]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
68717df7e4cd98cfe2cf920d6d9252f90f79a49e
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88 //      .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
90
91         .read_memory = cortex_a8_read_memory,
92         .write_memory = cortex_a8_write_memory,
93         .bulk_write_memory = cortex_a8_bulk_write_memory,
94         .checksum_memory = arm7_9_checksum_memory,
95         .blank_check_memory = arm7_9_blank_check_memory,
96
97         .run_algorithm = armv4_5_run_algorithm,
98
99         .add_breakpoint = cortex_a8_add_breakpoint,
100         .remove_breakpoint = cortex_a8_remove_breakpoint,
101         .add_watchpoint = NULL,
102         .remove_watchpoint = NULL,
103
104         .register_commands = cortex_a8_register_commands,
105         .target_create = cortex_a8_target_create,
106         .init_target = cortex_a8_init_target,
107         .examine = cortex_a8_examine,
108         .quit = NULL
109 };
110
111 /*
112  * FIXME do topology discovery using the ROM; don't
113  * assume this is an OMAP3.
114  */
115 #define swjdp_memoryap 0
116 #define swjdp_debugap 1
117 #define OMAP3530_DEBUG_BASE 0x54011000
118
119 /*
120  * Cortex-A8 Basic debug access, very low level assumes state is saved
121  */
122 int cortex_a8_init_debug_access(target_t *target)
123 {
124 #if 0
125 # Unlocking the debug registers for modification
126 mww 0x54011FB0 0xC5ACCE55 4
127
128 # Clear Sticky Power Down status Bit to enable access to
129 # the registers in the Core Power Domain
130 mdw 0x54011314
131 # Check that it is cleared
132 mdw 0x54011314
133 # Now we can read Core Debug Registers at offset 0x080
134 mdw 0x54011080 4
135 # We can also read RAM.
136 mdw 0x80000000 32
137
138 mdw 0x5401d030
139 mdw 0x54011FB8
140
141 # Set DBGEN line for hardware debug (OMAP35xx)
142 mww 0x5401d030 0x00002000
143
144 #Check AUTHSTATUS
145 mdw 0x54011FB8
146
147 # Instr enable
148 mww 0x54011088 0x2000
149 mdw 0x54011080 4
150 #endif
151         return ERROR_OK;
152 }
153
154 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
155 {
156         uint32_t dscr;
157         int retvalue;
158         /* get pointers to arch-specific information */
159         armv4_5_common_t *armv4_5 = target->arch_info;
160         armv7a_common_t *armv7a = armv4_5->arch_info;
161         swjdp_common_t *swjdp = &armv7a->swjdp_info;
162
163         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
164         do
165         {
166                 retvalue = mem_ap_read_atomic_u32(swjdp,
167                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
168         }
169         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
170
171         mem_ap_write_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_ITR, opcode);
172
173         do
174         {
175                 retvalue = mem_ap_read_atomic_u32(swjdp,
176                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
177         }
178         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
179
180         return retvalue;
181 }
182
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
188                 uint32_t * regfile)
189 {
190         int retval = ERROR_OK;
191         /* get pointers to arch-specific information */
192         armv4_5_common_t *armv4_5 = target->arch_info;
193         armv7a_common_t *armv7a = armv4_5->arch_info;
194         swjdp_common_t *swjdp = &armv7a->swjdp_info;
195
196         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197         cortex_a8_dap_write_coreregister_u32(target, address, 0);
198         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
199         dap_ap_select(swjdp, swjdp_memoryap);
200         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
201         dap_ap_select(swjdp, swjdp_debugap);
202
203         return retval;
204 }
205
206 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
207                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
208 {
209         int retval;
210         /* get pointers to arch-specific information */
211         armv4_5_common_t *armv4_5 = target->arch_info;
212         armv7a_common_t *armv7a = armv4_5->arch_info;
213         swjdp_common_t *swjdp = &armv7a->swjdp_info;
214
215         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
216         /* Move R0 to DTRTX */
217         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
218
219         /* Read DCCTX */
220         retval = mem_ap_read_atomic_u32(swjdp,
221                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
222
223         return retval;
224 }
225
226 int cortex_a8_write_cp(target_t *target, uint32_t value,
227         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
228 /* TODO Fix this */
229 {
230         int retval;
231         /* get pointers to arch-specific information */
232         armv4_5_common_t *armv4_5 = target->arch_info;
233         armv7a_common_t *armv7a = armv4_5->arch_info;
234         swjdp_common_t *swjdp = &armv7a->swjdp_info;
235
236         retval = mem_ap_write_u32(swjdp,
237                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
238         /* Move DTRRX to r0 */
239         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
240
241         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, 0, 0, 0, 5, 0));
242         return retval;
243 }
244
245 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
246                 uint32_t CRn, uint32_t CRm, uint32_t *value)
247 {
248         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
249 }
250
251 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
252                 uint32_t CRn, uint32_t CRm, uint32_t value)
253 {
254         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
255 }
256
257 int cortex_a8_dap_read_coreregister_u32(target_t *target,
258                 uint32_t *value, int regnum)
259 {
260         int retval = ERROR_OK;
261         uint8_t reg = regnum&0xFF;
262         uint32_t dscr;
263
264         /* get pointers to arch-specific information */
265         armv4_5_common_t *armv4_5 = target->arch_info;
266         armv7a_common_t *armv7a = armv4_5->arch_info;
267         swjdp_common_t *swjdp = &armv7a->swjdp_info;
268
269         if (reg > 16)
270                 return retval;
271
272         if (reg < 15)
273         {
274                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
275                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
276         }
277         else if (reg == 15)
278         {
279                 cortex_a8_exec_opcode(target, 0xE1A0000F);
280                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
281         }
282         else if (reg == 16)
283         {
284                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
285                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
286         }
287
288         /* Read DTRRTX */
289         do
290         {
291                 retval = mem_ap_read_atomic_u32(swjdp,
292                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
293         }
294         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
295
296         retval = mem_ap_read_atomic_u32(swjdp,
297                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
298
299         return retval;
300 }
301
302 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
303 {
304         int retval = ERROR_OK;
305         uint8_t Rd = regnum&0xFF;
306
307         /* get pointers to arch-specific information */
308         armv4_5_common_t *armv4_5 = target->arch_info;
309         armv7a_common_t *armv7a = armv4_5->arch_info;
310         swjdp_common_t *swjdp = &armv7a->swjdp_info;
311
312         if (Rd > 16)
313                 return retval;
314
315         /* Write to DCCRX */
316         retval = mem_ap_write_u32(swjdp,
317                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
318
319         if (Rd < 15)
320         {
321                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
322                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
323         }
324         else if (Rd == 15)
325         {
326                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
327                 cortex_a8_exec_opcode(target, 0xE1A0F000);
328         }
329         else if (Rd == 16)
330         {
331                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
332                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
333                 /* Execute a PrefetchFlush instruction through the ITR. */
334                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
335         }
336
337         return retval;
338 }
339
340 /*
341  * Cortex-A8 Run control
342  */
343
344 int cortex_a8_poll(target_t *target)
345 {
346         int retval = ERROR_OK;
347         uint32_t dscr;
348         /* get pointers to arch-specific information */
349         armv4_5_common_t *armv4_5 = target->arch_info;
350         armv7a_common_t *armv7a = armv4_5->arch_info;
351         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
352         swjdp_common_t *swjdp = &armv7a->swjdp_info;
353
354
355         enum target_state prev_target_state = target->state;
356
357         uint8_t saved_apsel = dap_ap_get_select(swjdp);
358         dap_ap_select(swjdp, swjdp_debugap);
359         retval = mem_ap_read_atomic_u32(swjdp,
360                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
361         if (retval != ERROR_OK)
362         {
363                 dap_ap_select(swjdp, saved_apsel);
364                 return retval;
365         }
366         cortex_a8->cpudbg_dscr = dscr;
367
368         if ((dscr & 0x3) == 0x3)
369         {
370                 if (prev_target_state != TARGET_HALTED)
371                 {
372                         /* We have a halting debug event */
373                         LOG_DEBUG("Target halted");
374                         target->state = TARGET_HALTED;
375                         if ((prev_target_state == TARGET_RUNNING)
376                                         || (prev_target_state == TARGET_RESET))
377                         {
378                                 retval = cortex_a8_debug_entry(target);
379                                 if (retval != ERROR_OK)
380                                         return retval;
381
382                                 target_call_event_callbacks(target,
383                                                 TARGET_EVENT_HALTED);
384                         }
385                         if (prev_target_state == TARGET_DEBUG_RUNNING)
386                         {
387                                 LOG_DEBUG(" ");
388
389                                 retval = cortex_a8_debug_entry(target);
390                                 if (retval != ERROR_OK)
391                                         return retval;
392
393                                 target_call_event_callbacks(target,
394                                                 TARGET_EVENT_DEBUG_HALTED);
395                         }
396                 }
397         }
398         else if ((dscr & 0x3) == 0x2)
399         {
400                 target->state = TARGET_RUNNING;
401         }
402         else
403         {
404                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
405                 target->state = TARGET_UNKNOWN;
406         }
407
408         dap_ap_select(swjdp, saved_apsel);
409
410         return retval;
411 }
412
413 int cortex_a8_halt(target_t *target)
414 {
415         int retval = ERROR_OK;
416         uint32_t dscr;
417
418         /* get pointers to arch-specific information */
419         armv4_5_common_t *armv4_5 = target->arch_info;
420         armv7a_common_t *armv7a = armv4_5->arch_info;
421         swjdp_common_t *swjdp = &armv7a->swjdp_info;
422
423         uint8_t saved_apsel = dap_ap_get_select(swjdp);
424         dap_ap_select(swjdp, swjdp_debugap);
425
426         /*
427          * Tell the core to be halted by writing DRCR with 0x1
428          * and then wait for the core to be halted.
429          */
430         retval = mem_ap_write_atomic_u32(swjdp,
431                         OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x1);
432
433         /*
434          * enter halting debug mode
435          */
436         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
437         retval = mem_ap_write_atomic_u32(swjdp,
438                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
439
440         if (retval != ERROR_OK)
441                 goto out;
442
443         do {
444                 mem_ap_read_atomic_u32(swjdp,
445                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
446         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
447
448         target->debug_reason = DBG_REASON_DBGRQ;
449
450 out:
451         dap_ap_select(swjdp, saved_apsel);
452         return retval;
453 }
454
455 int cortex_a8_resume(struct target_s *target, int current,
456                 uint32_t address, int handle_breakpoints, int debug_execution)
457 {
458         /* get pointers to arch-specific information */
459         armv4_5_common_t *armv4_5 = target->arch_info;
460         armv7a_common_t *armv7a = armv4_5->arch_info;
461         swjdp_common_t *swjdp = &armv7a->swjdp_info;
462
463 //      breakpoint_t *breakpoint = NULL;
464         uint32_t resume_pc, dscr;
465
466         uint8_t saved_apsel = dap_ap_get_select(swjdp);
467         dap_ap_select(swjdp, swjdp_debugap);
468
469         if (!debug_execution)
470         {
471                 target_free_all_working_areas(target);
472 //              cortex_m3_enable_breakpoints(target);
473 //              cortex_m3_enable_watchpoints(target);
474         }
475
476 #if 0
477         if (debug_execution)
478         {
479                 /* Disable interrupts */
480                 /* We disable interrupts in the PRIMASK register instead of
481                  * masking with C_MASKINTS,
482                  * This is probably the same issue as Cortex-M3 Errata 377493:
483                  * C_MASKINTS in parallel with disabled interrupts can cause
484                  * local faults to not be taken. */
485                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
486                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
487                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
488
489                 /* Make sure we are in Thumb mode */
490                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
491                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
492                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
493                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
494         }
495 #endif
496
497         /* current = 1: continue on current pc, otherwise continue at <address> */
498         resume_pc = buf_get_u32(
499                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
500                                 armv4_5->core_mode, 15).value,
501                         0, 32);
502         if (!current)
503                 resume_pc = address;
504
505         /* Make sure that the Armv7 gdb thumb fixups does not
506          * kill the return address
507          */
508         if (armv7a->core_state == ARMV7A_STATE_ARM)
509         {
510                 resume_pc &= 0xFFFFFFFC;
511         }
512         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
513         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
514                                 armv4_5->core_mode, 15).value,
515                         0, 32, resume_pc);
516         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
517                         armv4_5->core_mode, 15).dirty = 1;
518         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
519                         armv4_5->core_mode, 15).valid = 1;
520
521         cortex_a8_restore_context(target);
522 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
523 #if 0
524         /* the front-end may request us not to handle breakpoints */
525         if (handle_breakpoints)
526         {
527                 /* Single step past breakpoint at current address */
528                 if ((breakpoint = breakpoint_find(target, resume_pc)))
529                 {
530                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
531                         cortex_m3_unset_breakpoint(target, breakpoint);
532                         cortex_m3_single_step_core(target);
533                         cortex_m3_set_breakpoint(target, breakpoint);
534                 }
535         }
536
537 #endif
538         /* Restart core and wait for it to be started */
539         mem_ap_write_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x2);
540
541         do {
542                 mem_ap_read_atomic_u32(swjdp,
543                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
544         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
545
546         target->debug_reason = DBG_REASON_NOTHALTED;
547         target->state = TARGET_RUNNING;
548
549         /* registers are now invalid */
550         armv4_5_invalidate_core_regs(target);
551
552         if (!debug_execution)
553         {
554                 target->state = TARGET_RUNNING;
555                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
556                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
557         }
558         else
559         {
560                 target->state = TARGET_DEBUG_RUNNING;
561                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
562                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
563         }
564
565         dap_ap_select(swjdp, saved_apsel);
566
567         return ERROR_OK;
568 }
569
570 int cortex_a8_debug_entry(target_t *target)
571 {
572         int i;
573         uint32_t regfile[16], pc, cpsr, dscr;
574         int retval = ERROR_OK;
575         working_area_t *regfile_working_area = NULL;
576
577         /* get pointers to arch-specific information */
578         armv4_5_common_t *armv4_5 = target->arch_info;
579         armv7a_common_t *armv7a = armv4_5->arch_info;
580         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
581         swjdp_common_t *swjdp = &armv7a->swjdp_info;
582
583         if (armv7a->pre_debug_entry)
584                 armv7a->pre_debug_entry(target);
585
586         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
587
588         /* Enable the ITR execution once we are in debug mode */
589         mem_ap_read_atomic_u32(swjdp,
590                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
591         dscr |= (1 << DSCR_EXT_INT_EN);
592         retval = mem_ap_write_atomic_u32(swjdp,
593                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, dscr);
594
595
596         /* Examine debug reason */
597         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
598         {
599                 case 0:
600                 case 4:
601                         target->debug_reason = DBG_REASON_DBGRQ;
602                         break;
603                 case 1:
604                 case 3:
605                         target->debug_reason = DBG_REASON_BREAKPOINT;
606                         break;
607                 case 10:
608                         target->debug_reason = DBG_REASON_WATCHPOINT;
609                         break;
610                 default:
611                         target->debug_reason = DBG_REASON_UNDEFINED;
612                         break;
613         }
614
615         /* Examine target state and mode */
616         if (cortex_a8->fast_reg_read)
617                 target_alloc_working_area(target, 64, &regfile_working_area);
618
619         /* First load register acessible through core debug port*/
620         if (!regfile_working_area)
621         {
622                 for (i = 0; i <= 15; i++)
623                         cortex_a8_dap_read_coreregister_u32(target,
624                                         &regfile[i], i);
625         }
626         else
627         {
628                 dap_ap_select(swjdp, swjdp_memoryap);
629                 cortex_a8_read_regs_through_mem(target,
630                                 regfile_working_area->address, regfile);
631                 dap_ap_select(swjdp, swjdp_memoryap);
632                 target_free_working_area(target, regfile_working_area);
633         }
634
635         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
636         pc = regfile[15];
637         dap_ap_select(swjdp, swjdp_debugap);
638         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
639
640         armv4_5->core_mode = cpsr & 0x1F;
641         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
642
643         for (i = 0; i <= ARM_PC; i++)
644         {
645                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
646                                         armv4_5->core_mode, i).value,
647                                 0, 32, regfile[i]);
648                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
649                                 armv4_5->core_mode, i).valid = 1;
650                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
651                                 armv4_5->core_mode, i).dirty = 0;
652         }
653         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
654                                 armv4_5->core_mode, 16).value,
655                         0, 32, cpsr);
656         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
657         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
658
659         /* Fixup PC Resume Address */
660         if (armv7a->core_state == ARMV7A_STATE_THUMB)
661         {
662                 // T bit set for Thumb or ThumbEE state
663                 regfile[ARM_PC] -= 4;
664         }
665         else
666         {
667                 // ARM state
668                 regfile[ARM_PC] -= 8;
669         }
670         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
671                                 armv4_5->core_mode, ARM_PC).value,
672                         0, 32, regfile[ARM_PC]);
673
674         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
675                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
676                                 armv4_5->core_mode, 0).valid;
677         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
678                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
679                                 armv4_5->core_mode, 15).valid;
680
681 #if 0
682 /* TODO, Move this */
683         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
684         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
685         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
686
687         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
688         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
689
690         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
691         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
692 #endif
693
694         /* Are we in an exception handler */
695 //      armv4_5->exception_number = 0;
696         if (armv7a->post_debug_entry)
697                 armv7a->post_debug_entry(target);
698
699
700
701         return retval;
702
703 }
704
705 void cortex_a8_post_debug_entry(target_t *target)
706 {
707         /* get pointers to arch-specific information */
708         armv4_5_common_t *armv4_5 = target->arch_info;
709         armv7a_common_t *armv7a = armv4_5->arch_info;
710         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
711
712 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
713         /* examine cp15 control reg */
714         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
715         jtag_execute_queue();
716         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
717
718         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
719         {
720                 uint32_t cache_type_reg;
721                 /* identify caches */
722                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
723                 jtag_execute_queue();
724                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
725                 armv4_5_identify_cache(cache_type_reg,
726                                 &armv7a->armv4_5_mmu.armv4_5_cache);
727         }
728
729         armv7a->armv4_5_mmu.mmu_enabled =
730                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
731         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
732                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
733         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
734                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
735
736
737 }
738
739 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
740                 int handle_breakpoints)
741 {
742         /* get pointers to arch-specific information */
743         armv4_5_common_t *armv4_5 = target->arch_info;
744         armv7a_common_t *armv7a = armv4_5->arch_info;
745         breakpoint_t *breakpoint = NULL;
746         breakpoint_t stepbreakpoint;
747
748         int timeout = 100;
749
750         if (target->state != TARGET_HALTED)
751         {
752                 LOG_WARNING("target not halted");
753                 return ERROR_TARGET_NOT_HALTED;
754         }
755
756         /* current = 1: continue on current pc, otherwise continue at <address> */
757         if (!current)
758         {
759                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
760                                         armv4_5->core_mode, ARM_PC).value,
761                                 0, 32, address);
762         }
763         else
764         {
765                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
766                                         armv4_5->core_mode, ARM_PC).value,
767                                 0, 32);
768         }
769
770         /* The front-end may request us not to handle breakpoints.
771          * But since Cortex-A8 uses breakpoint for single step,
772          * we MUST handle breakpoints.
773          */
774         handle_breakpoints = 1;
775         if (handle_breakpoints) {
776                 breakpoint = breakpoint_find(target,
777                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
778                                         armv4_5->core_mode, 15).value,
779                         0, 32));
780                 if (breakpoint)
781                         cortex_a8_unset_breakpoint(target, breakpoint);
782         }
783
784         /* Setup single step breakpoint */
785         stepbreakpoint.address = address;
786         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
787         stepbreakpoint.type = BKPT_HARD;
788         stepbreakpoint.set = 0;
789
790         /* Break on IVA mismatch */
791         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
792
793         target->debug_reason = DBG_REASON_SINGLESTEP;
794
795         cortex_a8_resume(target, 1, address, 0, 0);
796
797         while (target->state != TARGET_HALTED)
798         {
799                 cortex_a8_poll(target);
800                 if (--timeout == 0)
801                 {
802                         LOG_WARNING("timeout waiting for target halt");
803                         break;
804                 }
805         }
806
807         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
808         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
809
810         if (breakpoint)
811                 cortex_a8_set_breakpoint(target, breakpoint, 0);
812
813         if (target->state != TARGET_HALTED)
814                 LOG_DEBUG("target stepped");
815
816         return ERROR_OK;
817 }
818
819 int cortex_a8_restore_context(target_t *target)
820 {
821         int i;
822         uint32_t value;
823
824         /* get pointers to arch-specific information */
825         armv4_5_common_t *armv4_5 = target->arch_info;
826         armv7a_common_t *armv7a = armv4_5->arch_info;
827
828         LOG_DEBUG(" ");
829
830         if (armv7a->pre_restore_context)
831                 armv7a->pre_restore_context(target);
832
833         for (i = 15; i >= 0; i--)
834         {
835                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
836                                         armv4_5->core_mode, i).dirty)
837                 {
838                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
839                                                 armv4_5->core_mode, i).value,
840                                         0, 32);
841                         /* TODO Check return values */
842                         cortex_a8_dap_write_coreregister_u32(target, value, i);
843                 }
844         }
845
846         if (armv7a->post_restore_context)
847                 armv7a->post_restore_context(target);
848
849         return ERROR_OK;
850 }
851
852
853 /*
854  * Cortex-A8 Core register functions
855  */
856
857 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
858                 armv4_5_mode_t mode, uint32_t * value)
859 {
860         int retval;
861         /* get pointers to arch-specific information */
862         armv4_5_common_t *armv4_5 = target->arch_info;
863
864         if ((num <= ARM_CPSR))
865         {
866                 /* read a normal core register */
867                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
868
869                 if (retval != ERROR_OK)
870                 {
871                         LOG_ERROR("JTAG failure %i", retval);
872                         return ERROR_JTAG_DEVICE_ERROR;
873                 }
874                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
875         }
876         else
877         {
878                 return ERROR_INVALID_ARGUMENTS;
879         }
880
881         /* Register other than r0 - r14 uses r0 for access */
882         if (num > 14)
883                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
884                                 armv4_5->core_mode, 0).dirty =
885                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
886                                 armv4_5->core_mode, 0).valid;
887         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
888                                 armv4_5->core_mode, 15).dirty =
889                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
890                                 armv4_5->core_mode, 15).valid;
891
892         return ERROR_OK;
893 }
894
895 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
896                 armv4_5_mode_t mode, uint32_t value)
897 {
898         int retval;
899 //      uint32_t reg;
900
901         /* get pointers to arch-specific information */
902         armv4_5_common_t *armv4_5 = target->arch_info;
903
904 #ifdef ARMV7_GDB_HACKS
905         /* If the LR register is being modified, make sure it will put us
906          * in "thumb" mode, or an INVSTATE exception will occur. This is a
907          * hack to deal with the fact that gdb will sometimes "forge"
908          * return addresses, and doesn't set the LSB correctly (i.e., when
909          * printing expressions containing function calls, it sets LR=0.) */
910
911         if (num == 14)
912                 value |= 0x01;
913 #endif
914
915         if ((num <= ARM_CPSR))
916         {
917                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
918                 if (retval != ERROR_OK)
919                 {
920                         LOG_ERROR("JTAG failure %i", retval);
921                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
922                                         armv4_5->core_mode, num).dirty =
923                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
924                                         armv4_5->core_mode, num).valid;
925                         return ERROR_JTAG_DEVICE_ERROR;
926                 }
927                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
928         }
929         else
930         {
931                 return ERROR_INVALID_ARGUMENTS;
932         }
933
934         return ERROR_OK;
935 }
936
937
938 int cortex_a8_read_core_reg(struct target_s *target, int num,
939                 enum armv4_5_mode mode)
940 {
941         uint32_t value;
942         int retval;
943         armv4_5_common_t *armv4_5 = target->arch_info;
944         cortex_a8_dap_read_coreregister_u32(target, &value, num);
945
946         if ((retval = jtag_execute_queue()) != ERROR_OK)
947         {
948                 return retval;
949         }
950
951         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
952         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
953         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
954                         mode, num).value, 0, 32, value);
955
956         return ERROR_OK;
957 }
958
959 int cortex_a8_write_core_reg(struct target_s *target, int num,
960                 enum armv4_5_mode mode, uint32_t value)
961 {
962         int retval;
963         armv4_5_common_t *armv4_5 = target->arch_info;
964
965         cortex_a8_dap_write_coreregister_u32(target, value, num);
966         if ((retval = jtag_execute_queue()) != ERROR_OK)
967         {
968                 return retval;
969         }
970
971         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
972         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
973
974         return ERROR_OK;
975 }
976
977
978 /*
979  * Cortex-A8 Breakpoint and watchpoint fuctions
980  */
981
982 /* Setup hardware Breakpoint Register Pair */
983 int cortex_a8_set_breakpoint(struct target_s *target,
984                 breakpoint_t *breakpoint, uint8_t matchmode)
985 {
986         int retval;
987         int brp_i=0;
988         uint32_t control;
989         uint8_t byte_addr_select = 0x0F;
990
991
992         /* get pointers to arch-specific information */
993         armv4_5_common_t *armv4_5 = target->arch_info;
994         armv7a_common_t *armv7a = armv4_5->arch_info;
995         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
996         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
997
998         if (breakpoint->set)
999         {
1000                 LOG_WARNING("breakpoint already set");
1001                 return ERROR_OK;
1002         }
1003
1004         if (breakpoint->type == BKPT_HARD)
1005         {
1006                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1007                         brp_i++ ;
1008                 if (brp_i >= cortex_a8->brp_num)
1009                 {
1010                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1011                         exit(-1);
1012                 }
1013                 breakpoint->set = brp_i + 1;
1014                 if (breakpoint->length == 2)
1015                 {
1016                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1017                 }
1018                 control = ((matchmode & 0x7) << 20)
1019                                 | (byte_addr_select << 5)
1020                                 | (3 << 1) | 1;
1021                 brp_list[brp_i].used = 1;
1022                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1023                 brp_list[brp_i].control = control;
1024                 target_write_u32(target, OMAP3530_DEBUG_BASE
1025                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1026                                 brp_list[brp_i].value);
1027                 target_write_u32(target, OMAP3530_DEBUG_BASE
1028                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1029                                 brp_list[brp_i].control);
1030                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1031                                 brp_list[brp_i].control,
1032                                 brp_list[brp_i].value);
1033         }
1034         else if (breakpoint->type == BKPT_SOFT)
1035         {
1036                 uint8_t code[4];
1037                 if (breakpoint->length == 2)
1038                 {
1039                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1040                 }
1041                 else
1042                 {
1043                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1044                 }
1045                 retval = target->type->read_memory(target,
1046                                 breakpoint->address & 0xFFFFFFFE,
1047                                 breakpoint->length, 1,
1048                                 breakpoint->orig_instr);
1049                 if (retval != ERROR_OK)
1050                         return retval;
1051                 retval = target->type->write_memory(target,
1052                                 breakpoint->address & 0xFFFFFFFE,
1053                                 breakpoint->length, 1, code);
1054                 if (retval != ERROR_OK)
1055                         return retval;
1056                 breakpoint->set = 0x11; /* Any nice value but 0 */
1057         }
1058
1059         return ERROR_OK;
1060 }
1061
1062 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1063 {
1064         int retval;
1065         /* get pointers to arch-specific information */
1066         armv4_5_common_t *armv4_5 = target->arch_info;
1067         armv7a_common_t *armv7a = armv4_5->arch_info;
1068         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1069         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1070
1071         if (!breakpoint->set)
1072         {
1073                 LOG_WARNING("breakpoint not set");
1074                 return ERROR_OK;
1075         }
1076
1077         if (breakpoint->type == BKPT_HARD)
1078         {
1079                 int brp_i = breakpoint->set - 1;
1080                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1081                 {
1082                         LOG_DEBUG("Invalid BRP number in breakpoint");
1083                         return ERROR_OK;
1084                 }
1085                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1086                                 brp_list[brp_i].control, brp_list[brp_i].value);
1087                 brp_list[brp_i].used = 0;
1088                 brp_list[brp_i].value = 0;
1089                 brp_list[brp_i].control = 0;
1090                 target_write_u32(target, OMAP3530_DEBUG_BASE
1091                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1092                                 brp_list[brp_i].control);
1093                 target_write_u32(target, OMAP3530_DEBUG_BASE
1094                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1095                                 brp_list[brp_i].value);
1096         }
1097         else
1098         {
1099                 /* restore original instruction (kept in target endianness) */
1100                 if (breakpoint->length == 4)
1101                 {
1102                         retval = target->type->write_memory(target,
1103                                         breakpoint->address & 0xFFFFFFFE,
1104                                         4, 1, breakpoint->orig_instr);
1105                         if (retval != ERROR_OK)
1106                                 return retval;
1107                 }
1108                 else
1109                 {
1110                         retval = target->type->write_memory(target,
1111                                         breakpoint->address & 0xFFFFFFFE,
1112                                         2, 1, breakpoint->orig_instr);
1113                         if (retval != ERROR_OK)
1114                                 return retval;
1115                 }
1116         }
1117         breakpoint->set = 0;
1118
1119         return ERROR_OK;
1120 }
1121
1122 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1123 {
1124         /* get pointers to arch-specific information */
1125         armv4_5_common_t *armv4_5 = target->arch_info;
1126         armv7a_common_t *armv7a = armv4_5->arch_info;
1127         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1128
1129         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1130         {
1131                 LOG_INFO("no hardware breakpoint available");
1132                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1133         }
1134
1135         if (breakpoint->type == BKPT_HARD)
1136                 cortex_a8->brp_num_available--;
1137         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1138
1139         return ERROR_OK;
1140 }
1141
1142 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1143 {
1144         /* get pointers to arch-specific information */
1145         armv4_5_common_t *armv4_5 = target->arch_info;
1146         armv7a_common_t *armv7a = armv4_5->arch_info;
1147         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1148
1149 #if 0
1150 /* It is perfectly possible to remove brakpoints while the taget is running */
1151         if (target->state != TARGET_HALTED)
1152         {
1153                 LOG_WARNING("target not halted");
1154                 return ERROR_TARGET_NOT_HALTED;
1155         }
1156 #endif
1157
1158         if (breakpoint->set)
1159         {
1160                 cortex_a8_unset_breakpoint(target, breakpoint);
1161                 if (breakpoint->type == BKPT_HARD)
1162                         cortex_a8->brp_num_available++ ;
1163         }
1164
1165
1166         return ERROR_OK;
1167 }
1168
1169
1170
1171 /*
1172  * Cortex-A8 Reset fuctions
1173  */
1174
1175
1176 /*
1177  * Cortex-A8 Memory access
1178  *
1179  * This is same Cortex M3 but we must also use the correct
1180  * ap number for every access.
1181  */
1182
1183 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1184                 uint32_t size, uint32_t count, uint8_t *buffer)
1185 {
1186         /* get pointers to arch-specific information */
1187         armv4_5_common_t *armv4_5 = target->arch_info;
1188         armv7a_common_t *armv7a = armv4_5->arch_info;
1189         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1190
1191         int retval = ERROR_OK;
1192
1193         /* sanitize arguments */
1194         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1195                 return ERROR_INVALID_ARGUMENTS;
1196
1197         /* cortex_a8 handles unaligned memory access */
1198
1199 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1200
1201         switch (size)
1202         {
1203                 case 4:
1204                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1205                         break;
1206                 case 2:
1207                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1208                         break;
1209                 case 1:
1210                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1211                         break;
1212                 default:
1213                         LOG_ERROR("BUG: we shouldn't get here");
1214                         exit(-1);
1215         }
1216
1217         return retval;
1218 }
1219
1220 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1221                 uint32_t size, uint32_t count, uint8_t *buffer)
1222 {
1223         /* get pointers to arch-specific information */
1224         armv4_5_common_t *armv4_5 = target->arch_info;
1225         armv7a_common_t *armv7a = armv4_5->arch_info;
1226         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1227
1228         int retval;
1229
1230         /* sanitize arguments */
1231         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1232                 return ERROR_INVALID_ARGUMENTS;
1233
1234 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1235
1236         switch (size)
1237         {
1238                 case 4:
1239                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1240                         break;
1241                 case 2:
1242                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1243                         break;
1244                 case 1:
1245                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1246                         break;
1247                 default:
1248                         LOG_ERROR("BUG: we shouldn't get here");
1249                         exit(-1);
1250         }
1251
1252         return retval;
1253 }
1254
1255 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1256                 uint32_t count, uint8_t *buffer)
1257 {
1258         return cortex_a8_write_memory(target, address, 4, count, buffer);
1259 }
1260
1261
1262 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1263 {
1264 #if 0
1265         u16 dcrdr;
1266
1267         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1268         *ctrl = (uint8_t)dcrdr;
1269         *value = (uint8_t)(dcrdr >> 8);
1270
1271         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1272
1273         /* write ack back to software dcc register
1274          * signify we have read data */
1275         if (dcrdr & (1 << 0))
1276         {
1277                 dcrdr = 0;
1278                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1279         }
1280 #endif
1281         return ERROR_OK;
1282 }
1283
1284
1285 int cortex_a8_handle_target_request(void *priv)
1286 {
1287         target_t *target = priv;
1288         if (!target->type->examined)
1289                 return ERROR_OK;
1290         armv4_5_common_t *armv4_5 = target->arch_info;
1291         armv7a_common_t *armv7a = armv4_5->arch_info;
1292         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1293
1294
1295         if (!target->dbg_msg_enabled)
1296                 return ERROR_OK;
1297
1298         if (target->state == TARGET_RUNNING)
1299         {
1300                 uint8_t data = 0;
1301                 uint8_t ctrl = 0;
1302
1303                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1304
1305                 /* check if we have data */
1306                 if (ctrl & (1 << 0))
1307                 {
1308                         uint32_t request;
1309
1310                         /* we assume target is quick enough */
1311                         request = data;
1312                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1313                         request |= (data << 8);
1314                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1315                         request |= (data << 16);
1316                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1317                         request |= (data << 24);
1318                         target_request(target, request);
1319                 }
1320         }
1321
1322         return ERROR_OK;
1323 }
1324
1325 /*
1326  * Cortex-A8 target information and configuration
1327  */
1328
1329 int cortex_a8_examine(struct target_s *target)
1330 {
1331         /* get pointers to arch-specific information */
1332         armv4_5_common_t *armv4_5 = target->arch_info;
1333         armv7a_common_t *armv7a = armv4_5->arch_info;
1334         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1335         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1336
1337
1338         int i;
1339         int retval = ERROR_OK;
1340         uint32_t didr, ctypr, ttypr, cpuid;
1341
1342         LOG_DEBUG("TODO");
1343
1344         /* We do one extra read to ensure DAP is configured,
1345          * we call ahbap_debugport_init(swjdp) instead
1346          */
1347         ahbap_debugport_init(swjdp);
1348         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid);
1349         if ((retval = mem_ap_read_atomic_u32(swjdp,
1350                         OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1351         {
1352                 LOG_DEBUG("Examine failed");
1353                 return retval;
1354         }
1355
1356         if ((retval = mem_ap_read_atomic_u32(swjdp,
1357                         OMAP3530_DEBUG_BASE + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1358         {
1359                 LOG_DEBUG("Examine failed");
1360                 return retval;
1361         }
1362
1363         if ((retval = mem_ap_read_atomic_u32(swjdp,
1364                         OMAP3530_DEBUG_BASE + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1365         {
1366                 LOG_DEBUG("Examine failed");
1367                 return retval;
1368         }
1369
1370         if ((retval = mem_ap_read_atomic_u32(swjdp,
1371                         OMAP3530_DEBUG_BASE + CPUDBG_DIDR, &didr)) != ERROR_OK)
1372         {
1373                 LOG_DEBUG("Examine failed");
1374                 return retval;
1375         }
1376
1377         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1378         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1379         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1380         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1381
1382         /* Setup Breakpoint Register Pairs */
1383         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1384         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1385         cortex_a8->brp_num_available = cortex_a8->brp_num;
1386         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1387 //      cortex_a8->brb_enabled = ????;
1388         for (i = 0; i < cortex_a8->brp_num; i++)
1389         {
1390                 cortex_a8->brp_list[i].used = 0;
1391                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1392                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1393                 else
1394                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1395                 cortex_a8->brp_list[i].value = 0;
1396                 cortex_a8->brp_list[i].control = 0;
1397                 cortex_a8->brp_list[i].BRPn = i;
1398         }
1399
1400         /* Setup Watchpoint Register Pairs */
1401         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1402         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1403         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1404         for (i = 0; i < cortex_a8->wrp_num; i++)
1405         {
1406                 cortex_a8->wrp_list[i].used = 0;
1407                 cortex_a8->wrp_list[i].type = 0;
1408                 cortex_a8->wrp_list[i].value = 0;
1409                 cortex_a8->wrp_list[i].control = 0;
1410                 cortex_a8->wrp_list[i].WRPn = i;
1411         }
1412         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1413                         cortex_a8->brp_num , cortex_a8->wrp_num);
1414
1415         target->type->examined = 1;
1416
1417         return retval;
1418 }
1419
1420 /*
1421  *      Cortex-A8 target creation and initialization
1422  */
1423
1424 void cortex_a8_build_reg_cache(target_t *target)
1425 {
1426         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1427         /* get pointers to arch-specific information */
1428         armv4_5_common_t *armv4_5 = target->arch_info;
1429
1430         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1431         armv4_5->core_cache = (*cache_p);
1432 }
1433
1434
1435 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1436                 struct target_s *target)
1437 {
1438         cortex_a8_build_reg_cache(target);
1439         return ERROR_OK;
1440 }
1441
1442 int cortex_a8_init_arch_info(target_t *target,
1443                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1444 {
1445         armv4_5_common_t *armv4_5;
1446         armv7a_common_t *armv7a;
1447
1448         armv7a = &cortex_a8->armv7a_common;
1449         armv4_5 = &armv7a->armv4_5_common;
1450         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1451
1452         /* Setup cortex_a8_common_t */
1453         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1454         cortex_a8->arch_info = NULL;
1455         armv7a->arch_info = cortex_a8;
1456         armv4_5->arch_info = armv7a;
1457
1458         armv4_5_init_arch_info(target, armv4_5);
1459
1460         /* prepare JTAG information for the new target */
1461         cortex_a8->jtag_info.tap = tap;
1462         cortex_a8->jtag_info.scann_size = 4;
1463 LOG_DEBUG(" ");
1464         swjdp->dp_select_value = -1;
1465         swjdp->ap_csw_value = -1;
1466         swjdp->ap_tar_value = -1;
1467         swjdp->jtag_info = &cortex_a8->jtag_info;
1468         swjdp->memaccess_tck = 80;
1469
1470         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1471         swjdp->tar_autoincr_block = (1 << 10);
1472
1473         cortex_a8->fast_reg_read = 0;
1474
1475
1476         /* register arch-specific functions */
1477         armv7a->examine_debug_reason = NULL;
1478
1479         armv7a->pre_debug_entry = NULL;
1480         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1481
1482         armv7a->pre_restore_context = NULL;
1483         armv7a->post_restore_context = NULL;
1484         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1485 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1486         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1487         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1488 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1489 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1490         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1491         armv7a->armv4_5_mmu.mmu_enabled = 0;
1492         armv7a->read_cp15 = cortex_a8_read_cp15;
1493         armv7a->write_cp15 = cortex_a8_write_cp15;
1494
1495
1496 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1497
1498         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1499         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1500 //      armv4_5->full_context = arm7_9_full_context;
1501
1502 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1503 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1504 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1505 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1506
1507         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1508
1509         return ERROR_OK;
1510 }
1511
1512 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1513 {
1514         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1515
1516         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1517
1518         return ERROR_OK;
1519 }
1520
1521 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1522                 char *cmd, char **args, int argc)
1523 {
1524         target_t *target = get_current_target(cmd_ctx);
1525         armv4_5_common_t *armv4_5 = target->arch_info;
1526         armv7a_common_t *armv7a = armv4_5->arch_info;
1527
1528         return armv4_5_handle_cache_info_command(cmd_ctx,
1529                         &armv7a->armv4_5_mmu.armv4_5_cache);
1530 }
1531
1532
1533 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1534 {
1535         command_t *cortex_a8_cmd;
1536         int retval = ERROR_OK;
1537
1538         armv4_5_register_commands(cmd_ctx);
1539         armv7a_register_commands(cmd_ctx);
1540
1541         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1542                         NULL, COMMAND_ANY,
1543                         "cortex_a8 specific commands");
1544
1545         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1546                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1547                         "display information about target caches");
1548
1549         return retval;
1550 }