]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
141b4397c0ff3b4858cf0e16e7fb04cd14f93b80
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70 int cortex_a8_assert_reset(target_t *target);
71 int cortex_a8_deassert_reset(target_t *target);
72
73 static int cortex_a8_mrc(target_t *target, int cpnum, uint32_t op1,
74                 uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value);
75 static int cortex_a8_mcr(target_t *target, int cpnum, uint32_t op1,
76                 uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value);
77
78 target_type_t cortexa8_target =
79 {
80         .name = "cortex_a8",
81
82         .poll = cortex_a8_poll,
83         .arch_state = armv7a_arch_state,
84
85         .target_request_data = NULL,
86
87         .halt = cortex_a8_halt,
88         .resume = cortex_a8_resume,
89         .step = cortex_a8_step,
90
91         .assert_reset = cortex_a8_assert_reset,
92         .deassert_reset = cortex_a8_deassert_reset,
93         .soft_reset_halt = NULL,
94
95         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
96
97         .read_memory = cortex_a8_read_memory,
98         .write_memory = cortex_a8_write_memory,
99         .bulk_write_memory = cortex_a8_bulk_write_memory,
100         .checksum_memory = arm7_9_checksum_memory,
101         .blank_check_memory = arm7_9_blank_check_memory,
102
103         .run_algorithm = armv4_5_run_algorithm,
104
105         .add_breakpoint = cortex_a8_add_breakpoint,
106         .remove_breakpoint = cortex_a8_remove_breakpoint,
107         .add_watchpoint = NULL,
108         .remove_watchpoint = NULL,
109
110         .register_commands = cortex_a8_register_commands,
111         .target_create = cortex_a8_target_create,
112         .init_target = cortex_a8_init_target,
113         .examine = cortex_a8_examine,
114         .mrc = cortex_a8_mrc,
115         .mcr = cortex_a8_mcr,
116 };
117
118 /*
119  * FIXME do topology discovery using the ROM; don't
120  * assume this is an OMAP3.
121  */
122 #define swjdp_memoryap 0
123 #define swjdp_debugap 1
124 #define OMAP3530_DEBUG_BASE 0x54011000
125
126 /*
127  * Cortex-A8 Basic debug access, very low level assumes state is saved
128  */
129 int cortex_a8_init_debug_access(target_t *target)
130 {
131         struct armv7a_common_s *armv7a = target_to_armv7a(target);
132         swjdp_common_t *swjdp = &armv7a->swjdp_info;
133
134         int retval;
135         uint32_t dummy;
136
137         LOG_DEBUG(" ");
138
139         /* Unlocking the debug registers for modification */
140         /* The debugport might be uninitialised so try twice */
141         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
142         if (retval != ERROR_OK)
143                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
144         /* Clear Sticky Power Down status Bit in PRSR to enable access to
145            the registers in the Core Power Domain */
146         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
147         /* Enabling of instruction execution in debug mode is done in debug_entry code */
148
149         /* Resync breakpoint registers */
150
151         /* Since this is likley called from init or reset, update targtet state information*/
152         cortex_a8_poll(target);
153
154         return retval;
155 }
156
157 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
158 {
159         uint32_t dscr;
160         int retval;
161         struct armv7a_common_s *armv7a = target_to_armv7a(target);
162         swjdp_common_t *swjdp = &armv7a->swjdp_info;
163
164         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
165         do
166         {
167                 retval = mem_ap_read_atomic_u32(swjdp,
168                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
169                 if (retval != ERROR_OK)
170                 {
171                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
172                         return retval;
173                 }
174         }
175         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
176
177         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
178
179         do
180         {
181                 retval = mem_ap_read_atomic_u32(swjdp,
182                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
183                 if (retval != ERROR_OK)
184                 {
185                         LOG_ERROR("Could not read DSCR register");
186                         return retval;
187                 }
188         }
189         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
190
191         return retval;
192 }
193
194 /**************************************************************************
195 Read core register with very few exec_opcode, fast but needs work_area.
196 This can cause problems with MMU active.
197 **************************************************************************/
198 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
199                 uint32_t * regfile)
200 {
201         int retval = ERROR_OK;
202         struct armv7a_common_s *armv7a = target_to_armv7a(target);
203         swjdp_common_t *swjdp = &armv7a->swjdp_info;
204
205         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
206         cortex_a8_dap_write_coreregister_u32(target, address, 0);
207         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
208         dap_ap_select(swjdp, swjdp_memoryap);
209         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
210         dap_ap_select(swjdp, swjdp_debugap);
211
212         return retval;
213 }
214
215 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
216                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
217 {
218         int retval;
219         struct armv7a_common_s *armv7a = target_to_armv7a(target);
220         swjdp_common_t *swjdp = &armv7a->swjdp_info;
221
222         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
223         /* Move R0 to DTRTX */
224         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
225
226         /* Read DCCTX */
227         retval = mem_ap_read_atomic_u32(swjdp,
228                         armv7a->debug_base + CPUDBG_DTRTX, value);
229
230         return retval;
231 }
232
233 int cortex_a8_write_cp(target_t *target, uint32_t value,
234         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
235 {
236         int retval;
237         uint32_t dscr;
238         struct armv7a_common_s *armv7a = target_to_armv7a(target);
239         swjdp_common_t *swjdp = &armv7a->swjdp_info;
240
241         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
242
243         /* Check that DCCRX is not full */
244         retval = mem_ap_read_atomic_u32(swjdp,
245                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
246         if (dscr & (1 << DSCR_DTR_RX_FULL))
247         {
248                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
249                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
250                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
251         }
252
253         retval = mem_ap_write_u32(swjdp,
254                         armv7a->debug_base + CPUDBG_DTRRX, value);
255         /* Move DTRRX to r0 */
256         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
257
258         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
259         return retval;
260 }
261
262 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
263                 uint32_t CRn, uint32_t CRm, uint32_t *value)
264 {
265         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
266 }
267
268 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
269                 uint32_t CRn, uint32_t CRm, uint32_t value)
270 {
271         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
272 }
273
274 static int cortex_a8_mrc(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
275 {
276         if (cpnum!=15)
277         {
278                 LOG_ERROR("Only cp15 is supported");
279                 return ERROR_FAIL;
280         }
281         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
282 }
283
284 static int cortex_a8_mcr(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
285 {
286         if (cpnum!=15)
287         {
288                 LOG_ERROR("Only cp15 is supported");
289                 return ERROR_FAIL;
290         }
291         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
292 }
293
294
295
296 int cortex_a8_dap_read_coreregister_u32(target_t *target,
297                 uint32_t *value, int regnum)
298 {
299         int retval = ERROR_OK;
300         uint8_t reg = regnum&0xFF;
301         uint32_t dscr;
302         struct armv7a_common_s *armv7a = target_to_armv7a(target);
303         swjdp_common_t *swjdp = &armv7a->swjdp_info;
304
305         if (reg > 16)
306                 return retval;
307
308         if (reg < 15)
309         {
310                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
311                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
312         }
313         else if (reg == 15)
314         {
315                 cortex_a8_exec_opcode(target, 0xE1A0000F);
316                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
317         }
318         else if (reg == 16)
319         {
320                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
321                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
322         }
323
324         /* Read DTRRTX */
325         do
326         {
327                 retval = mem_ap_read_atomic_u32(swjdp,
328                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
329         }
330         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
331
332         retval = mem_ap_read_atomic_u32(swjdp,
333                         armv7a->debug_base + CPUDBG_DTRTX, value);
334
335         return retval;
336 }
337
338 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
339 {
340         int retval = ERROR_OK;
341         uint8_t Rd = regnum&0xFF;
342         uint32_t dscr;
343         struct armv7a_common_s *armv7a = target_to_armv7a(target);
344         swjdp_common_t *swjdp = &armv7a->swjdp_info;
345
346         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
347
348         /* Check that DCCRX is not full */
349         retval = mem_ap_read_atomic_u32(swjdp,
350                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
351         if (dscr & (1 << DSCR_DTR_RX_FULL))
352         {
353                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
354                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
355                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
356         }
357
358         if (Rd > 16)
359                 return retval;
360
361         /* Write to DCCRX */
362         retval = mem_ap_write_u32(swjdp,
363                         armv7a->debug_base + CPUDBG_DTRRX, value);
364
365         if (Rd < 15)
366         {
367                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
368                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
369         }
370         else if (Rd == 15)
371         {
372                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
373                 cortex_a8_exec_opcode(target, 0xE1A0F000);
374         }
375         else if (Rd == 16)
376         {
377                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
378                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
379                 /* Execute a PrefetchFlush instruction through the ITR. */
380                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
381         }
382
383         return retval;
384 }
385
386 /* Write to memory mapped registers directly with no cache or mmu handling */
387 int cortex_a8_dap_write_memap_register_u32(target_t *target, uint32_t address, uint32_t value)
388 {
389         int retval;
390         struct armv7a_common_s *armv7a = target_to_armv7a(target);
391         swjdp_common_t *swjdp = &armv7a->swjdp_info;
392
393         retval = mem_ap_write_atomic_u32(swjdp, address, value);
394
395         return retval;
396 }
397
398 /*
399  * Cortex-A8 Run control
400  */
401
402 int cortex_a8_poll(target_t *target)
403 {
404         int retval = ERROR_OK;
405         uint32_t dscr;
406         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
407         struct armv7a_common_s *armv7a = &cortex_a8->armv7a_common;
408         swjdp_common_t *swjdp = &armv7a->swjdp_info;
409         enum target_state prev_target_state = target->state;
410         uint8_t saved_apsel = dap_ap_get_select(swjdp);
411
412         dap_ap_select(swjdp, swjdp_debugap);
413         retval = mem_ap_read_atomic_u32(swjdp,
414                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
415         if (retval != ERROR_OK)
416         {
417                 dap_ap_select(swjdp, saved_apsel);
418                 return retval;
419         }
420         cortex_a8->cpudbg_dscr = dscr;
421
422         if ((dscr & 0x3) == 0x3)
423         {
424                 if (prev_target_state != TARGET_HALTED)
425                 {
426                         /* We have a halting debug event */
427                         LOG_DEBUG("Target halted");
428                         target->state = TARGET_HALTED;
429                         if ((prev_target_state == TARGET_RUNNING)
430                                         || (prev_target_state == TARGET_RESET))
431                         {
432                                 retval = cortex_a8_debug_entry(target);
433                                 if (retval != ERROR_OK)
434                                         return retval;
435
436                                 target_call_event_callbacks(target,
437                                                 TARGET_EVENT_HALTED);
438                         }
439                         if (prev_target_state == TARGET_DEBUG_RUNNING)
440                         {
441                                 LOG_DEBUG(" ");
442
443                                 retval = cortex_a8_debug_entry(target);
444                                 if (retval != ERROR_OK)
445                                         return retval;
446
447                                 target_call_event_callbacks(target,
448                                                 TARGET_EVENT_DEBUG_HALTED);
449                         }
450                 }
451         }
452         else if ((dscr & 0x3) == 0x2)
453         {
454                 target->state = TARGET_RUNNING;
455         }
456         else
457         {
458                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
459                 target->state = TARGET_UNKNOWN;
460         }
461
462         dap_ap_select(swjdp, saved_apsel);
463
464         return retval;
465 }
466
467 int cortex_a8_halt(target_t *target)
468 {
469         int retval = ERROR_OK;
470         uint32_t dscr;
471         struct armv7a_common_s *armv7a = target_to_armv7a(target);
472         swjdp_common_t *swjdp = &armv7a->swjdp_info;
473         uint8_t saved_apsel = dap_ap_get_select(swjdp);
474         dap_ap_select(swjdp, swjdp_debugap);
475
476         /*
477          * Tell the core to be halted by writing DRCR with 0x1
478          * and then wait for the core to be halted.
479          */
480         retval = mem_ap_write_atomic_u32(swjdp,
481                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
482
483         /*
484          * enter halting debug mode
485          */
486         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
487         retval = mem_ap_write_atomic_u32(swjdp,
488                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
489
490         if (retval != ERROR_OK)
491                 goto out;
492
493         do {
494                 mem_ap_read_atomic_u32(swjdp,
495                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
496         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
497
498         target->debug_reason = DBG_REASON_DBGRQ;
499
500 out:
501         dap_ap_select(swjdp, saved_apsel);
502         return retval;
503 }
504
505 int cortex_a8_resume(struct target_s *target, int current,
506                 uint32_t address, int handle_breakpoints, int debug_execution)
507 {
508         struct armv7a_common_s *armv7a = target_to_armv7a(target);
509         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
510         swjdp_common_t *swjdp = &armv7a->swjdp_info;
511
512 //      breakpoint_t *breakpoint = NULL;
513         uint32_t resume_pc, dscr;
514
515         uint8_t saved_apsel = dap_ap_get_select(swjdp);
516         dap_ap_select(swjdp, swjdp_debugap);
517
518         if (!debug_execution)
519         {
520                 target_free_all_working_areas(target);
521 //              cortex_m3_enable_breakpoints(target);
522 //              cortex_m3_enable_watchpoints(target);
523         }
524
525 #if 0
526         if (debug_execution)
527         {
528                 /* Disable interrupts */
529                 /* We disable interrupts in the PRIMASK register instead of
530                  * masking with C_MASKINTS,
531                  * This is probably the same issue as Cortex-M3 Errata 377493:
532                  * C_MASKINTS in parallel with disabled interrupts can cause
533                  * local faults to not be taken. */
534                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
535                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
536                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
537
538                 /* Make sure we are in Thumb mode */
539                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
540                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
541                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
542                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
543         }
544 #endif
545
546         /* current = 1: continue on current pc, otherwise continue at <address> */
547         resume_pc = buf_get_u32(
548                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
549                                 armv4_5->core_mode, 15).value,
550                         0, 32);
551         if (!current)
552                 resume_pc = address;
553
554         /* Make sure that the Armv7 gdb thumb fixups does not
555          * kill the return address
556          */
557         if (armv7a->core_state == ARMV7A_STATE_ARM)
558         {
559                 resume_pc &= 0xFFFFFFFC;
560         }
561         /* When the return address is loaded into PC
562          * bit 0 must be 1 to stay in Thumb state
563          */
564         if (armv7a->core_state == ARMV7A_STATE_THUMB)
565         {
566                 resume_pc |= 0x1;
567         }
568         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
569         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
570                                 armv4_5->core_mode, 15).value,
571                         0, 32, resume_pc);
572         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
573                         armv4_5->core_mode, 15).dirty = 1;
574         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
575                         armv4_5->core_mode, 15).valid = 1;
576
577         cortex_a8_restore_context(target);
578 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
579 #if 0
580         /* the front-end may request us not to handle breakpoints */
581         if (handle_breakpoints)
582         {
583                 /* Single step past breakpoint at current address */
584                 if ((breakpoint = breakpoint_find(target, resume_pc)))
585                 {
586                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
587                         cortex_m3_unset_breakpoint(target, breakpoint);
588                         cortex_m3_single_step_core(target);
589                         cortex_m3_set_breakpoint(target, breakpoint);
590                 }
591         }
592
593 #endif
594         /* Restart core and wait for it to be started */
595         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
596
597         do {
598                 mem_ap_read_atomic_u32(swjdp,
599                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
600         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
601
602         target->debug_reason = DBG_REASON_NOTHALTED;
603         target->state = TARGET_RUNNING;
604
605         /* registers are now invalid */
606         armv4_5_invalidate_core_regs(target);
607
608         if (!debug_execution)
609         {
610                 target->state = TARGET_RUNNING;
611                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
612                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
613         }
614         else
615         {
616                 target->state = TARGET_DEBUG_RUNNING;
617                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
618                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
619         }
620
621         dap_ap_select(swjdp, saved_apsel);
622
623         return ERROR_OK;
624 }
625
626 int cortex_a8_debug_entry(target_t *target)
627 {
628         int i;
629         uint32_t regfile[16], pc, cpsr, dscr;
630         int retval = ERROR_OK;
631         working_area_t *regfile_working_area = NULL;
632         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
633         struct armv7a_common_s *armv7a = target_to_armv7a(target);
634         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
635         swjdp_common_t *swjdp = &armv7a->swjdp_info;
636
637         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
638
639         /* Enable the ITR execution once we are in debug mode */
640         mem_ap_read_atomic_u32(swjdp,
641                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
642         dscr |= (1 << DSCR_EXT_INT_EN);
643         retval = mem_ap_write_atomic_u32(swjdp,
644                         armv7a->debug_base + CPUDBG_DSCR, dscr);
645
646         /* Examine debug reason */
647         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
648         {
649                 case 0:
650                 case 4:
651                         target->debug_reason = DBG_REASON_DBGRQ;
652                         break;
653                 case 1:
654                 case 3:
655                         target->debug_reason = DBG_REASON_BREAKPOINT;
656                         break;
657                 case 10:
658                         target->debug_reason = DBG_REASON_WATCHPOINT;
659                         break;
660                 default:
661                         target->debug_reason = DBG_REASON_UNDEFINED;
662                         break;
663         }
664
665         /* Examine target state and mode */
666         if (cortex_a8->fast_reg_read)
667                 target_alloc_working_area(target, 64, &regfile_working_area);
668
669         /* First load register acessible through core debug port*/
670         if (!regfile_working_area)
671         {
672                 for (i = 0; i <= 15; i++)
673                         cortex_a8_dap_read_coreregister_u32(target,
674                                         &regfile[i], i);
675         }
676         else
677         {
678                 dap_ap_select(swjdp, swjdp_memoryap);
679                 cortex_a8_read_regs_through_mem(target,
680                                 regfile_working_area->address, regfile);
681                 dap_ap_select(swjdp, swjdp_memoryap);
682                 target_free_working_area(target, regfile_working_area);
683         }
684
685         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
686         pc = regfile[15];
687         dap_ap_select(swjdp, swjdp_debugap);
688         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
689
690         armv4_5->core_mode = cpsr & 0x1F;
691         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
692
693         for (i = 0; i <= ARM_PC; i++)
694         {
695                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
696                                         armv4_5->core_mode, i).value,
697                                 0, 32, regfile[i]);
698                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
699                                 armv4_5->core_mode, i).valid = 1;
700                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
701                                 armv4_5->core_mode, i).dirty = 0;
702         }
703         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
704                                 armv4_5->core_mode, 16).value,
705                         0, 32, cpsr);
706         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
707         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
708
709         /* Fixup PC Resume Address */
710         if (armv7a->core_state == ARMV7A_STATE_THUMB)
711         {
712                 // T bit set for Thumb or ThumbEE state
713                 regfile[ARM_PC] -= 4;
714         }
715         else
716         {
717                 // ARM state
718                 regfile[ARM_PC] -= 8;
719         }
720         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
721                                 armv4_5->core_mode, ARM_PC).value,
722                         0, 32, regfile[ARM_PC]);
723
724         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
725                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
726                                 armv4_5->core_mode, 0).valid;
727         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
728                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
729                                 armv4_5->core_mode, 15).valid;
730
731 #if 0
732 /* TODO, Move this */
733         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
734         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
735         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
736
737         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
738         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
739
740         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
741         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
742 #endif
743
744         /* Are we in an exception handler */
745 //      armv4_5->exception_number = 0;
746         if (armv7a->post_debug_entry)
747                 armv7a->post_debug_entry(target);
748
749
750
751         return retval;
752
753 }
754
755 void cortex_a8_post_debug_entry(target_t *target)
756 {
757         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
758         struct armv7a_common_s *armv7a = &cortex_a8->armv7a_common;
759
760 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
761         /* examine cp15 control reg */
762         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
763         jtag_execute_queue();
764         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
765
766         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
767         {
768                 uint32_t cache_type_reg;
769                 /* identify caches */
770                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
771                 jtag_execute_queue();
772                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
773                 armv4_5_identify_cache(cache_type_reg,
774                                 &armv7a->armv4_5_mmu.armv4_5_cache);
775         }
776
777         armv7a->armv4_5_mmu.mmu_enabled =
778                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
779         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
780                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
781         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
782                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
783
784
785 }
786
787 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
788                 int handle_breakpoints)
789 {
790         struct armv7a_common_s *armv7a = target_to_armv7a(target);
791         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
792         breakpoint_t *breakpoint = NULL;
793         breakpoint_t stepbreakpoint;
794
795         int timeout = 100;
796
797         if (target->state != TARGET_HALTED)
798         {
799                 LOG_WARNING("target not halted");
800                 return ERROR_TARGET_NOT_HALTED;
801         }
802
803         /* current = 1: continue on current pc, otherwise continue at <address> */
804         if (!current)
805         {
806                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
807                                         armv4_5->core_mode, ARM_PC).value,
808                                 0, 32, address);
809         }
810         else
811         {
812                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
813                                         armv4_5->core_mode, ARM_PC).value,
814                                 0, 32);
815         }
816
817         /* The front-end may request us not to handle breakpoints.
818          * But since Cortex-A8 uses breakpoint for single step,
819          * we MUST handle breakpoints.
820          */
821         handle_breakpoints = 1;
822         if (handle_breakpoints) {
823                 breakpoint = breakpoint_find(target,
824                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
825                                         armv4_5->core_mode, 15).value,
826                         0, 32));
827                 if (breakpoint)
828                         cortex_a8_unset_breakpoint(target, breakpoint);
829         }
830
831         /* Setup single step breakpoint */
832         stepbreakpoint.address = address;
833         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
834         stepbreakpoint.type = BKPT_HARD;
835         stepbreakpoint.set = 0;
836
837         /* Break on IVA mismatch */
838         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
839
840         target->debug_reason = DBG_REASON_SINGLESTEP;
841
842         cortex_a8_resume(target, 1, address, 0, 0);
843
844         while (target->state != TARGET_HALTED)
845         {
846                 cortex_a8_poll(target);
847                 if (--timeout == 0)
848                 {
849                         LOG_WARNING("timeout waiting for target halt");
850                         break;
851                 }
852         }
853
854         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
855         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
856
857         if (breakpoint)
858                 cortex_a8_set_breakpoint(target, breakpoint, 0);
859
860         if (target->state != TARGET_HALTED)
861                 LOG_DEBUG("target stepped");
862
863         return ERROR_OK;
864 }
865
866 int cortex_a8_restore_context(target_t *target)
867 {
868         int i;
869         uint32_t value;
870         struct armv7a_common_s *armv7a = target_to_armv7a(target);
871         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
872
873         LOG_DEBUG(" ");
874
875         if (armv7a->pre_restore_context)
876                 armv7a->pre_restore_context(target);
877
878         for (i = 15; i >= 0; i--)
879         {
880                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
881                                         armv4_5->core_mode, i).dirty)
882                 {
883                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
884                                                 armv4_5->core_mode, i).value,
885                                         0, 32);
886                         /* TODO Check return values */
887                         cortex_a8_dap_write_coreregister_u32(target, value, i);
888                 }
889         }
890
891         if (armv7a->post_restore_context)
892                 armv7a->post_restore_context(target);
893
894         return ERROR_OK;
895 }
896
897
898 /*
899  * Cortex-A8 Core register functions
900  */
901
902 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
903                 armv4_5_mode_t mode, uint32_t * value)
904 {
905         int retval;
906         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
907
908         if ((num <= ARM_CPSR))
909         {
910                 /* read a normal core register */
911                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
912
913                 if (retval != ERROR_OK)
914                 {
915                         LOG_ERROR("JTAG failure %i", retval);
916                         return ERROR_JTAG_DEVICE_ERROR;
917                 }
918                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
919         }
920         else
921         {
922                 return ERROR_INVALID_ARGUMENTS;
923         }
924
925         /* Register other than r0 - r14 uses r0 for access */
926         if (num > 14)
927                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
928                                 armv4_5->core_mode, 0).dirty =
929                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
930                                 armv4_5->core_mode, 0).valid;
931         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
932                                 armv4_5->core_mode, 15).dirty =
933                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
934                                 armv4_5->core_mode, 15).valid;
935
936         return ERROR_OK;
937 }
938
939 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
940                 armv4_5_mode_t mode, uint32_t value)
941 {
942         int retval;
943 //      uint32_t reg;
944         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
945
946 #ifdef ARMV7_GDB_HACKS
947         /* If the LR register is being modified, make sure it will put us
948          * in "thumb" mode, or an INVSTATE exception will occur. This is a
949          * hack to deal with the fact that gdb will sometimes "forge"
950          * return addresses, and doesn't set the LSB correctly (i.e., when
951          * printing expressions containing function calls, it sets LR=0.) */
952
953         if (num == 14)
954                 value |= 0x01;
955 #endif
956
957         if ((num <= ARM_CPSR))
958         {
959                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
960                 if (retval != ERROR_OK)
961                 {
962                         LOG_ERROR("JTAG failure %i", retval);
963                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
964                                         armv4_5->core_mode, num).dirty =
965                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
966                                         armv4_5->core_mode, num).valid;
967                         return ERROR_JTAG_DEVICE_ERROR;
968                 }
969                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
970         }
971         else
972         {
973                 return ERROR_INVALID_ARGUMENTS;
974         }
975
976         return ERROR_OK;
977 }
978
979
980 int cortex_a8_read_core_reg(struct target_s *target, int num,
981                 enum armv4_5_mode mode)
982 {
983         uint32_t value;
984         int retval;
985         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
986
987         cortex_a8_dap_read_coreregister_u32(target, &value, num);
988
989         if ((retval = jtag_execute_queue()) != ERROR_OK)
990         {
991                 return retval;
992         }
993
994         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
995         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
996         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
997                         mode, num).value, 0, 32, value);
998
999         return ERROR_OK;
1000 }
1001
1002 int cortex_a8_write_core_reg(struct target_s *target, int num,
1003                 enum armv4_5_mode mode, uint32_t value)
1004 {
1005         int retval;
1006         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1007
1008         cortex_a8_dap_write_coreregister_u32(target, value, num);
1009         if ((retval = jtag_execute_queue()) != ERROR_OK)
1010         {
1011                 return retval;
1012         }
1013
1014         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
1015         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
1016
1017         return ERROR_OK;
1018 }
1019
1020
1021 /*
1022  * Cortex-A8 Breakpoint and watchpoint fuctions
1023  */
1024
1025 /* Setup hardware Breakpoint Register Pair */
1026 int cortex_a8_set_breakpoint(struct target_s *target,
1027                 breakpoint_t *breakpoint, uint8_t matchmode)
1028 {
1029         int retval;
1030         int brp_i=0;
1031         uint32_t control;
1032         uint8_t byte_addr_select = 0x0F;
1033         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
1034         struct armv7a_common_s *armv7a = &cortex_a8->armv7a_common;
1035         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1036
1037         if (breakpoint->set)
1038         {
1039                 LOG_WARNING("breakpoint already set");
1040                 return ERROR_OK;
1041         }
1042
1043         if (breakpoint->type == BKPT_HARD)
1044         {
1045                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1046                         brp_i++ ;
1047                 if (brp_i >= cortex_a8->brp_num)
1048                 {
1049                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1050                         exit(-1);
1051                 }
1052                 breakpoint->set = brp_i + 1;
1053                 if (breakpoint->length == 2)
1054                 {
1055                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1056                 }
1057                 control = ((matchmode & 0x7) << 20)
1058                                 | (byte_addr_select << 5)
1059                                 | (3 << 1) | 1;
1060                 brp_list[brp_i].used = 1;
1061                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1062                 brp_list[brp_i].control = control;
1063                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1064                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1065                                 brp_list[brp_i].value);
1066                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1067                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1068                                 brp_list[brp_i].control);
1069                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1070                                 brp_list[brp_i].control,
1071                                 brp_list[brp_i].value);
1072         }
1073         else if (breakpoint->type == BKPT_SOFT)
1074         {
1075                 uint8_t code[4];
1076                 if (breakpoint->length == 2)
1077                 {
1078                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1079                 }
1080                 else
1081                 {
1082                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1083                 }
1084                 retval = target->type->read_memory(target,
1085                                 breakpoint->address & 0xFFFFFFFE,
1086                                 breakpoint->length, 1,
1087                                 breakpoint->orig_instr);
1088                 if (retval != ERROR_OK)
1089                         return retval;
1090                 retval = target->type->write_memory(target,
1091                                 breakpoint->address & 0xFFFFFFFE,
1092                                 breakpoint->length, 1, code);
1093                 if (retval != ERROR_OK)
1094                         return retval;
1095                 breakpoint->set = 0x11; /* Any nice value but 0 */
1096         }
1097
1098         return ERROR_OK;
1099 }
1100
1101 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1102 {
1103         int retval;
1104         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
1105         struct armv7a_common_s *armv7a = &cortex_a8->armv7a_common;
1106         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1107
1108         if (!breakpoint->set)
1109         {
1110                 LOG_WARNING("breakpoint not set");
1111                 return ERROR_OK;
1112         }
1113
1114         if (breakpoint->type == BKPT_HARD)
1115         {
1116                 int brp_i = breakpoint->set - 1;
1117                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1118                 {
1119                         LOG_DEBUG("Invalid BRP number in breakpoint");
1120                         return ERROR_OK;
1121                 }
1122                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1123                                 brp_list[brp_i].control, brp_list[brp_i].value);
1124                 brp_list[brp_i].used = 0;
1125                 brp_list[brp_i].value = 0;
1126                 brp_list[brp_i].control = 0;
1127                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1128                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1129                                 brp_list[brp_i].control);
1130                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1131                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1132                                 brp_list[brp_i].value);
1133         }
1134         else
1135         {
1136                 /* restore original instruction (kept in target endianness) */
1137                 if (breakpoint->length == 4)
1138                 {
1139                         retval = target->type->write_memory(target,
1140                                         breakpoint->address & 0xFFFFFFFE,
1141                                         4, 1, breakpoint->orig_instr);
1142                         if (retval != ERROR_OK)
1143                                 return retval;
1144                 }
1145                 else
1146                 {
1147                         retval = target->type->write_memory(target,
1148                                         breakpoint->address & 0xFFFFFFFE,
1149                                         2, 1, breakpoint->orig_instr);
1150                         if (retval != ERROR_OK)
1151                                 return retval;
1152                 }
1153         }
1154         breakpoint->set = 0;
1155
1156         return ERROR_OK;
1157 }
1158
1159 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1160 {
1161         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
1162
1163         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1164         {
1165                 LOG_INFO("no hardware breakpoint available");
1166                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1167         }
1168
1169         if (breakpoint->type == BKPT_HARD)
1170                 cortex_a8->brp_num_available--;
1171         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1172
1173         return ERROR_OK;
1174 }
1175
1176 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1177 {
1178         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
1179
1180 #if 0
1181 /* It is perfectly possible to remove brakpoints while the taget is running */
1182         if (target->state != TARGET_HALTED)
1183         {
1184                 LOG_WARNING("target not halted");
1185                 return ERROR_TARGET_NOT_HALTED;
1186         }
1187 #endif
1188
1189         if (breakpoint->set)
1190         {
1191                 cortex_a8_unset_breakpoint(target, breakpoint);
1192                 if (breakpoint->type == BKPT_HARD)
1193                         cortex_a8->brp_num_available++ ;
1194         }
1195
1196
1197         return ERROR_OK;
1198 }
1199
1200
1201
1202 /*
1203  * Cortex-A8 Reset fuctions
1204  */
1205
1206 int cortex_a8_assert_reset(target_t *target)
1207 {
1208
1209         LOG_DEBUG(" ");
1210
1211         /* registers are now invalid */
1212         armv4_5_invalidate_core_regs(target);
1213
1214         target->state = TARGET_RESET;
1215
1216         return ERROR_OK;
1217 }
1218
1219 int cortex_a8_deassert_reset(target_t *target)
1220 {
1221
1222         LOG_DEBUG(" ");
1223
1224         if (target->reset_halt)
1225         {
1226                 int retval;
1227                 if ((retval = target_halt(target)) != ERROR_OK)
1228                         return retval;
1229         }
1230
1231         return ERROR_OK;
1232 }
1233
1234 /*
1235  * Cortex-A8 Memory access
1236  *
1237  * This is same Cortex M3 but we must also use the correct
1238  * ap number for every access.
1239  */
1240
1241 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1242                 uint32_t size, uint32_t count, uint8_t *buffer)
1243 {
1244         struct armv7a_common_s *armv7a = target_to_armv7a(target);
1245         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1246
1247         int retval = ERROR_OK;
1248
1249         /* sanitize arguments */
1250         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1251                 return ERROR_INVALID_ARGUMENTS;
1252
1253         /* cortex_a8 handles unaligned memory access */
1254
1255 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1256
1257         switch (size)
1258         {
1259                 case 4:
1260                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1261                         break;
1262                 case 2:
1263                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1264                         break;
1265                 case 1:
1266                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1267                         break;
1268                 default:
1269                         LOG_ERROR("BUG: we shouldn't get here");
1270                         exit(-1);
1271         }
1272
1273         return retval;
1274 }
1275
1276 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1277                 uint32_t size, uint32_t count, uint8_t *buffer)
1278 {
1279         struct armv7a_common_s *armv7a = target_to_armv7a(target);
1280         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1281
1282         int retval;
1283
1284         /* sanitize arguments */
1285         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1286                 return ERROR_INVALID_ARGUMENTS;
1287
1288 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1289
1290         switch (size)
1291         {
1292                 case 4:
1293                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1294                         break;
1295                 case 2:
1296                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1297                         break;
1298                 case 1:
1299                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1300                         break;
1301                 default:
1302                         LOG_ERROR("BUG: we shouldn't get here");
1303                         exit(-1);
1304         }
1305
1306         if (target->state == TARGET_HALTED)
1307         {
1308                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1309                 /* invalidate I-Cache */
1310                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1311                 {
1312                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1313                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1314                         /* Invalidate Cache single entry with MVA to PoU */
1315                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1316                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1317                 }
1318                 /* invalidate D-Cache */
1319                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1320                 {
1321                         /* Invalidate Cache single entry with MVA to PoC */
1322                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1323                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1324                 }
1325         }
1326
1327         return retval;
1328 }
1329
1330 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1331                 uint32_t count, uint8_t *buffer)
1332 {
1333         return cortex_a8_write_memory(target, address, 4, count, buffer);
1334 }
1335
1336
1337 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1338 {
1339 #if 0
1340         u16 dcrdr;
1341
1342         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1343         *ctrl = (uint8_t)dcrdr;
1344         *value = (uint8_t)(dcrdr >> 8);
1345
1346         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1347
1348         /* write ack back to software dcc register
1349          * signify we have read data */
1350         if (dcrdr & (1 << 0))
1351         {
1352                 dcrdr = 0;
1353                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1354         }
1355 #endif
1356         return ERROR_OK;
1357 }
1358
1359
1360 int cortex_a8_handle_target_request(void *priv)
1361 {
1362         target_t *target = priv;
1363         if (!target->type->examined)
1364                 return ERROR_OK;
1365         struct armv7a_common_s *armv7a = target_to_armv7a(target);
1366         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1367
1368         if (!target->dbg_msg_enabled)
1369                 return ERROR_OK;
1370
1371         if (target->state == TARGET_RUNNING)
1372         {
1373                 uint8_t data = 0;
1374                 uint8_t ctrl = 0;
1375
1376                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1377
1378                 /* check if we have data */
1379                 if (ctrl & (1 << 0))
1380                 {
1381                         uint32_t request;
1382
1383                         /* we assume target is quick enough */
1384                         request = data;
1385                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1386                         request |= (data << 8);
1387                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1388                         request |= (data << 16);
1389                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1390                         request |= (data << 24);
1391                         target_request(target, request);
1392                 }
1393         }
1394
1395         return ERROR_OK;
1396 }
1397
1398 /*
1399  * Cortex-A8 target information and configuration
1400  */
1401
1402 int cortex_a8_examine(struct target_s *target)
1403 {
1404         struct cortex_a8_common_s *cortex_a8 = target_to_cortex_a8(target);
1405         struct armv7a_common_s *armv7a = &cortex_a8->armv7a_common;
1406         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1407         int i;
1408         int retval = ERROR_OK;
1409         uint32_t didr, ctypr, ttypr, cpuid;
1410
1411         LOG_DEBUG("TODO");
1412
1413         /* Here we shall insert a proper ROM Table scan */
1414         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1415
1416         /* We do one extra read to ensure DAP is configured,
1417          * we call ahbap_debugport_init(swjdp) instead
1418          */
1419         ahbap_debugport_init(swjdp);
1420         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1421         if ((retval = mem_ap_read_atomic_u32(swjdp,
1422                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1423         {
1424                 LOG_DEBUG("Examine failed");
1425                 return retval;
1426         }
1427
1428         if ((retval = mem_ap_read_atomic_u32(swjdp,
1429                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1430         {
1431                 LOG_DEBUG("Examine failed");
1432                 return retval;
1433         }
1434
1435         if ((retval = mem_ap_read_atomic_u32(swjdp,
1436                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1437         {
1438                 LOG_DEBUG("Examine failed");
1439                 return retval;
1440         }
1441
1442         if ((retval = mem_ap_read_atomic_u32(swjdp,
1443                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1444         {
1445                 LOG_DEBUG("Examine failed");
1446                 return retval;
1447         }
1448
1449         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1450         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1451         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1452         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1453
1454         /* Setup Breakpoint Register Pairs */
1455         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1456         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1457         cortex_a8->brp_num_available = cortex_a8->brp_num;
1458         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1459 //      cortex_a8->brb_enabled = ????;
1460         for (i = 0; i < cortex_a8->brp_num; i++)
1461         {
1462                 cortex_a8->brp_list[i].used = 0;
1463                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1464                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1465                 else
1466                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1467                 cortex_a8->brp_list[i].value = 0;
1468                 cortex_a8->brp_list[i].control = 0;
1469                 cortex_a8->brp_list[i].BRPn = i;
1470         }
1471
1472         /* Setup Watchpoint Register Pairs */
1473         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1474         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1475         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1476         for (i = 0; i < cortex_a8->wrp_num; i++)
1477         {
1478                 cortex_a8->wrp_list[i].used = 0;
1479                 cortex_a8->wrp_list[i].type = 0;
1480                 cortex_a8->wrp_list[i].value = 0;
1481                 cortex_a8->wrp_list[i].control = 0;
1482                 cortex_a8->wrp_list[i].WRPn = i;
1483         }
1484         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1485                         cortex_a8->brp_num , cortex_a8->wrp_num);
1486
1487         /* Configure core debug access */
1488         cortex_a8_init_debug_access(target);
1489
1490         target->type->examined = 1;
1491
1492         return retval;
1493 }
1494
1495 /*
1496  *      Cortex-A8 target creation and initialization
1497  */
1498
1499 void cortex_a8_build_reg_cache(target_t *target)
1500 {
1501         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1502         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1503
1504         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1505         armv4_5->core_cache = (*cache_p);
1506 }
1507
1508
1509 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1510                 struct target_s *target)
1511 {
1512         cortex_a8_build_reg_cache(target);
1513         return ERROR_OK;
1514 }
1515
1516 int cortex_a8_init_arch_info(target_t *target,
1517                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1518 {
1519         armv4_5_common_t *armv4_5;
1520         armv7a_common_t *armv7a;
1521
1522         armv7a = &cortex_a8->armv7a_common;
1523         armv4_5 = &armv7a->armv4_5_common;
1524         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1525
1526         /* Setup cortex_a8_common_t */
1527         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1528         armv4_5->arch_info = armv7a;
1529
1530         armv4_5_init_arch_info(target, armv4_5);
1531
1532         /* prepare JTAG information for the new target */
1533         cortex_a8->jtag_info.tap = tap;
1534         cortex_a8->jtag_info.scann_size = 4;
1535 LOG_DEBUG(" ");
1536         swjdp->dp_select_value = -1;
1537         swjdp->ap_csw_value = -1;
1538         swjdp->ap_tar_value = -1;
1539         swjdp->jtag_info = &cortex_a8->jtag_info;
1540         swjdp->memaccess_tck = 80;
1541
1542         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1543         swjdp->tar_autoincr_block = (1 << 10);
1544
1545         cortex_a8->fast_reg_read = 0;
1546
1547
1548         /* register arch-specific functions */
1549         armv7a->examine_debug_reason = NULL;
1550
1551         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1552
1553         armv7a->pre_restore_context = NULL;
1554         armv7a->post_restore_context = NULL;
1555         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1556 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1557         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1558         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1559 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1560 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1561         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1562         armv7a->armv4_5_mmu.mmu_enabled = 0;
1563         armv7a->read_cp15 = cortex_a8_read_cp15;
1564         armv7a->write_cp15 = cortex_a8_write_cp15;
1565
1566
1567 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1568
1569         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1570         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1571 //      armv4_5->full_context = arm7_9_full_context;
1572
1573 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1574 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1575 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1576 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1577
1578         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1579
1580         return ERROR_OK;
1581 }
1582
1583 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1584 {
1585         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1586
1587         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1588
1589         return ERROR_OK;
1590 }
1591
1592 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1593                 char *cmd, char **args, int argc)
1594 {
1595         target_t *target = get_current_target(cmd_ctx);
1596         struct armv7a_common_s *armv7a = target_to_armv7a(target);
1597
1598         return armv4_5_handle_cache_info_command(cmd_ctx,
1599                         &armv7a->armv4_5_mmu.armv4_5_cache);
1600 }
1601
1602
1603 static int cortex_a8_handle_dbginit_command(struct command_context_s *cmd_ctx,
1604                 char *cmd, char **args, int argc)
1605 {
1606         target_t *target = get_current_target(cmd_ctx);
1607
1608         cortex_a8_init_debug_access(target);
1609
1610         return ERROR_OK;
1611 }
1612
1613
1614 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1615 {
1616         command_t *cortex_a8_cmd;
1617         int retval = ERROR_OK;
1618
1619         armv4_5_register_commands(cmd_ctx);
1620         armv7a_register_commands(cmd_ctx);
1621
1622         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1623                         NULL, COMMAND_ANY,
1624                         "cortex_a8 specific commands");
1625
1626         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1627                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1628                         "display information about target caches");
1629
1630         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1631                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1632                         "Initialize core debug");
1633
1634         return retval;
1635 }