OK)
3048                 return retval;
3049         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3050
3051         /* check if OS Lock is implemented */
3052         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3053                 /* check if OS Lock is set */
3054                 if (dbg_osreg & OSLSR_OSLK) {
3055                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3056
3057                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3058                                                         armv7a->debug_base + CPUDBG_OSLAR,
3059                                                         0);
3060                         if (retval == ERROR_OK)
3061                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3062                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3063
3064                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3065                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3066                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3067                                                 target->coreid);
3068                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3069                                 return ERROR_TARGET_INIT_FAILED;
3070                         }
3071                 }
3072         }
3073
3074         armv7a->arm.core_type = ARM_MODE_MON;
3075
3076         /* Avoid recreating the registers cache */
3077         if (!target_was_examined(target)) {
3078                 retval = cortex_a_dpm_setup(cortex_a, didr);
3079                 if (retval != ERROR_OK)
3080                         return retval;
3081         }
3082
3083         /* Setup Breakpoint Register Pairs */
3084         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3085         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3086         cortex_a->brp_num_available = cortex_a->brp_num;
3087         free(cortex_a->brp_list);
3088         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3089 /*      cortex_a->brb_enabled = ????; */
3090         for (i = 0; i < cortex_a->brp_num; i++) {
3091                 cortex_a->brp_list[i].used = 0;
3092                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3093                         cortex_a->brp_list[i].type = BRP_NORMAL;
3094                 else
3095                         cortex_a->brp_list[i].type = BRP_CONTEXT;
3096                 cortex_a->brp_list[i].value = 0;
3097                 cortex_a->brp_list[i].control = 0;
3098                 cortex_a->brp_list[i].BRPn = i;
3099         }
3100
3101         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3102
3103         /* select debug_ap as default */
3104         swjdp->apsel = armv7a->debug_ap->ap_num;
3105
3106         target_set_examined(target);
3107         return ERROR_OK;
3108 }
3109
3110 static int cortex_a_examine(struct target *target)
3111 {
3112         int retval = ERROR_OK;
3113
3114         /* Reestablish communication after target reset */
3115         retval = cortex_a_examine_first(target);
3116
3117         /* Configure core debug access */
3118         if (retval == ERROR_OK)
3119                 retval = cortex_a_init_debug_access(target);
3120
3121         return retval;
3122 }
3123
3124 /*
3125  *      Cortex-A target creation and initialization
3126  */
3127
3128 static int cortex_a_init_target(struct command_context *cmd_ctx,
3129         struct target *target)
3130 {
3131         /* examine_first() does a bunch of this */
3132         arm_semihosting_init(target);
3133         return ERROR_OK;
3134 }
3135
3136 static int cortex_a_init_arch_info(struct target *target,
3137         struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3138 {
3139         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3140
3141         /* Setup struct cortex_a_common */
3142         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3143
3144         /*  tap has no dap initialized */
3145         if (!tap->dap) {
3146                 tap->dap = dap_init();
3147
3148                 /* Leave (only) generic DAP stuff for debugport_init() */
3149                 tap->dap->tap = tap;
3150         }
3151
3152         armv7a->arm.dap = tap->dap;
3153
3154         cortex_a->fast_reg_read = 0;
3155
3156         /* register arch-specific functions */
3157         armv7a->examine_debug_reason = NULL;
3158
3159         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3160
3161         armv7a->pre_restore_context = NULL;
3162
3163         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3164
3165
3166 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3167
3168         /* REVISIT v7a setup should be in a v7a-specific routine */
3169         armv7a_init_arch_info(target, armv7a);
3170         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3171
3172         return ERROR_OK;
3173 }
3174
3175 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3176 {
3177         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3178
3179         cortex_a->armv7a_common.is_armv7r = false;
3180
3181         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3182 }
3183
3184 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3185 {
3186         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3187
3188         cortex_a->armv7a_common.is_armv7r = true;
3189
3190         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3191 }
3192
3193 static void cortex_a_deinit_target(struct target *target)
3194 {
3195         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3196         struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3197
3198         free(cortex_a->brp_list);
3199         free(dpm->dbp);
3200         free(dpm->dwp);
3201         free(cortex_a);
3202 }
3203
3204 static int cortex_a_mmu(struct target *target, int *enabled)
3205 {
3206         struct armv7a_common *armv7a = target_to_armv7a(target);
3207
3208         if (target->state != TARGET_HALTED) {
3209                 LOG_ERROR("%s: target not halted", __func__);
3210                 return ERROR_TARGET_INVALID;
3211         }
3212
3213         if (armv7a->is_armv7r)
3214                 *enabled = 0;
3215         else
3216                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3217
3218         return ERROR_OK;
3219 }
3220
3221 static int cortex_a_virt2phys(struct target *target,
3222         target_addr_t virt, target_addr_t *phys)
3223 {
3224         int retval = ERROR_FAIL;
3225         struct armv7a_common *armv7a = target_to_armv7a(target);
3226         struct adiv5_dap *swjdp = armv7a->arm.dap;
3227         uint8_t apsel = swjdp->apsel;
3228         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3229                 uint32_t ret;
3230                 retval = armv7a_mmu_translate_va(target,
3231                                 virt, &ret);
3232                 if (retval != ERROR_OK)
3233                         goto done;
3234                 *phys = ret;
3235         } else {/*  use this method if armv7a->memory_ap not selected
3236                  *  mmu must be enable in order to get a correct translation */
3237                 retval = cortex_a_mmu_modify(target, 1);
3238                 if (retval != ERROR_OK)
3239                         goto done;
3240                 retval = armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3241                                                     (uint32_t *)phys, 1);
3242         }
3243 done:
3244         return retval;
3245 }
3246
3247 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3248 {
3249         struct target *target = get_current_target(CMD_CTX);
3250         struct armv7a_common *armv7a = target_to_armv7a(target);
3251
3252         return armv7a_handle_cache_info_command(CMD_CTX,
3253                         &armv7a->armv7a_mmu.armv7a_cache);
3254 }
3255
3256
3257 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3258 {
3259         struct target *target = get_current_target(CMD_CTX);
3260         if (!target_was_examined(target)) {
3261                 LOG_ERROR("target not examined yet");
3262                 return ERROR_FAIL;
3263         }
3264
3265         return cortex_a_init_debug_access(target);
3266 }
3267 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3268 {
3269         struct target *target = get_current_target(CMD_CTX);
3270         /* check target is an smp target */
3271         struct target_list *head;
3272         struct target *curr;
3273         head = target->head;
3274         target->smp = 0;
3275         if (head != (struct target_list *)NULL) {
3276                 while (head != (struct target_list *)NULL) {
3277                         curr = head->target;
3278                         curr->smp = 0;
3279                         head = head->next;
3280                 }
3281                 /*  fixes the target display to the debugger */
3282                 target->gdb_service->target = target;
3283         }
3284         return ERROR_OK;
3285 }
3286
3287 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3288 {
3289         struct target *target = get_current_target(CMD_CTX);
3290         struct target_list *head;
3291         struct target *curr;
3292         head = target->head;
3293         if (head != (struct target_list *)NULL) {
3294                 target->smp = 1;
3295                 while (head != (struct target_list *)NULL) {
3296                         curr = head->target;
3297                         curr->smp = 1;
3298                         head = head->next;
3299                 }
3300         }
3301         return ERROR_OK;
3302 }
3303
3304 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3305 {
3306         struct target *target = get_current_target(CMD_CTX);
3307         int retval = ERROR_OK;
3308         struct target_list *head;
3309         head = target->head;
3310         if (head != (struct target_list *)NULL) {
3311                 if (CMD_ARGC == 1) {
3312                         int coreid = 0;
3313                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3314                         if (ERROR_OK != retval)
3315                                 return retval;
3316                         target->gdb_service->core[1] = coreid;
3317
3318                 }
3319                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3320                         , target->gdb_service->core[1]);
3321         }
3322         return ERROR_OK;
3323 }
3324
3325 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3326 {
3327         struct target *target = get_current_target(CMD_CTX);
3328         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3329
3330         static const Jim_Nvp nvp_maskisr_modes[] = {
3331                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3332                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3333                 { .name = NULL, .value = -1 },
3334         };
3335         const Jim_Nvp *n;
3336
3337         if (CMD_ARGC > 0) {
3338                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3339                 if (n->name == NULL) {
3340                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3341                         return ERROR_COMMAND_SYNTAX_ERROR;
3342                 }
3343
3344                 cortex_a->isrmasking_mode = n->value;
3345         }
3346
3347         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3348         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3349
3350         return ERROR_OK;
3351 }
3352
3353 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3354 {
3355         struct target *target = get_current_target(CMD_CTX);
3356         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3357
3358         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3359                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3360                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3361                 { .name = NULL, .value = -1 },
3362         };
3363         const Jim_Nvp *n;
3364
3365         if (CMD_ARGC > 0) {
3366                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3367                 if (n->name == NULL)
3368                         return ERROR_COMMAND_SYNTAX_ERROR;
3369                 cortex_a->dacrfixup_mode = n->value;
3370
3371         }
3372
3373         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3374         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3375
3376         return ERROR_OK;
3377 }
3378
3379 static const struct command_registration cortex_a_exec_command_handlers[] = {
3380         {
3381                 .name = "cache_info",
3382                 .handler = cortex_a_handle_cache_info_command,
3383                 .mode = COMMAND_EXEC,
3384                 .help = "display information about target caches",
3385                 .usage = "",
3386         },
3387         {
3388                 .name = "dbginit",
3389                 .handler = cortex_a_handle_dbginit_command,
3390                 .mode = COMMAND_EXEC,
3391                 .help = "Initialize core debug",
3392                 .usage = "",
3393         },
3394         {   .name = "smp_off",
3395             .handler = cortex_a_handle_smp_off_command,
3396             .mode = COMMAND_EXEC,
3397             .help = "Stop smp handling",
3398             .usage = "",},
3399         {
3400                 .name = "smp_on",
3401                 .handler = cortex_a_handle_smp_on_command,
3402                 .mode = COMMAND_EXEC,
3403                 .help = "Restart smp handling",
3404                 .usage = "",
3405         },
3406         {
3407                 .name = "smp_gdb",
3408                 .handler = cortex_a_handle_smp_gdb_command,
3409                 .mode = COMMAND_EXEC,
3410                 .help = "display/fix current core played to gdb",
3411                 .usage = "",
3412         },
3413         {
3414                 .name = "maskisr",
3415                 .handler = handle_cortex_a_mask_interrupts_command,
3416                 .mode = COMMAND_ANY,
3417                 .help = "mask cortex_a interrupts",
3418                 .usage = "['on'|'off']",
3419         },
3420         {
3421                 .name = "dacrfixup",
3422                 .handler = handle_cortex_a_dacrfixup_command,
3423                 .mode = COMMAND_EXEC,
3424                 .help = "set domain access control (DACR) to all-manager "
3425                         "on memory access",
3426                 .usage = "['on'|'off']",
3427         },
3428
3429         COMMAND_REGISTRATION_DONE
3430 };
3431 static const struct command_registration cortex_a_command_handlers[] = {
3432         {
3433                 .chain = arm_command_handlers,
3434         },
3435         {
3436                 .chain = armv7a_command_handlers,
3437         },
3438         {
3439                 .name = "cortex_a",
3440                 .mode = COMMAND_ANY,
3441                 .help = "Cortex-A command group",
3442                 .usage = "",
3443                 .chain = cortex_a_exec_command_handlers,
3444         },
3445         COMMAND_REGISTRATION_DONE
3446 };
3447
3448 struct target_type cortexa_target = {
3449         .name = "cortex_a",
3450         .deprecated_name = "cortex_a8",
3451
3452         .poll = cortex_a_poll,
3453         .arch_state = armv7a_arch_state,
3454
3455         .halt = cortex_a_halt,
3456         .resume = cortex_a_resume,
3457         .step = cortex_a_step,
3458
3459         .assert_reset = cortex_a_assert_reset,
3460         .deassert_reset = cortex_a_deassert_reset,
3461
3462         /* REVISIT allow exporting VFP3 registers ... */
3463         .get_gdb_reg_list = arm_get_gdb_reg_list,
3464
3465         .read_memory = cortex_a_read_memory,
3466         .write_memory = cortex_a_write_memory,
3467
3468         .read_buffer = cortex_a_read_buffer,
3469         .write_buffer = cortex_a_write_buffer,
3470
3471         .checksum_memory = arm_checksum_memory,
3472         .blank_check_memory = arm_blank_check_memory,
3473
3474         .run_algorithm = armv4_5_run_algorithm,
3475
3476         .add_breakpoint = cortex_a_add_breakpoint,
3477         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3478         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3479         .remove_breakpoint = cortex_a_remove_breakpoint,
3480         .add_watchpoint = NULL,
3481         .remove_watchpoint = NULL,
3482
3483         .commands = cortex_a_command_handlers,
3484         .target_create = cortex_a_target_create,
3485         .init_target = cortex_a_init_target,
3486         .examine = cortex_a_examine,
3487         .deinit_target = cortex_a_deinit_target,
3488
3489         .read_phys_memory = cortex_a_read_phys_memory,
3490         .write_phys_memory = cortex_a_write_phys_memory,
3491         .mmu = cortex_a_mmu,
3492         .virt2phys = cortex_a_virt2phys,
3493 };
3494
3495 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3496         {
3497                 .name = "cache_info",
3498                 .handler = cortex_a_handle_cache_info_command,
3499                 .mode = COMMAND_EXEC,
3500                 .help = "display information about target caches",
3501                 .usage = "",
3502         },
3503         {
3504                 .name = "dbginit",
3505                 .handler = cortex_a_handle_dbginit_command,
3506                 .mode = COMMAND_EXEC,
3507                 .help = "Initialize core debug",
3508                 .usage = "",
3509         },
3510         {
3511                 .name = "maskisr",
3512                 .handler = handle_cortex_a_mask_interrupts_command,
3513                 .mode = COMMAND_EXEC,
3514                 .help = "mask cortex_r4 interrupts",
3515                 .usage = "['on'|'off']",
3516         },
3517
3518         COMMAND_REGISTRATION_DONE
3519 };
3520 static const struct command_registration cortex_r4_command_handlers[] = {
3521         {
3522                 .chain = arm_command_handlers,
3523         },
3524         {
3525                 .chain = armv7a_command_handlers,
3526         },
3527         {
3528                 .name = "cortex_r4",
3529                 .mode = COMMAND_ANY,
3530                 .help = "Cortex-R4 command group",
3531                 .usage = "",
3532                 .chain = cortex_r4_exec_command_handlers,
3533         },
3534         COMMAND_REGISTRATION_DONE
3535 };
3536
3537 struct target_type cortexr4_target = {
3538         .name = "cortex_r4",
3539
3540         .poll = cortex_a_poll,
3541         .arch_state = armv7a_arch_state,
3542
3543         .halt = cortex_a_halt,
3544         .resume = cortex_a_resume,
3545         .step = cortex_a_step,
3546
3547         .assert_reset = cortex_a_assert_reset,
3548         .deassert_reset = cortex_a_deassert_reset,
3549
3550         /* REVISIT allow exporting VFP3 registers ... */
3551         .get_gdb_reg_list = arm_get_gdb_reg_list,
3552
3553         .read_memory = cortex_a_read_phys_memory,
3554         .write_memory = cortex_a_write_phys_memory,
3555
3556         .checksum_memory = arm_checksum_memory,
3557         .blank_check_memory = arm_blank_check_memory,
3558
3559         .run_algorithm = armv4_5_run_algorithm,
3560
3561         .add_breakpoint = cortex_a_add_breakpoint,
3562         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3563         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3564         .remove_breakpoint = cortex_a_remove_breakpoint,
3565         .add_watchpoint = NULL,
3566         .remove_watchpoint = NULL,
3567
3568         .commands = cortex_r4_command_handlers,
3569         .target_create = cortex_r4_target_create,
3570         .init_target = cortex_a_init_target,
3571         .examine = cortex_a_examine,
3572         .deinit_target = cortex_a_deinit_target,
3573 };