]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
299eb3c104fd5606a27d79bd14f39ddde5bdbd88
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 /* FIXME we waste a *LOT* of round-trips with needless DSCR reads, which
93  * slows down operations considerably.  One good way to start reducing
94  * them would pass current values into and out of this routine.  That
95  * should also help synch DCC read/write.
96  */
97 static int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
98 {
99         uint32_t dscr;
100         int retval;
101         struct armv7a_common *armv7a = target_to_armv7a(target);
102         struct swjdp_common *swjdp = &armv7a->swjdp_info;
103
104         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
105         do
106         {
107                 retval = mem_ap_read_atomic_u32(swjdp,
108                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
109                 if (retval != ERROR_OK)
110                 {
111                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
112                         return retval;
113                 }
114         }
115         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
116
117         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
118
119         do
120         {
121                 retval = mem_ap_read_atomic_u32(swjdp,
122                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
123                 if (retval != ERROR_OK)
124                 {
125                         LOG_ERROR("Could not read DSCR register");
126                         return retval;
127                 }
128         }
129         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
130
131         return retval;
132 }
133
134 /**************************************************************************
135 Read core register with very few exec_opcode, fast but needs work_area.
136 This can cause problems with MMU active.
137 **************************************************************************/
138 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
139                 uint32_t * regfile)
140 {
141         int retval = ERROR_OK;
142         struct armv7a_common *armv7a = target_to_armv7a(target);
143         struct swjdp_common *swjdp = &armv7a->swjdp_info;
144
145         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
146         cortex_a8_dap_write_coreregister_u32(target, address, 0);
147         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
148         dap_ap_select(swjdp, swjdp_memoryap);
149         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
150         dap_ap_select(swjdp, swjdp_debugap);
151
152         return retval;
153 }
154
155 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
156                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
157 {
158         int retval;
159         struct armv7a_common *armv7a = target_to_armv7a(target);
160         struct swjdp_common *swjdp = &armv7a->swjdp_info;
161
162         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
163         /* Move R0 to DTRTX */
164         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
165
166         /* Read DCCTX */
167         retval = mem_ap_read_atomic_u32(swjdp,
168                         armv7a->debug_base + CPUDBG_DTRTX, value);
169
170         return retval;
171 }
172
173 static int cortex_a8_write_cp(struct target *target, uint32_t value,
174         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
175 {
176         int retval;
177         uint32_t dscr;
178         struct armv7a_common *armv7a = target_to_armv7a(target);
179         struct swjdp_common *swjdp = &armv7a->swjdp_info;
180
181         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
182
183         /* Check that DCCRX is not full */
184         retval = mem_ap_read_atomic_u32(swjdp,
185                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
186         if (dscr & (1 << DSCR_DTR_RX_FULL))
187         {
188                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
189                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
190                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
191         }
192
193         retval = mem_ap_write_u32(swjdp,
194                         armv7a->debug_base + CPUDBG_DTRRX, value);
195         /* Move DTRRX to r0 */
196         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
197
198         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
199         return retval;
200 }
201
202 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
203                 uint32_t CRn, uint32_t CRm, uint32_t *value)
204 {
205         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
206 }
207
208 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
209                 uint32_t CRn, uint32_t CRm, uint32_t value)
210 {
211         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
212 }
213
214 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
215 {
216         if (cpnum!=15)
217         {
218                 LOG_ERROR("Only cp15 is supported");
219                 return ERROR_FAIL;
220         }
221         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
222 }
223
224 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
225 {
226         if (cpnum!=15)
227         {
228                 LOG_ERROR("Only cp15 is supported");
229                 return ERROR_FAIL;
230         }
231         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
232 }
233
234
235
236 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
237                 uint32_t *value, int regnum)
238 {
239         int retval = ERROR_OK;
240         uint8_t reg = regnum&0xFF;
241         uint32_t dscr;
242         struct armv7a_common *armv7a = target_to_armv7a(target);
243         struct swjdp_common *swjdp = &armv7a->swjdp_info;
244
245         if (reg > 17)
246                 return retval;
247
248         if (reg < 15)
249         {
250                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
251                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
252         }
253         else if (reg == 15)
254         {
255                 /* "MOV r0, r15"; then move r0 to DCCTX */
256                 cortex_a8_exec_opcode(target, 0xE1A0000F);
257                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
258         }
259         else
260         {
261                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
262                  * then move r0 to DCCTX
263                  */
264                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1));
265                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
266         }
267
268         /* Read DTRRTX */
269         do
270         {
271                 retval = mem_ap_read_atomic_u32(swjdp,
272                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
273         }
274         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
275
276         retval = mem_ap_read_atomic_u32(swjdp,
277                         armv7a->debug_base + CPUDBG_DTRTX, value);
278         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
279
280         return retval;
281 }
282
283 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
284                 uint32_t value, int regnum)
285 {
286         int retval = ERROR_OK;
287         uint8_t Rd = regnum&0xFF;
288         uint32_t dscr;
289         struct armv7a_common *armv7a = target_to_armv7a(target);
290         struct swjdp_common *swjdp = &armv7a->swjdp_info;
291
292         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
293
294         /* Check that DCCRX is not full */
295         retval = mem_ap_read_atomic_u32(swjdp,
296                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
297         if (dscr & (1 << DSCR_DTR_RX_FULL))
298         {
299                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
300                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
301                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
302         }
303
304         if (Rd > 17)
305                 return retval;
306
307         /* Write to DCCRX */
308         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
309         retval = mem_ap_write_u32(swjdp,
310                         armv7a->debug_base + CPUDBG_DTRRX, value);
311
312         if (Rd < 15)
313         {
314                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
315                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
316         }
317         else if (Rd == 15)
318         {
319                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
320                  * then "mov r15, r0"
321                  */
322                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
323                 cortex_a8_exec_opcode(target, 0xE1A0F000);
324         }
325         else
326         {
327                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
328                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
329                  */
330                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
331                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1));
332
333                 /* "Prefetch flush" after modifying execution status in CPSR */
334                 if (Rd == 16)
335                         cortex_a8_exec_opcode(target,
336                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
337         }
338
339         return retval;
340 }
341
342 /* Write to memory mapped registers directly with no cache or mmu handling */
343 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
344 {
345         int retval;
346         struct armv7a_common *armv7a = target_to_armv7a(target);
347         struct swjdp_common *swjdp = &armv7a->swjdp_info;
348
349         retval = mem_ap_write_atomic_u32(swjdp, address, value);
350
351         return retval;
352 }
353
354 /*
355  * Cortex-A8 implementation of Debug Programmer's Model
356  *
357  * NOTE that in several of these cases the "stall" mode might be useful.
358  * It'd let us queue a few operations together... prepare/finish might
359  * be the places to enable/disable that mode.
360  */
361
362 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
363 {
364         return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
365 }
366
367 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
368 {
369         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
370         return mem_ap_write_u32(&a8->armv7a_common.swjdp_info,
371                         a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
372 }
373
374 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data)
375 {
376         struct swjdp_common *swjdp = &a8->armv7a_common.swjdp_info;
377         uint32_t dscr;
378         int retval;
379
380         /* Wait for DTRRXfull */
381         do {
382                 retval = mem_ap_read_atomic_u32(swjdp,
383                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
384                                 &dscr);
385         } while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0);
386
387         retval = mem_ap_read_atomic_u32(swjdp,
388                         a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
389         LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
390
391         return retval;
392 }
393
394 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
395 {
396         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
397         struct swjdp_common *swjdp = &a8->armv7a_common.swjdp_info;
398         uint32_t dscr;
399         int retval;
400
401         retval = mem_ap_read_atomic_u32(swjdp,
402                         a8->armv7a_common.debug_base + CPUDBG_DSCR,
403                         &dscr);
404
405         /* this "should never happen" ... */
406         if (dscr & (1 << DSCR_DTR_RX_FULL)) {
407                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
408                 /* Clear DCCRX */
409                 retval = cortex_a8_exec_opcode(
410                                 a8->armv7a_common.armv4_5_common.target,
411                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
412         }
413
414         return retval;
415 }
416
417 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
418 {
419         /* REVISIT what could be done here? */
420         return ERROR_OK;
421 }
422
423 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
424                 uint32_t opcode, uint32_t data)
425 {
426         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
427         int retval;
428
429         retval = cortex_a8_write_dcc(a8, data);
430
431         return cortex_a8_exec_opcode(
432                         a8->armv7a_common.armv4_5_common.target,
433                         opcode);
434 }
435
436 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
437                 uint32_t opcode, uint32_t data)
438 {
439         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
440         int retval;
441
442         retval = cortex_a8_write_dcc(a8, data);
443
444         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
445         retval = cortex_a8_exec_opcode(
446                         a8->armv7a_common.armv4_5_common.target,
447                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
448
449         /* then the opcode, taking data from R0 */
450         retval = cortex_a8_exec_opcode(
451                         a8->armv7a_common.armv4_5_common.target,
452                         opcode);
453
454         return retval;
455 }
456
457 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
458 {
459         struct target *target = dpm->arm->target;
460
461         /* "Prefetch flush" after modifying execution status in CPSR */
462         return cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
463 }
464
465 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
466                 uint32_t opcode, uint32_t *data)
467 {
468         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
469         int retval;
470
471         /* the opcode, writing data to DCC */
472         retval = cortex_a8_exec_opcode(
473                         a8->armv7a_common.armv4_5_common.target,
474                         opcode);
475
476         return cortex_a8_read_dcc(a8, data);
477 }
478
479
480 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
481                 uint32_t opcode, uint32_t *data)
482 {
483         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
484         int retval;
485
486         /* the opcode, writing data to R0 */
487         retval = cortex_a8_exec_opcode(
488                         a8->armv7a_common.armv4_5_common.target,
489                         opcode);
490
491         /* write R0 to DCC */
492         retval = cortex_a8_exec_opcode(
493                         a8->armv7a_common.armv4_5_common.target,
494                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
495
496         return cortex_a8_read_dcc(a8, data);
497 }
498
499 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
500 {
501         struct arm_dpm *dpm = &a8->armv7a_common.dpm;
502
503         dpm->arm = &a8->armv7a_common.armv4_5_common;
504         dpm->didr = didr;
505
506         dpm->prepare = cortex_a8_dpm_prepare;
507         dpm->finish = cortex_a8_dpm_finish;
508
509         dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
510         dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
511         dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
512
513         dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
514         dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
515
516         return arm_dpm_setup(dpm);
517 }
518
519
520 /*
521  * Cortex-A8 Run control
522  */
523
524 static int cortex_a8_poll(struct target *target)
525 {
526         int retval = ERROR_OK;
527         uint32_t dscr;
528         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
529         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
530         struct swjdp_common *swjdp = &armv7a->swjdp_info;
531         enum target_state prev_target_state = target->state;
532         uint8_t saved_apsel = dap_ap_get_select(swjdp);
533
534         dap_ap_select(swjdp, swjdp_debugap);
535         retval = mem_ap_read_atomic_u32(swjdp,
536                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
537         if (retval != ERROR_OK)
538         {
539                 dap_ap_select(swjdp, saved_apsel);
540                 return retval;
541         }
542         cortex_a8->cpudbg_dscr = dscr;
543
544         if ((dscr & 0x3) == 0x3)
545         {
546                 if (prev_target_state != TARGET_HALTED)
547                 {
548                         /* We have a halting debug event */
549                         LOG_DEBUG("Target halted");
550                         target->state = TARGET_HALTED;
551                         if ((prev_target_state == TARGET_RUNNING)
552                                         || (prev_target_state == TARGET_RESET))
553                         {
554                                 retval = cortex_a8_debug_entry(target);
555                                 if (retval != ERROR_OK)
556                                         return retval;
557
558                                 target_call_event_callbacks(target,
559                                                 TARGET_EVENT_HALTED);
560                         }
561                         if (prev_target_state == TARGET_DEBUG_RUNNING)
562                         {
563                                 LOG_DEBUG(" ");
564
565                                 retval = cortex_a8_debug_entry(target);
566                                 if (retval != ERROR_OK)
567                                         return retval;
568
569                                 target_call_event_callbacks(target,
570                                                 TARGET_EVENT_DEBUG_HALTED);
571                         }
572                 }
573         }
574         else if ((dscr & 0x3) == 0x2)
575         {
576                 target->state = TARGET_RUNNING;
577         }
578         else
579         {
580                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
581                 target->state = TARGET_UNKNOWN;
582         }
583
584         dap_ap_select(swjdp, saved_apsel);
585
586         return retval;
587 }
588
589 static int cortex_a8_halt(struct target *target)
590 {
591         int retval = ERROR_OK;
592         uint32_t dscr;
593         struct armv7a_common *armv7a = target_to_armv7a(target);
594         struct swjdp_common *swjdp = &armv7a->swjdp_info;
595         uint8_t saved_apsel = dap_ap_get_select(swjdp);
596         dap_ap_select(swjdp, swjdp_debugap);
597
598         /*
599          * Tell the core to be halted by writing DRCR with 0x1
600          * and then wait for the core to be halted.
601          */
602         retval = mem_ap_write_atomic_u32(swjdp,
603                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
604
605         /*
606          * enter halting debug mode
607          */
608         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
609         retval = mem_ap_write_atomic_u32(swjdp,
610                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
611
612         if (retval != ERROR_OK)
613                 goto out;
614
615         do {
616                 mem_ap_read_atomic_u32(swjdp,
617                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
618         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
619
620         target->debug_reason = DBG_REASON_DBGRQ;
621
622 out:
623         dap_ap_select(swjdp, saved_apsel);
624         return retval;
625 }
626
627 static int cortex_a8_resume(struct target *target, int current,
628                 uint32_t address, int handle_breakpoints, int debug_execution)
629 {
630         struct armv7a_common *armv7a = target_to_armv7a(target);
631         struct arm *armv4_5 = &armv7a->armv4_5_common;
632         struct swjdp_common *swjdp = &armv7a->swjdp_info;
633
634 //      struct breakpoint *breakpoint = NULL;
635         uint32_t resume_pc, dscr;
636
637         uint8_t saved_apsel = dap_ap_get_select(swjdp);
638         dap_ap_select(swjdp, swjdp_debugap);
639
640         if (!debug_execution)
641         {
642                 target_free_all_working_areas(target);
643 //              cortex_m3_enable_breakpoints(target);
644 //              cortex_m3_enable_watchpoints(target);
645         }
646
647 #if 0
648         if (debug_execution)
649         {
650                 /* Disable interrupts */
651                 /* We disable interrupts in the PRIMASK register instead of
652                  * masking with C_MASKINTS,
653                  * This is probably the same issue as Cortex-M3 Errata 377493:
654                  * C_MASKINTS in parallel with disabled interrupts can cause
655                  * local faults to not be taken. */
656                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
657                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
658                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
659
660                 /* Make sure we are in Thumb mode */
661                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
662                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
663                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
664                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
665         }
666 #endif
667
668         /* current = 1: continue on current pc, otherwise continue at <address> */
669         resume_pc = buf_get_u32(
670                         armv4_5->core_cache->reg_list[15].value,
671                         0, 32);
672         if (!current)
673                 resume_pc = address;
674
675         /* Make sure that the Armv7 gdb thumb fixups does not
676          * kill the return address
677          */
678         switch (armv4_5->core_state)
679         {
680         case ARMV4_5_STATE_ARM:
681                 resume_pc &= 0xFFFFFFFC;
682                 break;
683         case ARMV4_5_STATE_THUMB:
684         case ARM_STATE_THUMB_EE:
685                 /* When the return address is loaded into PC
686                  * bit 0 must be 1 to stay in Thumb state
687                  */
688                 resume_pc |= 0x1;
689                 break;
690         case ARMV4_5_STATE_JAZELLE:
691                 LOG_ERROR("How do I resume into Jazelle state??");
692                 return ERROR_FAIL;
693         }
694         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
695         buf_set_u32(armv4_5->core_cache->reg_list[15].value,
696                         0, 32, resume_pc);
697         armv4_5->core_cache->reg_list[15].dirty = 1;
698         armv4_5->core_cache->reg_list[15].valid = 1;
699
700         cortex_a8_restore_context(target);
701
702 #if 0
703         /* the front-end may request us not to handle breakpoints */
704         if (handle_breakpoints)
705         {
706                 /* Single step past breakpoint at current address */
707                 if ((breakpoint = breakpoint_find(target, resume_pc)))
708                 {
709                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
710                         cortex_m3_unset_breakpoint(target, breakpoint);
711                         cortex_m3_single_step_core(target);
712                         cortex_m3_set_breakpoint(target, breakpoint);
713                 }
714         }
715
716 #endif
717         /* Restart core and wait for it to be started */
718         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
719
720         do {
721                 mem_ap_read_atomic_u32(swjdp,
722                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
723         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
724
725         target->debug_reason = DBG_REASON_NOTHALTED;
726         target->state = TARGET_RUNNING;
727
728         /* registers are now invalid */
729         register_cache_invalidate(armv4_5->core_cache);
730
731         if (!debug_execution)
732         {
733                 target->state = TARGET_RUNNING;
734                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
735                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
736         }
737         else
738         {
739                 target->state = TARGET_DEBUG_RUNNING;
740                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
741                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
742         }
743
744         dap_ap_select(swjdp, saved_apsel);
745
746         return ERROR_OK;
747 }
748
749 static int cortex_a8_debug_entry(struct target *target)
750 {
751         int i;
752         uint32_t regfile[16], pc, cpsr, dscr;
753         int retval = ERROR_OK;
754         struct working_area *regfile_working_area = NULL;
755         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
756         struct armv7a_common *armv7a = target_to_armv7a(target);
757         struct arm *armv4_5 = &armv7a->armv4_5_common;
758         struct swjdp_common *swjdp = &armv7a->swjdp_info;
759         struct reg *reg;
760
761         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
762
763         /* Enable the ITR execution once we are in debug mode */
764         mem_ap_read_atomic_u32(swjdp,
765                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
766
767         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
768          * imprecise data aborts get discarded by issuing a Data
769          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
770          */
771
772         dscr |= (1 << DSCR_EXT_INT_EN);
773         retval = mem_ap_write_atomic_u32(swjdp,
774                         armv7a->debug_base + CPUDBG_DSCR, dscr);
775
776         /* Examine debug reason */
777         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
778         {
779                 case 0:         /* DRCR[0] write */
780                 case 4:         /* EDBGRQ */
781                         target->debug_reason = DBG_REASON_DBGRQ;
782                         break;
783                 case 1:         /* HW breakpoint */
784                 case 3:         /* SW BKPT */
785                 case 5:         /* vector catch */
786                         target->debug_reason = DBG_REASON_BREAKPOINT;
787                         break;
788                 case 10:        /* precise watchpoint */
789                         target->debug_reason = DBG_REASON_WATCHPOINT;
790                         /* REVISIT could collect WFAR later, to see just
791                          * which instruction triggered the watchpoint.
792                          */
793                         break;
794                 default:
795                         target->debug_reason = DBG_REASON_UNDEFINED;
796                         break;
797         }
798
799         /* REVISIT fast_reg_read is never set ... */
800
801         /* Examine target state and mode */
802         if (cortex_a8->fast_reg_read)
803                 target_alloc_working_area(target, 64, &regfile_working_area);
804
805         /* First load register acessible through core debug port*/
806         if (!regfile_working_area)
807         {
808                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
809         }
810         else
811         {
812                 dap_ap_select(swjdp, swjdp_memoryap);
813                 cortex_a8_read_regs_through_mem(target,
814                                 regfile_working_area->address, regfile);
815                 dap_ap_select(swjdp, swjdp_memoryap);
816                 target_free_working_area(target, regfile_working_area);
817
818                 /* read Current PSR */
819                 cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
820                 pc = regfile[15];
821                 dap_ap_select(swjdp, swjdp_debugap);
822                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
823
824                 arm_set_cpsr(armv4_5, cpsr);
825
826                 /* update cache */
827                 for (i = 0; i <= ARM_PC; i++)
828                 {
829                         reg = arm_reg_current(armv4_5, i);
830
831                         buf_set_u32(reg->value, 0, 32, regfile[i]);
832                         reg->valid = 1;
833                         reg->dirty = 0;
834                 }
835
836                 /* Fixup PC Resume Address */
837                 if (cpsr & (1 << 5))
838                 {
839                         // T bit set for Thumb or ThumbEE state
840                         regfile[ARM_PC] -= 4;
841                 }
842                 else
843                 {
844                         // ARM state
845                         regfile[ARM_PC] -= 8;
846                 }
847
848                 reg = armv4_5->core_cache->reg_list + 15;
849                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
850                 reg->dirty = reg->valid;
851         }
852
853 #if 0
854 /* TODO, Move this */
855         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
856         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
857         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
858
859         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
860         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
861
862         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
863         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
864 #endif
865
866         /* Are we in an exception handler */
867 //      armv4_5->exception_number = 0;
868         if (armv7a->post_debug_entry)
869                 armv7a->post_debug_entry(target);
870
871
872
873         return retval;
874
875 }
876
877 static void cortex_a8_post_debug_entry(struct target *target)
878 {
879         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
880         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
881
882 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
883         /* examine cp15 control reg */
884         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
885         jtag_execute_queue();
886         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
887
888         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
889         {
890                 uint32_t cache_type_reg;
891                 /* identify caches */
892                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
893                 jtag_execute_queue();
894                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
895                 armv4_5_identify_cache(cache_type_reg,
896                                 &armv7a->armv4_5_mmu.armv4_5_cache);
897         }
898
899         armv7a->armv4_5_mmu.mmu_enabled =
900                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
901         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
902                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
903         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
904                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
905
906
907 }
908
909 static int cortex_a8_step(struct target *target, int current, uint32_t address,
910                 int handle_breakpoints)
911 {
912         struct armv7a_common *armv7a = target_to_armv7a(target);
913         struct arm *armv4_5 = &armv7a->armv4_5_common;
914         struct breakpoint *breakpoint = NULL;
915         struct breakpoint stepbreakpoint;
916         struct reg *r;
917
918         int timeout = 100;
919
920         if (target->state != TARGET_HALTED)
921         {
922                 LOG_WARNING("target not halted");
923                 return ERROR_TARGET_NOT_HALTED;
924         }
925
926         /* current = 1: continue on current pc, otherwise continue at <address> */
927         r = armv4_5->core_cache->reg_list + 15;
928         if (!current)
929         {
930                 buf_set_u32(r->value, 0, 32, address);
931         }
932         else
933         {
934                 address = buf_get_u32(r->value, 0, 32);
935         }
936
937         /* The front-end may request us not to handle breakpoints.
938          * But since Cortex-A8 uses breakpoint for single step,
939          * we MUST handle breakpoints.
940          */
941         handle_breakpoints = 1;
942         if (handle_breakpoints) {
943                 breakpoint = breakpoint_find(target, address);
944                 if (breakpoint)
945                         cortex_a8_unset_breakpoint(target, breakpoint);
946         }
947
948         /* Setup single step breakpoint */
949         stepbreakpoint.address = address;
950         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
951                         ? 2 : 4;
952         stepbreakpoint.type = BKPT_HARD;
953         stepbreakpoint.set = 0;
954
955         /* Break on IVA mismatch */
956         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
957
958         target->debug_reason = DBG_REASON_SINGLESTEP;
959
960         cortex_a8_resume(target, 1, address, 0, 0);
961
962         while (target->state != TARGET_HALTED)
963         {
964                 cortex_a8_poll(target);
965                 if (--timeout == 0)
966                 {
967                         LOG_WARNING("timeout waiting for target halt");
968                         break;
969                 }
970         }
971
972         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
973         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
974
975         if (breakpoint)
976                 cortex_a8_set_breakpoint(target, breakpoint, 0);
977
978         if (target->state != TARGET_HALTED)
979                 LOG_DEBUG("target stepped");
980
981         return ERROR_OK;
982 }
983
984 static int cortex_a8_restore_context(struct target *target)
985 {
986         struct armv7a_common *armv7a = target_to_armv7a(target);
987
988         LOG_DEBUG(" ");
989
990         if (armv7a->pre_restore_context)
991                 armv7a->pre_restore_context(target);
992
993         arm_dpm_write_dirty_registers(&armv7a->dpm);
994
995         if (armv7a->post_restore_context)
996                 armv7a->post_restore_context(target);
997
998         return ERROR_OK;
999 }
1000
1001
1002 /*
1003  * Cortex-A8 Breakpoint and watchpoint fuctions
1004  */
1005
1006 /* Setup hardware Breakpoint Register Pair */
1007 static int cortex_a8_set_breakpoint(struct target *target,
1008                 struct breakpoint *breakpoint, uint8_t matchmode)
1009 {
1010         int retval;
1011         int brp_i=0;
1012         uint32_t control;
1013         uint8_t byte_addr_select = 0x0F;
1014         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1015         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1016         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1017
1018         if (breakpoint->set)
1019         {
1020                 LOG_WARNING("breakpoint already set");
1021                 return ERROR_OK;
1022         }
1023
1024         if (breakpoint->type == BKPT_HARD)
1025         {
1026                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1027                         brp_i++ ;
1028                 if (brp_i >= cortex_a8->brp_num)
1029                 {
1030                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1031                         return ERROR_FAIL;
1032                 }
1033                 breakpoint->set = brp_i + 1;
1034                 if (breakpoint->length == 2)
1035                 {
1036                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1037                 }
1038                 control = ((matchmode & 0x7) << 20)
1039                                 | (byte_addr_select << 5)
1040                                 | (3 << 1) | 1;
1041                 brp_list[brp_i].used = 1;
1042                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1043                 brp_list[brp_i].control = control;
1044                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1045                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1046                                 brp_list[brp_i].value);
1047                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1048                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1049                                 brp_list[brp_i].control);
1050                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1051                                 brp_list[brp_i].control,
1052                                 brp_list[brp_i].value);
1053         }
1054         else if (breakpoint->type == BKPT_SOFT)
1055         {
1056                 uint8_t code[4];
1057                 if (breakpoint->length == 2)
1058                 {
1059                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1060                 }
1061                 else
1062                 {
1063                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1064                 }
1065                 retval = target->type->read_memory(target,
1066                                 breakpoint->address & 0xFFFFFFFE,
1067                                 breakpoint->length, 1,
1068                                 breakpoint->orig_instr);
1069                 if (retval != ERROR_OK)
1070                         return retval;
1071                 retval = target->type->write_memory(target,
1072                                 breakpoint->address & 0xFFFFFFFE,
1073                                 breakpoint->length, 1, code);
1074                 if (retval != ERROR_OK)
1075                         return retval;
1076                 breakpoint->set = 0x11; /* Any nice value but 0 */
1077         }
1078
1079         return ERROR_OK;
1080 }
1081
1082 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1083 {
1084         int retval;
1085         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1086         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1087         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1088
1089         if (!breakpoint->set)
1090         {
1091                 LOG_WARNING("breakpoint not set");
1092                 return ERROR_OK;
1093         }
1094
1095         if (breakpoint->type == BKPT_HARD)
1096         {
1097                 int brp_i = breakpoint->set - 1;
1098                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1099                 {
1100                         LOG_DEBUG("Invalid BRP number in breakpoint");
1101                         return ERROR_OK;
1102                 }
1103                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1104                                 brp_list[brp_i].control, brp_list[brp_i].value);
1105                 brp_list[brp_i].used = 0;
1106                 brp_list[brp_i].value = 0;
1107                 brp_list[brp_i].control = 0;
1108                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1109                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1110                                 brp_list[brp_i].control);
1111                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1112                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1113                                 brp_list[brp_i].value);
1114         }
1115         else
1116         {
1117                 /* restore original instruction (kept in target endianness) */
1118                 if (breakpoint->length == 4)
1119                 {
1120                         retval = target->type->write_memory(target,
1121                                         breakpoint->address & 0xFFFFFFFE,
1122                                         4, 1, breakpoint->orig_instr);
1123                         if (retval != ERROR_OK)
1124                                 return retval;
1125                 }
1126                 else
1127                 {
1128                         retval = target->type->write_memory(target,
1129                                         breakpoint->address & 0xFFFFFFFE,
1130                                         2, 1, breakpoint->orig_instr);
1131                         if (retval != ERROR_OK)
1132                                 return retval;
1133                 }
1134         }
1135         breakpoint->set = 0;
1136
1137         return ERROR_OK;
1138 }
1139
1140 static int cortex_a8_add_breakpoint(struct target *target,
1141                 struct breakpoint *breakpoint)
1142 {
1143         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1144
1145         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1146         {
1147                 LOG_INFO("no hardware breakpoint available");
1148                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1149         }
1150
1151         if (breakpoint->type == BKPT_HARD)
1152                 cortex_a8->brp_num_available--;
1153         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1154
1155         return ERROR_OK;
1156 }
1157
1158 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1159 {
1160         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1161
1162 #if 0
1163 /* It is perfectly possible to remove brakpoints while the taget is running */
1164         if (target->state != TARGET_HALTED)
1165         {
1166                 LOG_WARNING("target not halted");
1167                 return ERROR_TARGET_NOT_HALTED;
1168         }
1169 #endif
1170
1171         if (breakpoint->set)
1172         {
1173                 cortex_a8_unset_breakpoint(target, breakpoint);
1174                 if (breakpoint->type == BKPT_HARD)
1175                         cortex_a8->brp_num_available++ ;
1176         }
1177
1178
1179         return ERROR_OK;
1180 }
1181
1182
1183
1184 /*
1185  * Cortex-A8 Reset fuctions
1186  */
1187
1188 static int cortex_a8_assert_reset(struct target *target)
1189 {
1190         struct armv7a_common *armv7a = target_to_armv7a(target);
1191
1192         LOG_DEBUG(" ");
1193
1194         /* registers are now invalid */
1195         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1196
1197         target->state = TARGET_RESET;
1198
1199         return ERROR_OK;
1200 }
1201
1202 static int cortex_a8_deassert_reset(struct target *target)
1203 {
1204
1205         LOG_DEBUG(" ");
1206
1207         if (target->reset_halt)
1208         {
1209                 int retval;
1210                 if ((retval = target_halt(target)) != ERROR_OK)
1211                         return retval;
1212         }
1213
1214         return ERROR_OK;
1215 }
1216
1217 /*
1218  * Cortex-A8 Memory access
1219  *
1220  * This is same Cortex M3 but we must also use the correct
1221  * ap number for every access.
1222  */
1223
1224 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1225                 uint32_t size, uint32_t count, uint8_t *buffer)
1226 {
1227         struct armv7a_common *armv7a = target_to_armv7a(target);
1228         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1229         int retval = ERROR_INVALID_ARGUMENTS;
1230
1231         /* cortex_a8 handles unaligned memory access */
1232
1233 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1234
1235         if (count && buffer) {
1236                 switch (size) {
1237                 case 4:
1238                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1239                         break;
1240                 case 2:
1241                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1242                         break;
1243                 case 1:
1244                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1245                         break;
1246                 }
1247         }
1248
1249         return retval;
1250 }
1251
1252 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1253                 uint32_t size, uint32_t count, uint8_t *buffer)
1254 {
1255         struct armv7a_common *armv7a = target_to_armv7a(target);
1256         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1257         int retval = ERROR_INVALID_ARGUMENTS;
1258
1259 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1260
1261         if (count && buffer) {
1262                 switch (size) {
1263                 case 4:
1264                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1265                         break;
1266                 case 2:
1267                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1268                         break;
1269                 case 1:
1270                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1271                         break;
1272                 }
1273         }
1274
1275         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1276         {
1277                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1278                 /* invalidate I-Cache */
1279                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1280                 {
1281                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1282                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1283                         /* Invalidate Cache single entry with MVA to PoU */
1284                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1285                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1286                 }
1287                 /* invalidate D-Cache */
1288                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1289                 {
1290                         /* Invalidate Cache single entry with MVA to PoC */
1291                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1292                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1293                 }
1294         }
1295
1296         return retval;
1297 }
1298
1299 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1300                 uint32_t count, uint8_t *buffer)
1301 {
1302         return cortex_a8_write_memory(target, address, 4, count, buffer);
1303 }
1304
1305
1306 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1307 {
1308 #if 0
1309         u16 dcrdr;
1310
1311         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1312         *ctrl = (uint8_t)dcrdr;
1313         *value = (uint8_t)(dcrdr >> 8);
1314
1315         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1316
1317         /* write ack back to software dcc register
1318          * signify we have read data */
1319         if (dcrdr & (1 << 0))
1320         {
1321                 dcrdr = 0;
1322                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1323         }
1324 #endif
1325         return ERROR_OK;
1326 }
1327
1328
1329 static int cortex_a8_handle_target_request(void *priv)
1330 {
1331         struct target *target = priv;
1332         struct armv7a_common *armv7a = target_to_armv7a(target);
1333         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1334
1335         if (!target_was_examined(target))
1336                 return ERROR_OK;
1337         if (!target->dbg_msg_enabled)
1338                 return ERROR_OK;
1339
1340         if (target->state == TARGET_RUNNING)
1341         {
1342                 uint8_t data = 0;
1343                 uint8_t ctrl = 0;
1344
1345                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1346
1347                 /* check if we have data */
1348                 if (ctrl & (1 << 0))
1349                 {
1350                         uint32_t request;
1351
1352                         /* we assume target is quick enough */
1353                         request = data;
1354                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1355                         request |= (data << 8);
1356                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1357                         request |= (data << 16);
1358                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1359                         request |= (data << 24);
1360                         target_request(target, request);
1361                 }
1362         }
1363
1364         return ERROR_OK;
1365 }
1366
1367 /*
1368  * Cortex-A8 target information and configuration
1369  */
1370
1371 static int cortex_a8_examine_first(struct target *target)
1372 {
1373         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1374         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1375         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1376         int i;
1377         int retval = ERROR_OK;
1378         uint32_t didr, ctypr, ttypr, cpuid;
1379
1380         LOG_DEBUG("TODO");
1381
1382         /* Here we shall insert a proper ROM Table scan */
1383         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1384
1385         /* We do one extra read to ensure DAP is configured,
1386          * we call ahbap_debugport_init(swjdp) instead
1387          */
1388         ahbap_debugport_init(swjdp);
1389         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1390         if ((retval = mem_ap_read_atomic_u32(swjdp,
1391                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1392         {
1393                 LOG_DEBUG("Examine failed");
1394                 return retval;
1395         }
1396
1397         if ((retval = mem_ap_read_atomic_u32(swjdp,
1398                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1399         {
1400                 LOG_DEBUG("Examine failed");
1401                 return retval;
1402         }
1403
1404         if ((retval = mem_ap_read_atomic_u32(swjdp,
1405                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1406         {
1407                 LOG_DEBUG("Examine failed");
1408                 return retval;
1409         }
1410
1411         if ((retval = mem_ap_read_atomic_u32(swjdp,
1412                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1413         {
1414                 LOG_DEBUG("Examine failed");
1415                 return retval;
1416         }
1417
1418         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1419         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1420         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1421         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1422
1423         cortex_a8_dpm_setup(cortex_a8, didr);
1424
1425         /* Setup Breakpoint Register Pairs */
1426         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1427         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1428         cortex_a8->brp_num_available = cortex_a8->brp_num;
1429         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1430 //      cortex_a8->brb_enabled = ????;
1431         for (i = 0; i < cortex_a8->brp_num; i++)
1432         {
1433                 cortex_a8->brp_list[i].used = 0;
1434                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1435                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1436                 else
1437                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1438                 cortex_a8->brp_list[i].value = 0;
1439                 cortex_a8->brp_list[i].control = 0;
1440                 cortex_a8->brp_list[i].BRPn = i;
1441         }
1442
1443         /* Setup Watchpoint Register Pairs */
1444         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1445         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1446         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1447         for (i = 0; i < cortex_a8->wrp_num; i++)
1448         {
1449                 cortex_a8->wrp_list[i].used = 0;
1450                 cortex_a8->wrp_list[i].type = 0;
1451                 cortex_a8->wrp_list[i].value = 0;
1452                 cortex_a8->wrp_list[i].control = 0;
1453                 cortex_a8->wrp_list[i].WRPn = i;
1454         }
1455         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1456                         cortex_a8->brp_num , cortex_a8->wrp_num);
1457
1458         target_set_examined(target);
1459         return ERROR_OK;
1460 }
1461
1462 static int cortex_a8_examine(struct target *target)
1463 {
1464         int retval = ERROR_OK;
1465
1466         /* don't re-probe hardware after each reset */
1467         if (!target_was_examined(target))
1468                 retval = cortex_a8_examine_first(target);
1469
1470         /* Configure core debug access */
1471         if (retval == ERROR_OK)
1472                 retval = cortex_a8_init_debug_access(target);
1473
1474         return retval;
1475 }
1476
1477 /*
1478  *      Cortex-A8 target creation and initialization
1479  */
1480
1481 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1482                 struct target *target)
1483 {
1484         /* examine_first() does a bunch of this */
1485         return ERROR_OK;
1486 }
1487
1488 static int cortex_a8_init_arch_info(struct target *target,
1489                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1490 {
1491         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1492         struct arm *armv4_5 = &armv7a->armv4_5_common;
1493         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1494
1495         /* Setup struct cortex_a8_common */
1496         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1497         armv4_5->arch_info = armv7a;
1498
1499         /* prepare JTAG information for the new target */
1500         cortex_a8->jtag_info.tap = tap;
1501         cortex_a8->jtag_info.scann_size = 4;
1502
1503         swjdp->dp_select_value = -1;
1504         swjdp->ap_csw_value = -1;
1505         swjdp->ap_tar_value = -1;
1506         swjdp->jtag_info = &cortex_a8->jtag_info;
1507         swjdp->memaccess_tck = 80;
1508
1509         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1510         swjdp->tar_autoincr_block = (1 << 10);
1511
1512         cortex_a8->fast_reg_read = 0;
1513
1514
1515         /* register arch-specific functions */
1516         armv7a->examine_debug_reason = NULL;
1517
1518         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1519
1520         armv7a->pre_restore_context = NULL;
1521         armv7a->post_restore_context = NULL;
1522         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1523 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1524         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1525         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1526 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1527 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1528         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1529         armv7a->armv4_5_mmu.mmu_enabled = 0;
1530         armv7a->read_cp15 = cortex_a8_read_cp15;
1531         armv7a->write_cp15 = cortex_a8_write_cp15;
1532
1533
1534 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1535
1536         /* REVISIT v7a setup should be in a v7a-specific routine */
1537         armv4_5_init_arch_info(target, armv4_5);
1538         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1539
1540         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1541
1542         return ERROR_OK;
1543 }
1544
1545 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1546 {
1547         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1548
1549         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1550
1551         return ERROR_OK;
1552 }
1553
1554 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1555 {
1556         struct target *target = get_current_target(CMD_CTX);
1557         struct armv7a_common *armv7a = target_to_armv7a(target);
1558
1559         return armv4_5_handle_cache_info_command(CMD_CTX,
1560                         &armv7a->armv4_5_mmu.armv4_5_cache);
1561 }
1562
1563
1564 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1565 {
1566         struct target *target = get_current_target(CMD_CTX);
1567
1568         cortex_a8_init_debug_access(target);
1569
1570         return ERROR_OK;
1571 }
1572
1573
1574 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1575 {
1576         struct command *cortex_a8_cmd;
1577         int retval = ERROR_OK;
1578
1579         armv4_5_register_commands(cmd_ctx);
1580         armv7a_register_commands(cmd_ctx);
1581
1582         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1583                         NULL, COMMAND_ANY,
1584                         "cortex_a8 specific commands");
1585
1586         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1587                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1588                         "display information about target caches");
1589
1590         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1591                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1592                         "Initialize core debug");
1593
1594         return retval;
1595 }
1596
1597 struct target_type cortexa8_target = {
1598         .name = "cortex_a8",
1599
1600         .poll = cortex_a8_poll,
1601         .arch_state = armv7a_arch_state,
1602
1603         .target_request_data = NULL,
1604
1605         .halt = cortex_a8_halt,
1606         .resume = cortex_a8_resume,
1607         .step = cortex_a8_step,
1608
1609         .assert_reset = cortex_a8_assert_reset,
1610         .deassert_reset = cortex_a8_deassert_reset,
1611         .soft_reset_halt = NULL,
1612
1613         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1614
1615         .read_memory = cortex_a8_read_memory,
1616         .write_memory = cortex_a8_write_memory,
1617         .bulk_write_memory = cortex_a8_bulk_write_memory,
1618
1619         .checksum_memory = arm_checksum_memory,
1620         .blank_check_memory = arm_blank_check_memory,
1621
1622         .run_algorithm = armv4_5_run_algorithm,
1623
1624         .add_breakpoint = cortex_a8_add_breakpoint,
1625         .remove_breakpoint = cortex_a8_remove_breakpoint,
1626         .add_watchpoint = NULL,
1627         .remove_watchpoint = NULL,
1628
1629         .register_commands = cortex_a8_register_commands,
1630         .target_create = cortex_a8_target_create,
1631         .init_target = cortex_a8_init_target,
1632         .examine = cortex_a8_examine,
1633         .mrc = cortex_a8_mrc,
1634         .mcr = cortex_a8_mcr,
1635 };