]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
29fffaebb2154944e2225ea4dccb3c000731ff56
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70 int cortex_a8_assert_reset(target_t *target);
71 int cortex_a8_deassert_reset(target_t *target);
72
73 static int cortex_a8_mrc(target_t *target, int cpnum, uint32_t op1,
74                 uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value);
75 static int cortex_a8_mcr(target_t *target, int cpnum, uint32_t op1,
76                 uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value);
77
78 target_type_t cortexa8_target =
79 {
80         .name = "cortex_a8",
81
82         .poll = cortex_a8_poll,
83         .arch_state = armv7a_arch_state,
84
85         .target_request_data = NULL,
86
87         .halt = cortex_a8_halt,
88         .resume = cortex_a8_resume,
89         .step = cortex_a8_step,
90
91         .assert_reset = cortex_a8_assert_reset,
92         .deassert_reset = cortex_a8_deassert_reset,
93         .soft_reset_halt = NULL,
94
95         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
96
97         .read_memory = cortex_a8_read_memory,
98         .write_memory = cortex_a8_write_memory,
99         .bulk_write_memory = cortex_a8_bulk_write_memory,
100         .checksum_memory = arm7_9_checksum_memory,
101         .blank_check_memory = arm7_9_blank_check_memory,
102
103         .run_algorithm = armv4_5_run_algorithm,
104
105         .add_breakpoint = cortex_a8_add_breakpoint,
106         .remove_breakpoint = cortex_a8_remove_breakpoint,
107         .add_watchpoint = NULL,
108         .remove_watchpoint = NULL,
109
110         .register_commands = cortex_a8_register_commands,
111         .target_create = cortex_a8_target_create,
112         .init_target = cortex_a8_init_target,
113         .examine = cortex_a8_examine,
114         .mrc = cortex_a8_mrc,
115         .mcr = cortex_a8_mcr,
116 };
117
118 /*
119  * FIXME do topology discovery using the ROM; don't
120  * assume this is an OMAP3.
121  */
122 #define swjdp_memoryap 0
123 #define swjdp_debugap 1
124 #define OMAP3530_DEBUG_BASE 0x54011000
125
126 /*
127  * Cortex-A8 Basic debug access, very low level assumes state is saved
128  */
129 int cortex_a8_init_debug_access(target_t *target)
130 {
131         /* get pointers to arch-specific information */
132         armv4_5_common_t *armv4_5 = target->arch_info;
133         armv7a_common_t *armv7a = armv4_5->arch_info;
134         swjdp_common_t *swjdp = &armv7a->swjdp_info;
135
136         int retval;
137         uint32_t dummy;
138
139         LOG_DEBUG(" ");
140
141         /* Unlocking the debug registers for modification */
142         /* The debugport might be uninitialised so try twice */
143         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
144         if (retval != ERROR_OK)
145                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
146         /* Clear Sticky Power Down status Bit in PRSR to enable access to
147            the registers in the Core Power Domain */
148         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
149         /* Enabling of instruction execution in debug mode is done in debug_entry code */
150
151         /* Resync breakpoint registers */
152
153         /* Since this is likley called from init or reset, update targtet state information*/
154         cortex_a8_poll(target);
155
156         return retval;
157 }
158
159 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
160 {
161         uint32_t dscr;
162         int retval;
163         /* get pointers to arch-specific information */
164         armv4_5_common_t *armv4_5 = target->arch_info;
165         armv7a_common_t *armv7a = armv4_5->arch_info;
166         swjdp_common_t *swjdp = &armv7a->swjdp_info;
167
168         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
169         do
170         {
171                 retval = mem_ap_read_atomic_u32(swjdp,
172                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
173                 if (retval != ERROR_OK)
174                 {
175                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
176                         return retval;
177                 }
178         }
179         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
180
181         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
182
183         do
184         {
185                 retval = mem_ap_read_atomic_u32(swjdp,
186                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
187                 if (retval != ERROR_OK)
188                 {
189                         LOG_ERROR("Could not read DSCR register");
190                         return retval;
191                 }
192         }
193         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
194
195         return retval;
196 }
197
198 /**************************************************************************
199 Read core register with very few exec_opcode, fast but needs work_area.
200 This can cause problems with MMU active.
201 **************************************************************************/
202 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
203                 uint32_t * regfile)
204 {
205         int retval = ERROR_OK;
206         /* get pointers to arch-specific information */
207         armv4_5_common_t *armv4_5 = target->arch_info;
208         armv7a_common_t *armv7a = armv4_5->arch_info;
209         swjdp_common_t *swjdp = &armv7a->swjdp_info;
210
211         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
212         cortex_a8_dap_write_coreregister_u32(target, address, 0);
213         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
214         dap_ap_select(swjdp, swjdp_memoryap);
215         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
216         dap_ap_select(swjdp, swjdp_debugap);
217
218         return retval;
219 }
220
221 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
222                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
223 {
224         int retval;
225         /* get pointers to arch-specific information */
226         armv4_5_common_t *armv4_5 = target->arch_info;
227         armv7a_common_t *armv7a = armv4_5->arch_info;
228         swjdp_common_t *swjdp = &armv7a->swjdp_info;
229
230         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
231         /* Move R0 to DTRTX */
232         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
233
234         /* Read DCCTX */
235         retval = mem_ap_read_atomic_u32(swjdp,
236                         armv7a->debug_base + CPUDBG_DTRTX, value);
237
238         return retval;
239 }
240
241 int cortex_a8_write_cp(target_t *target, uint32_t value,
242         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
243 {
244         int retval;
245         uint32_t dscr;
246
247         /* get pointers to arch-specific information */
248         armv4_5_common_t *armv4_5 = target->arch_info;
249         armv7a_common_t *armv7a = armv4_5->arch_info;
250         swjdp_common_t *swjdp = &armv7a->swjdp_info;
251
252         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
253
254         /* Check that DCCRX is not full */
255         retval = mem_ap_read_atomic_u32(swjdp,
256                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
257         if (dscr & (1 << DSCR_DTR_RX_FULL))
258         {
259                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
260                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
261                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
262         }
263
264         retval = mem_ap_write_u32(swjdp,
265                         armv7a->debug_base + CPUDBG_DTRRX, value);
266         /* Move DTRRX to r0 */
267         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
268
269         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
270         return retval;
271 }
272
273 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
274                 uint32_t CRn, uint32_t CRm, uint32_t *value)
275 {
276         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
277 }
278
279 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
280                 uint32_t CRn, uint32_t CRm, uint32_t value)
281 {
282         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
283 }
284
285 static int cortex_a8_mrc(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
286 {
287         if (cpnum!=15)
288         {
289                 LOG_ERROR("Only cp15 is supported");
290                 return ERROR_FAIL;
291         }
292         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
293 }
294
295 static int cortex_a8_mcr(target_t *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
296 {
297         if (cpnum!=15)
298         {
299                 LOG_ERROR("Only cp15 is supported");
300                 return ERROR_FAIL;
301         }
302         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
303 }
304
305
306
307 int cortex_a8_dap_read_coreregister_u32(target_t *target,
308                 uint32_t *value, int regnum)
309 {
310         int retval = ERROR_OK;
311         uint8_t reg = regnum&0xFF;
312         uint32_t dscr;
313
314         /* get pointers to arch-specific information */
315         armv4_5_common_t *armv4_5 = target->arch_info;
316         armv7a_common_t *armv7a = armv4_5->arch_info;
317         swjdp_common_t *swjdp = &armv7a->swjdp_info;
318
319         if (reg > 16)
320                 return retval;
321
322         if (reg < 15)
323         {
324                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
325                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
326         }
327         else if (reg == 15)
328         {
329                 cortex_a8_exec_opcode(target, 0xE1A0000F);
330                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
331         }
332         else if (reg == 16)
333         {
334                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
335                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
336         }
337
338         /* Read DTRRTX */
339         do
340         {
341                 retval = mem_ap_read_atomic_u32(swjdp,
342                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
343         }
344         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
345
346         retval = mem_ap_read_atomic_u32(swjdp,
347                         armv7a->debug_base + CPUDBG_DTRTX, value);
348
349         return retval;
350 }
351
352 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
353 {
354         int retval = ERROR_OK;
355         uint8_t Rd = regnum&0xFF;
356         uint32_t dscr;
357
358         /* get pointers to arch-specific information */
359         armv4_5_common_t *armv4_5 = target->arch_info;
360         armv7a_common_t *armv7a = armv4_5->arch_info;
361         swjdp_common_t *swjdp = &armv7a->swjdp_info;
362
363         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
364
365         /* Check that DCCRX is not full */
366         retval = mem_ap_read_atomic_u32(swjdp,
367                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
368         if (dscr & (1 << DSCR_DTR_RX_FULL))
369         {
370                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
371                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
372                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
373         }
374
375         if (Rd > 16)
376                 return retval;
377
378         /* Write to DCCRX */
379         retval = mem_ap_write_u32(swjdp,
380                         armv7a->debug_base + CPUDBG_DTRRX, value);
381
382         if (Rd < 15)
383         {
384                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
385                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
386         }
387         else if (Rd == 15)
388         {
389                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
390                 cortex_a8_exec_opcode(target, 0xE1A0F000);
391         }
392         else if (Rd == 16)
393         {
394                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
395                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
396                 /* Execute a PrefetchFlush instruction through the ITR. */
397                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
398         }
399
400         return retval;
401 }
402
403 /* Write to memory mapped registers directly with no cache or mmu handling */
404 int cortex_a8_dap_write_memap_register_u32(target_t *target, uint32_t address, uint32_t value)
405 {
406         int retval;
407
408         /* get pointers to arch-specific information */
409         armv4_5_common_t *armv4_5 = target->arch_info;
410         armv7a_common_t *armv7a = armv4_5->arch_info;
411         swjdp_common_t *swjdp = &armv7a->swjdp_info;
412
413         retval = mem_ap_write_atomic_u32(swjdp, address, value);
414
415         return retval;
416 }
417
418 /*
419  * Cortex-A8 Run control
420  */
421
422 int cortex_a8_poll(target_t *target)
423 {
424         int retval = ERROR_OK;
425         uint32_t dscr;
426         /* get pointers to arch-specific information */
427         armv4_5_common_t *armv4_5 = target->arch_info;
428         armv7a_common_t *armv7a = armv4_5->arch_info;
429         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
430         swjdp_common_t *swjdp = &armv7a->swjdp_info;
431
432
433         enum target_state prev_target_state = target->state;
434
435         uint8_t saved_apsel = dap_ap_get_select(swjdp);
436         dap_ap_select(swjdp, swjdp_debugap);
437         retval = mem_ap_read_atomic_u32(swjdp,
438                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
439         if (retval != ERROR_OK)
440         {
441                 dap_ap_select(swjdp, saved_apsel);
442                 return retval;
443         }
444         cortex_a8->cpudbg_dscr = dscr;
445
446         if ((dscr & 0x3) == 0x3)
447         {
448                 if (prev_target_state != TARGET_HALTED)
449                 {
450                         /* We have a halting debug event */
451                         LOG_DEBUG("Target halted");
452                         target->state = TARGET_HALTED;
453                         if ((prev_target_state == TARGET_RUNNING)
454                                         || (prev_target_state == TARGET_RESET))
455                         {
456                                 retval = cortex_a8_debug_entry(target);
457                                 if (retval != ERROR_OK)
458                                         return retval;
459
460                                 target_call_event_callbacks(target,
461                                                 TARGET_EVENT_HALTED);
462                         }
463                         if (prev_target_state == TARGET_DEBUG_RUNNING)
464                         {
465                                 LOG_DEBUG(" ");
466
467                                 retval = cortex_a8_debug_entry(target);
468                                 if (retval != ERROR_OK)
469                                         return retval;
470
471                                 target_call_event_callbacks(target,
472                                                 TARGET_EVENT_DEBUG_HALTED);
473                         }
474                 }
475         }
476         else if ((dscr & 0x3) == 0x2)
477         {
478                 target->state = TARGET_RUNNING;
479         }
480         else
481         {
482                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
483                 target->state = TARGET_UNKNOWN;
484         }
485
486         dap_ap_select(swjdp, saved_apsel);
487
488         return retval;
489 }
490
491 int cortex_a8_halt(target_t *target)
492 {
493         int retval = ERROR_OK;
494         uint32_t dscr;
495
496         /* get pointers to arch-specific information */
497         armv4_5_common_t *armv4_5 = target->arch_info;
498         armv7a_common_t *armv7a = armv4_5->arch_info;
499         swjdp_common_t *swjdp = &armv7a->swjdp_info;
500
501         uint8_t saved_apsel = dap_ap_get_select(swjdp);
502         dap_ap_select(swjdp, swjdp_debugap);
503
504         /*
505          * Tell the core to be halted by writing DRCR with 0x1
506          * and then wait for the core to be halted.
507          */
508         retval = mem_ap_write_atomic_u32(swjdp,
509                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
510
511         /*
512          * enter halting debug mode
513          */
514         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
515         retval = mem_ap_write_atomic_u32(swjdp,
516                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
517
518         if (retval != ERROR_OK)
519                 goto out;
520
521         do {
522                 mem_ap_read_atomic_u32(swjdp,
523                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
524         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
525
526         target->debug_reason = DBG_REASON_DBGRQ;
527
528 out:
529         dap_ap_select(swjdp, saved_apsel);
530         return retval;
531 }
532
533 int cortex_a8_resume(struct target_s *target, int current,
534                 uint32_t address, int handle_breakpoints, int debug_execution)
535 {
536         /* get pointers to arch-specific information */
537         armv4_5_common_t *armv4_5 = target->arch_info;
538         armv7a_common_t *armv7a = armv4_5->arch_info;
539         swjdp_common_t *swjdp = &armv7a->swjdp_info;
540
541 //      breakpoint_t *breakpoint = NULL;
542         uint32_t resume_pc, dscr;
543
544         uint8_t saved_apsel = dap_ap_get_select(swjdp);
545         dap_ap_select(swjdp, swjdp_debugap);
546
547         if (!debug_execution)
548         {
549                 target_free_all_working_areas(target);
550 //              cortex_m3_enable_breakpoints(target);
551 //              cortex_m3_enable_watchpoints(target);
552         }
553
554 #if 0
555         if (debug_execution)
556         {
557                 /* Disable interrupts */
558                 /* We disable interrupts in the PRIMASK register instead of
559                  * masking with C_MASKINTS,
560                  * This is probably the same issue as Cortex-M3 Errata 377493:
561                  * C_MASKINTS in parallel with disabled interrupts can cause
562                  * local faults to not be taken. */
563                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
564                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
565                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
566
567                 /* Make sure we are in Thumb mode */
568                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
569                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
570                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
571                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
572         }
573 #endif
574
575         /* current = 1: continue on current pc, otherwise continue at <address> */
576         resume_pc = buf_get_u32(
577                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
578                                 armv4_5->core_mode, 15).value,
579                         0, 32);
580         if (!current)
581                 resume_pc = address;
582
583         /* Make sure that the Armv7 gdb thumb fixups does not
584          * kill the return address
585          */
586         if (armv7a->core_state == ARMV7A_STATE_ARM)
587         {
588                 resume_pc &= 0xFFFFFFFC;
589         }
590         /* When the return address is loaded into PC
591          * bit 0 must be 1 to stay in Thumb state
592          */
593         if (armv7a->core_state == ARMV7A_STATE_THUMB)
594         {
595                 resume_pc |= 0x1;
596         }
597         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
598         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
599                                 armv4_5->core_mode, 15).value,
600                         0, 32, resume_pc);
601         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
602                         armv4_5->core_mode, 15).dirty = 1;
603         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
604                         armv4_5->core_mode, 15).valid = 1;
605
606         cortex_a8_restore_context(target);
607 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
608 #if 0
609         /* the front-end may request us not to handle breakpoints */
610         if (handle_breakpoints)
611         {
612                 /* Single step past breakpoint at current address */
613                 if ((breakpoint = breakpoint_find(target, resume_pc)))
614                 {
615                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
616                         cortex_m3_unset_breakpoint(target, breakpoint);
617                         cortex_m3_single_step_core(target);
618                         cortex_m3_set_breakpoint(target, breakpoint);
619                 }
620         }
621
622 #endif
623         /* Restart core and wait for it to be started */
624         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
625
626         do {
627                 mem_ap_read_atomic_u32(swjdp,
628                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
629         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
630
631         target->debug_reason = DBG_REASON_NOTHALTED;
632         target->state = TARGET_RUNNING;
633
634         /* registers are now invalid */
635         armv4_5_invalidate_core_regs(target);
636
637         if (!debug_execution)
638         {
639                 target->state = TARGET_RUNNING;
640                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
641                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
642         }
643         else
644         {
645                 target->state = TARGET_DEBUG_RUNNING;
646                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
647                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
648         }
649
650         dap_ap_select(swjdp, saved_apsel);
651
652         return ERROR_OK;
653 }
654
655 int cortex_a8_debug_entry(target_t *target)
656 {
657         int i;
658         uint32_t regfile[16], pc, cpsr, dscr;
659         int retval = ERROR_OK;
660         working_area_t *regfile_working_area = NULL;
661
662         /* get pointers to arch-specific information */
663         armv4_5_common_t *armv4_5 = target->arch_info;
664         armv7a_common_t *armv7a = armv4_5->arch_info;
665         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
666         swjdp_common_t *swjdp = &armv7a->swjdp_info;
667
668         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
669
670         /* Enable the ITR execution once we are in debug mode */
671         mem_ap_read_atomic_u32(swjdp,
672                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
673         dscr |= (1 << DSCR_EXT_INT_EN);
674         retval = mem_ap_write_atomic_u32(swjdp,
675                         armv7a->debug_base + CPUDBG_DSCR, dscr);
676
677         /* Examine debug reason */
678         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
679         {
680                 case 0:
681                 case 4:
682                         target->debug_reason = DBG_REASON_DBGRQ;
683                         break;
684                 case 1:
685                 case 3:
686                         target->debug_reason = DBG_REASON_BREAKPOINT;
687                         break;
688                 case 10:
689                         target->debug_reason = DBG_REASON_WATCHPOINT;
690                         break;
691                 default:
692                         target->debug_reason = DBG_REASON_UNDEFINED;
693                         break;
694         }
695
696         /* Examine target state and mode */
697         if (cortex_a8->fast_reg_read)
698                 target_alloc_working_area(target, 64, &regfile_working_area);
699
700         /* First load register acessible through core debug port*/
701         if (!regfile_working_area)
702         {
703                 for (i = 0; i <= 15; i++)
704                         cortex_a8_dap_read_coreregister_u32(target,
705                                         &regfile[i], i);
706         }
707         else
708         {
709                 dap_ap_select(swjdp, swjdp_memoryap);
710                 cortex_a8_read_regs_through_mem(target,
711                                 regfile_working_area->address, regfile);
712                 dap_ap_select(swjdp, swjdp_memoryap);
713                 target_free_working_area(target, regfile_working_area);
714         }
715
716         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
717         pc = regfile[15];
718         dap_ap_select(swjdp, swjdp_debugap);
719         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
720
721         armv4_5->core_mode = cpsr & 0x1F;
722         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
723
724         for (i = 0; i <= ARM_PC; i++)
725         {
726                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
727                                         armv4_5->core_mode, i).value,
728                                 0, 32, regfile[i]);
729                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
730                                 armv4_5->core_mode, i).valid = 1;
731                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
732                                 armv4_5->core_mode, i).dirty = 0;
733         }
734         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
735                                 armv4_5->core_mode, 16).value,
736                         0, 32, cpsr);
737         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
738         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
739
740         /* Fixup PC Resume Address */
741         if (armv7a->core_state == ARMV7A_STATE_THUMB)
742         {
743                 // T bit set for Thumb or ThumbEE state
744                 regfile[ARM_PC] -= 4;
745         }
746         else
747         {
748                 // ARM state
749                 regfile[ARM_PC] -= 8;
750         }
751         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
752                                 armv4_5->core_mode, ARM_PC).value,
753                         0, 32, regfile[ARM_PC]);
754
755         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
756                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
757                                 armv4_5->core_mode, 0).valid;
758         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
759                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
760                                 armv4_5->core_mode, 15).valid;
761
762 #if 0
763 /* TODO, Move this */
764         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
765         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
766         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
767
768         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
769         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
770
771         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
772         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
773 #endif
774
775         /* Are we in an exception handler */
776 //      armv4_5->exception_number = 0;
777         if (armv7a->post_debug_entry)
778                 armv7a->post_debug_entry(target);
779
780
781
782         return retval;
783
784 }
785
786 void cortex_a8_post_debug_entry(target_t *target)
787 {
788         /* get pointers to arch-specific information */
789         armv4_5_common_t *armv4_5 = target->arch_info;
790         armv7a_common_t *armv7a = armv4_5->arch_info;
791         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
792
793 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
794         /* examine cp15 control reg */
795         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
796         jtag_execute_queue();
797         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
798
799         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
800         {
801                 uint32_t cache_type_reg;
802                 /* identify caches */
803                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
804                 jtag_execute_queue();
805                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
806                 armv4_5_identify_cache(cache_type_reg,
807                                 &armv7a->armv4_5_mmu.armv4_5_cache);
808         }
809
810         armv7a->armv4_5_mmu.mmu_enabled =
811                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
812         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
813                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
814         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
815                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
816
817
818 }
819
820 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
821                 int handle_breakpoints)
822 {
823         /* get pointers to arch-specific information */
824         armv4_5_common_t *armv4_5 = target->arch_info;
825         armv7a_common_t *armv7a = armv4_5->arch_info;
826         breakpoint_t *breakpoint = NULL;
827         breakpoint_t stepbreakpoint;
828
829         int timeout = 100;
830
831         if (target->state != TARGET_HALTED)
832         {
833                 LOG_WARNING("target not halted");
834                 return ERROR_TARGET_NOT_HALTED;
835         }
836
837         /* current = 1: continue on current pc, otherwise continue at <address> */
838         if (!current)
839         {
840                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
841                                         armv4_5->core_mode, ARM_PC).value,
842                                 0, 32, address);
843         }
844         else
845         {
846                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
847                                         armv4_5->core_mode, ARM_PC).value,
848                                 0, 32);
849         }
850
851         /* The front-end may request us not to handle breakpoints.
852          * But since Cortex-A8 uses breakpoint for single step,
853          * we MUST handle breakpoints.
854          */
855         handle_breakpoints = 1;
856         if (handle_breakpoints) {
857                 breakpoint = breakpoint_find(target,
858                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
859                                         armv4_5->core_mode, 15).value,
860                         0, 32));
861                 if (breakpoint)
862                         cortex_a8_unset_breakpoint(target, breakpoint);
863         }
864
865         /* Setup single step breakpoint */
866         stepbreakpoint.address = address;
867         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
868         stepbreakpoint.type = BKPT_HARD;
869         stepbreakpoint.set = 0;
870
871         /* Break on IVA mismatch */
872         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
873
874         target->debug_reason = DBG_REASON_SINGLESTEP;
875
876         cortex_a8_resume(target, 1, address, 0, 0);
877
878         while (target->state != TARGET_HALTED)
879         {
880                 cortex_a8_poll(target);
881                 if (--timeout == 0)
882                 {
883                         LOG_WARNING("timeout waiting for target halt");
884                         break;
885                 }
886         }
887
888         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
889         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
890
891         if (breakpoint)
892                 cortex_a8_set_breakpoint(target, breakpoint, 0);
893
894         if (target->state != TARGET_HALTED)
895                 LOG_DEBUG("target stepped");
896
897         return ERROR_OK;
898 }
899
900 int cortex_a8_restore_context(target_t *target)
901 {
902         int i;
903         uint32_t value;
904
905         /* get pointers to arch-specific information */
906         armv4_5_common_t *armv4_5 = target->arch_info;
907         armv7a_common_t *armv7a = armv4_5->arch_info;
908
909         LOG_DEBUG(" ");
910
911         if (armv7a->pre_restore_context)
912                 armv7a->pre_restore_context(target);
913
914         for (i = 15; i >= 0; i--)
915         {
916                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
917                                         armv4_5->core_mode, i).dirty)
918                 {
919                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
920                                                 armv4_5->core_mode, i).value,
921                                         0, 32);
922                         /* TODO Check return values */
923                         cortex_a8_dap_write_coreregister_u32(target, value, i);
924                 }
925         }
926
927         if (armv7a->post_restore_context)
928                 armv7a->post_restore_context(target);
929
930         return ERROR_OK;
931 }
932
933
934 /*
935  * Cortex-A8 Core register functions
936  */
937
938 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
939                 armv4_5_mode_t mode, uint32_t * value)
940 {
941         int retval;
942         /* get pointers to arch-specific information */
943         armv4_5_common_t *armv4_5 = target->arch_info;
944
945         if ((num <= ARM_CPSR))
946         {
947                 /* read a normal core register */
948                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
949
950                 if (retval != ERROR_OK)
951                 {
952                         LOG_ERROR("JTAG failure %i", retval);
953                         return ERROR_JTAG_DEVICE_ERROR;
954                 }
955                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
956         }
957         else
958         {
959                 return ERROR_INVALID_ARGUMENTS;
960         }
961
962         /* Register other than r0 - r14 uses r0 for access */
963         if (num > 14)
964                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
965                                 armv4_5->core_mode, 0).dirty =
966                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
967                                 armv4_5->core_mode, 0).valid;
968         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
969                                 armv4_5->core_mode, 15).dirty =
970                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
971                                 armv4_5->core_mode, 15).valid;
972
973         return ERROR_OK;
974 }
975
976 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
977                 armv4_5_mode_t mode, uint32_t value)
978 {
979         int retval;
980 //      uint32_t reg;
981
982         /* get pointers to arch-specific information */
983         armv4_5_common_t *armv4_5 = target->arch_info;
984
985 #ifdef ARMV7_GDB_HACKS
986         /* If the LR register is being modified, make sure it will put us
987          * in "thumb" mode, or an INVSTATE exception will occur. This is a
988          * hack to deal with the fact that gdb will sometimes "forge"
989          * return addresses, and doesn't set the LSB correctly (i.e., when
990          * printing expressions containing function calls, it sets LR=0.) */
991
992         if (num == 14)
993                 value |= 0x01;
994 #endif
995
996         if ((num <= ARM_CPSR))
997         {
998                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
999                 if (retval != ERROR_OK)
1000                 {
1001                         LOG_ERROR("JTAG failure %i", retval);
1002                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
1003                                         armv4_5->core_mode, num).dirty =
1004                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
1005                                         armv4_5->core_mode, num).valid;
1006                         return ERROR_JTAG_DEVICE_ERROR;
1007                 }
1008                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
1009         }
1010         else
1011         {
1012                 return ERROR_INVALID_ARGUMENTS;
1013         }
1014
1015         return ERROR_OK;
1016 }
1017
1018
1019 int cortex_a8_read_core_reg(struct target_s *target, int num,
1020                 enum armv4_5_mode mode)
1021 {
1022         uint32_t value;
1023         int retval;
1024         armv4_5_common_t *armv4_5 = target->arch_info;
1025         cortex_a8_dap_read_coreregister_u32(target, &value, num);
1026
1027         if ((retval = jtag_execute_queue()) != ERROR_OK)
1028         {
1029                 return retval;
1030         }
1031
1032         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
1033         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
1034         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
1035                         mode, num).value, 0, 32, value);
1036
1037         return ERROR_OK;
1038 }
1039
1040 int cortex_a8_write_core_reg(struct target_s *target, int num,
1041                 enum armv4_5_mode mode, uint32_t value)
1042 {
1043         int retval;
1044         armv4_5_common_t *armv4_5 = target->arch_info;
1045
1046         cortex_a8_dap_write_coreregister_u32(target, value, num);
1047         if ((retval = jtag_execute_queue()) != ERROR_OK)
1048         {
1049                 return retval;
1050         }
1051
1052         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
1053         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
1054
1055         return ERROR_OK;
1056 }
1057
1058
1059 /*
1060  * Cortex-A8 Breakpoint and watchpoint fuctions
1061  */
1062
1063 /* Setup hardware Breakpoint Register Pair */
1064 int cortex_a8_set_breakpoint(struct target_s *target,
1065                 breakpoint_t *breakpoint, uint8_t matchmode)
1066 {
1067         int retval;
1068         int brp_i=0;
1069         uint32_t control;
1070         uint8_t byte_addr_select = 0x0F;
1071
1072
1073         /* get pointers to arch-specific information */
1074         armv4_5_common_t *armv4_5 = target->arch_info;
1075         armv7a_common_t *armv7a = armv4_5->arch_info;
1076         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1077         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1078
1079         if (breakpoint->set)
1080         {
1081                 LOG_WARNING("breakpoint already set");
1082                 return ERROR_OK;
1083         }
1084
1085         if (breakpoint->type == BKPT_HARD)
1086         {
1087                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1088                         brp_i++ ;
1089                 if (brp_i >= cortex_a8->brp_num)
1090                 {
1091                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1092                         exit(-1);
1093                 }
1094                 breakpoint->set = brp_i + 1;
1095                 if (breakpoint->length == 2)
1096                 {
1097                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1098                 }
1099                 control = ((matchmode & 0x7) << 20)
1100                                 | (byte_addr_select << 5)
1101                                 | (3 << 1) | 1;
1102                 brp_list[brp_i].used = 1;
1103                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1104                 brp_list[brp_i].control = control;
1105                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1106                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1107                                 brp_list[brp_i].value);
1108                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1109                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1110                                 brp_list[brp_i].control);
1111                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1112                                 brp_list[brp_i].control,
1113                                 brp_list[brp_i].value);
1114         }
1115         else if (breakpoint->type == BKPT_SOFT)
1116         {
1117                 uint8_t code[4];
1118                 if (breakpoint->length == 2)
1119                 {
1120                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1121                 }
1122                 else
1123                 {
1124                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1125                 }
1126                 retval = target->type->read_memory(target,
1127                                 breakpoint->address & 0xFFFFFFFE,
1128                                 breakpoint->length, 1,
1129                                 breakpoint->orig_instr);
1130                 if (retval != ERROR_OK)
1131                         return retval;
1132                 retval = target->type->write_memory(target,
1133                                 breakpoint->address & 0xFFFFFFFE,
1134                                 breakpoint->length, 1, code);
1135                 if (retval != ERROR_OK)
1136                         return retval;
1137                 breakpoint->set = 0x11; /* Any nice value but 0 */
1138         }
1139
1140         return ERROR_OK;
1141 }
1142
1143 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1144 {
1145         int retval;
1146         /* get pointers to arch-specific information */
1147         armv4_5_common_t *armv4_5 = target->arch_info;
1148         armv7a_common_t *armv7a = armv4_5->arch_info;
1149         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1150         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1151
1152         if (!breakpoint->set)
1153         {
1154                 LOG_WARNING("breakpoint not set");
1155                 return ERROR_OK;
1156         }
1157
1158         if (breakpoint->type == BKPT_HARD)
1159         {
1160                 int brp_i = breakpoint->set - 1;
1161                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1162                 {
1163                         LOG_DEBUG("Invalid BRP number in breakpoint");
1164                         return ERROR_OK;
1165                 }
1166                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1167                                 brp_list[brp_i].control, brp_list[brp_i].value);
1168                 brp_list[brp_i].used = 0;
1169                 brp_list[brp_i].value = 0;
1170                 brp_list[brp_i].control = 0;
1171                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1172                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1173                                 brp_list[brp_i].control);
1174                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1175                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1176                                 brp_list[brp_i].value);
1177         }
1178         else
1179         {
1180                 /* restore original instruction (kept in target endianness) */
1181                 if (breakpoint->length == 4)
1182                 {
1183                         retval = target->type->write_memory(target,
1184                                         breakpoint->address & 0xFFFFFFFE,
1185                                         4, 1, breakpoint->orig_instr);
1186                         if (retval != ERROR_OK)
1187                                 return retval;
1188                 }
1189                 else
1190                 {
1191                         retval = target->type->write_memory(target,
1192                                         breakpoint->address & 0xFFFFFFFE,
1193                                         2, 1, breakpoint->orig_instr);
1194                         if (retval != ERROR_OK)
1195                                 return retval;
1196                 }
1197         }
1198         breakpoint->set = 0;
1199
1200         return ERROR_OK;
1201 }
1202
1203 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1204 {
1205         /* get pointers to arch-specific information */
1206         armv4_5_common_t *armv4_5 = target->arch_info;
1207         armv7a_common_t *armv7a = armv4_5->arch_info;
1208         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1209
1210         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1211         {
1212                 LOG_INFO("no hardware breakpoint available");
1213                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1214         }
1215
1216         if (breakpoint->type == BKPT_HARD)
1217                 cortex_a8->brp_num_available--;
1218         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1219
1220         return ERROR_OK;
1221 }
1222
1223 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1224 {
1225         /* get pointers to arch-specific information */
1226         armv4_5_common_t *armv4_5 = target->arch_info;
1227         armv7a_common_t *armv7a = armv4_5->arch_info;
1228         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1229
1230 #if 0
1231 /* It is perfectly possible to remove brakpoints while the taget is running */
1232         if (target->state != TARGET_HALTED)
1233         {
1234                 LOG_WARNING("target not halted");
1235                 return ERROR_TARGET_NOT_HALTED;
1236         }
1237 #endif
1238
1239         if (breakpoint->set)
1240         {
1241                 cortex_a8_unset_breakpoint(target, breakpoint);
1242                 if (breakpoint->type == BKPT_HARD)
1243                         cortex_a8->brp_num_available++ ;
1244         }
1245
1246
1247         return ERROR_OK;
1248 }
1249
1250
1251
1252 /*
1253  * Cortex-A8 Reset fuctions
1254  */
1255
1256 int cortex_a8_assert_reset(target_t *target)
1257 {
1258
1259         LOG_DEBUG(" ");
1260
1261         /* registers are now invalid */
1262         armv4_5_invalidate_core_regs(target);
1263
1264         target->state = TARGET_RESET;
1265
1266         return ERROR_OK;
1267 }
1268
1269 int cortex_a8_deassert_reset(target_t *target)
1270 {
1271
1272         LOG_DEBUG(" ");
1273
1274         if (target->reset_halt)
1275         {
1276                 int retval;
1277                 if ((retval = target_halt(target)) != ERROR_OK)
1278                         return retval;
1279         }
1280
1281         return ERROR_OK;
1282 }
1283
1284 /*
1285  * Cortex-A8 Memory access
1286  *
1287  * This is same Cortex M3 but we must also use the correct
1288  * ap number for every access.
1289  */
1290
1291 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1292                 uint32_t size, uint32_t count, uint8_t *buffer)
1293 {
1294         /* get pointers to arch-specific information */
1295         armv4_5_common_t *armv4_5 = target->arch_info;
1296         armv7a_common_t *armv7a = armv4_5->arch_info;
1297         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1298
1299         int retval = ERROR_OK;
1300
1301         /* sanitize arguments */
1302         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1303                 return ERROR_INVALID_ARGUMENTS;
1304
1305         /* cortex_a8 handles unaligned memory access */
1306
1307 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1308
1309         switch (size)
1310         {
1311                 case 4:
1312                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1313                         break;
1314                 case 2:
1315                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1316                         break;
1317                 case 1:
1318                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1319                         break;
1320                 default:
1321                         LOG_ERROR("BUG: we shouldn't get here");
1322                         exit(-1);
1323         }
1324
1325         return retval;
1326 }
1327
1328 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1329                 uint32_t size, uint32_t count, uint8_t *buffer)
1330 {
1331         /* get pointers to arch-specific information */
1332         armv4_5_common_t *armv4_5 = target->arch_info;
1333         armv7a_common_t *armv7a = armv4_5->arch_info;
1334         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1335
1336         int retval;
1337
1338         /* sanitize arguments */
1339         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1340                 return ERROR_INVALID_ARGUMENTS;
1341
1342 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1343
1344         switch (size)
1345         {
1346                 case 4:
1347                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1348                         break;
1349                 case 2:
1350                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1351                         break;
1352                 case 1:
1353                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1354                         break;
1355                 default:
1356                         LOG_ERROR("BUG: we shouldn't get here");
1357                         exit(-1);
1358         }
1359
1360         if (target->state == TARGET_HALTED)
1361         {
1362                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1363                 /* invalidate I-Cache */
1364                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1365                 {
1366                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1367                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1368                         /* Invalidate Cache single entry with MVA to PoU */
1369                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1370                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1371                 }
1372                 /* invalidate D-Cache */
1373                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1374                 {
1375                         /* Invalidate Cache single entry with MVA to PoC */
1376                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1377                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1378                 }
1379         }
1380
1381         return retval;
1382 }
1383
1384 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1385                 uint32_t count, uint8_t *buffer)
1386 {
1387         return cortex_a8_write_memory(target, address, 4, count, buffer);
1388 }
1389
1390
1391 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1392 {
1393 #if 0
1394         u16 dcrdr;
1395
1396         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1397         *ctrl = (uint8_t)dcrdr;
1398         *value = (uint8_t)(dcrdr >> 8);
1399
1400         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1401
1402         /* write ack back to software dcc register
1403          * signify we have read data */
1404         if (dcrdr & (1 << 0))
1405         {
1406                 dcrdr = 0;
1407                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1408         }
1409 #endif
1410         return ERROR_OK;
1411 }
1412
1413
1414 int cortex_a8_handle_target_request(void *priv)
1415 {
1416         target_t *target = priv;
1417         if (!target->type->examined)
1418                 return ERROR_OK;
1419         armv4_5_common_t *armv4_5 = target->arch_info;
1420         armv7a_common_t *armv7a = armv4_5->arch_info;
1421         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1422
1423
1424         if (!target->dbg_msg_enabled)
1425                 return ERROR_OK;
1426
1427         if (target->state == TARGET_RUNNING)
1428         {
1429                 uint8_t data = 0;
1430                 uint8_t ctrl = 0;
1431
1432                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1433
1434                 /* check if we have data */
1435                 if (ctrl & (1 << 0))
1436                 {
1437                         uint32_t request;
1438
1439                         /* we assume target is quick enough */
1440                         request = data;
1441                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1442                         request |= (data << 8);
1443                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1444                         request |= (data << 16);
1445                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1446                         request |= (data << 24);
1447                         target_request(target, request);
1448                 }
1449         }
1450
1451         return ERROR_OK;
1452 }
1453
1454 /*
1455  * Cortex-A8 target information and configuration
1456  */
1457
1458 int cortex_a8_examine(struct target_s *target)
1459 {
1460         /* get pointers to arch-specific information */
1461         armv4_5_common_t *armv4_5 = target->arch_info;
1462         armv7a_common_t *armv7a = armv4_5->arch_info;
1463         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1464         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1465
1466
1467         int i;
1468         int retval = ERROR_OK;
1469         uint32_t didr, ctypr, ttypr, cpuid;
1470
1471         LOG_DEBUG("TODO");
1472
1473         /* Here we shall insert a proper ROM Table scan */
1474         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1475
1476         /* We do one extra read to ensure DAP is configured,
1477          * we call ahbap_debugport_init(swjdp) instead
1478          */
1479         ahbap_debugport_init(swjdp);
1480         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1481         if ((retval = mem_ap_read_atomic_u32(swjdp,
1482                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1483         {
1484                 LOG_DEBUG("Examine failed");
1485                 return retval;
1486         }
1487
1488         if ((retval = mem_ap_read_atomic_u32(swjdp,
1489                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1490         {
1491                 LOG_DEBUG("Examine failed");
1492                 return retval;
1493         }
1494
1495         if ((retval = mem_ap_read_atomic_u32(swjdp,
1496                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1497         {
1498                 LOG_DEBUG("Examine failed");
1499                 return retval;
1500         }
1501
1502         if ((retval = mem_ap_read_atomic_u32(swjdp,
1503                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1504         {
1505                 LOG_DEBUG("Examine failed");
1506                 return retval;
1507         }
1508
1509         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1510         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1511         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1512         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1513
1514         /* Setup Breakpoint Register Pairs */
1515         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1516         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1517         cortex_a8->brp_num_available = cortex_a8->brp_num;
1518         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1519 //      cortex_a8->brb_enabled = ????;
1520         for (i = 0; i < cortex_a8->brp_num; i++)
1521         {
1522                 cortex_a8->brp_list[i].used = 0;
1523                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1524                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1525                 else
1526                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1527                 cortex_a8->brp_list[i].value = 0;
1528                 cortex_a8->brp_list[i].control = 0;
1529                 cortex_a8->brp_list[i].BRPn = i;
1530         }
1531
1532         /* Setup Watchpoint Register Pairs */
1533         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1534         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1535         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1536         for (i = 0; i < cortex_a8->wrp_num; i++)
1537         {
1538                 cortex_a8->wrp_list[i].used = 0;
1539                 cortex_a8->wrp_list[i].type = 0;
1540                 cortex_a8->wrp_list[i].value = 0;
1541                 cortex_a8->wrp_list[i].control = 0;
1542                 cortex_a8->wrp_list[i].WRPn = i;
1543         }
1544         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1545                         cortex_a8->brp_num , cortex_a8->wrp_num);
1546
1547         /* Configure core debug access */
1548         cortex_a8_init_debug_access(target);
1549
1550         target->type->examined = 1;
1551
1552         return retval;
1553 }
1554
1555 /*
1556  *      Cortex-A8 target creation and initialization
1557  */
1558
1559 void cortex_a8_build_reg_cache(target_t *target)
1560 {
1561         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1562         /* get pointers to arch-specific information */
1563         armv4_5_common_t *armv4_5 = target->arch_info;
1564
1565         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1566         armv4_5->core_cache = (*cache_p);
1567 }
1568
1569
1570 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1571                 struct target_s *target)
1572 {
1573         cortex_a8_build_reg_cache(target);
1574         return ERROR_OK;
1575 }
1576
1577 int cortex_a8_init_arch_info(target_t *target,
1578                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1579 {
1580         armv4_5_common_t *armv4_5;
1581         armv7a_common_t *armv7a;
1582
1583         armv7a = &cortex_a8->armv7a_common;
1584         armv4_5 = &armv7a->armv4_5_common;
1585         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1586
1587         /* Setup cortex_a8_common_t */
1588         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1589         cortex_a8->arch_info = NULL;
1590         armv7a->arch_info = cortex_a8;
1591         armv4_5->arch_info = armv7a;
1592
1593         armv4_5_init_arch_info(target, armv4_5);
1594
1595         /* prepare JTAG information for the new target */
1596         cortex_a8->jtag_info.tap = tap;
1597         cortex_a8->jtag_info.scann_size = 4;
1598 LOG_DEBUG(" ");
1599         swjdp->dp_select_value = -1;
1600         swjdp->ap_csw_value = -1;
1601         swjdp->ap_tar_value = -1;
1602         swjdp->jtag_info = &cortex_a8->jtag_info;
1603         swjdp->memaccess_tck = 80;
1604
1605         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1606         swjdp->tar_autoincr_block = (1 << 10);
1607
1608         cortex_a8->fast_reg_read = 0;
1609
1610
1611         /* register arch-specific functions */
1612         armv7a->examine_debug_reason = NULL;
1613
1614         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1615
1616         armv7a->pre_restore_context = NULL;
1617         armv7a->post_restore_context = NULL;
1618         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1619 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1620         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1621         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1622 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1623 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1624         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1625         armv7a->armv4_5_mmu.mmu_enabled = 0;
1626         armv7a->read_cp15 = cortex_a8_read_cp15;
1627         armv7a->write_cp15 = cortex_a8_write_cp15;
1628
1629
1630 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1631
1632         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1633         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1634 //      armv4_5->full_context = arm7_9_full_context;
1635
1636 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1637 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1638 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1639 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1640
1641         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1642
1643         return ERROR_OK;
1644 }
1645
1646 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1647 {
1648         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1649
1650         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1651
1652         return ERROR_OK;
1653 }
1654
1655 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1656                 char *cmd, char **args, int argc)
1657 {
1658         target_t *target = get_current_target(cmd_ctx);
1659         armv4_5_common_t *armv4_5 = target->arch_info;
1660         armv7a_common_t *armv7a = armv4_5->arch_info;
1661
1662         return armv4_5_handle_cache_info_command(cmd_ctx,
1663                         &armv7a->armv4_5_mmu.armv4_5_cache);
1664 }
1665
1666
1667 static int cortex_a8_handle_dbginit_command(struct command_context_s *cmd_ctx,
1668                 char *cmd, char **args, int argc)
1669 {
1670         target_t *target = get_current_target(cmd_ctx);
1671
1672         cortex_a8_init_debug_access(target);
1673
1674         return ERROR_OK;
1675 }
1676
1677
1678 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1679 {
1680         command_t *cortex_a8_cmd;
1681         int retval = ERROR_OK;
1682
1683         armv4_5_register_commands(cmd_ctx);
1684         armv7a_register_commands(cmd_ctx);
1685
1686         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1687                         NULL, COMMAND_ANY,
1688                         "cortex_a8 specific commands");
1689
1690         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1691                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1692                         "display information about target caches");
1693
1694         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1695                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1696                         "Initialize core debug");
1697
1698         return retval;
1699 }