]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
71de3b799267e251a92711ea7482d63b02cea1a6
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 17)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 /* "MOV r0, r15"; then move r0 to DCCTX */
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else
255         {
256                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
257                  * then move r0 to DCCTX
258                  */
259                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1));
260                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
261         }
262
263         /* Read DTRRTX */
264         do
265         {
266                 retval = mem_ap_read_atomic_u32(swjdp,
267                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
268         }
269         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
270
271         retval = mem_ap_read_atomic_u32(swjdp,
272                         armv7a->debug_base + CPUDBG_DTRTX, value);
273         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
274
275         return retval;
276 }
277
278 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
279                 uint32_t value, int regnum)
280 {
281         int retval = ERROR_OK;
282         uint8_t Rd = regnum&0xFF;
283         uint32_t dscr;
284         struct armv7a_common *armv7a = target_to_armv7a(target);
285         struct swjdp_common *swjdp = &armv7a->swjdp_info;
286
287         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
288
289         /* Check that DCCRX is not full */
290         retval = mem_ap_read_atomic_u32(swjdp,
291                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
292         if (dscr & (1 << DSCR_DTR_RX_FULL))
293         {
294                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
295                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
296                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
297         }
298
299         if (Rd > 17)
300                 return retval;
301
302         /* Write to DCCRX */
303         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
304         retval = mem_ap_write_u32(swjdp,
305                         armv7a->debug_base + CPUDBG_DTRRX, value);
306
307         if (Rd < 15)
308         {
309                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
310                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
311         }
312         else if (Rd == 15)
313         {
314                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
315                  * then "mov r15, r0"
316                  */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
318                 cortex_a8_exec_opcode(target, 0xE1A0F000);
319         }
320         else
321         {
322                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
323                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
324                  */
325                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
326                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1));
327
328                 /* "Prefetch flush" after modifying execution status in CPSR */
329                 if (Rd == 16)
330                         cortex_a8_exec_opcode(target,
331                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
332         }
333
334         return retval;
335 }
336
337 /* Write to memory mapped registers directly with no cache or mmu handling */
338 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
339 {
340         int retval;
341         struct armv7a_common *armv7a = target_to_armv7a(target);
342         struct swjdp_common *swjdp = &armv7a->swjdp_info;
343
344         retval = mem_ap_write_atomic_u32(swjdp, address, value);
345
346         return retval;
347 }
348
349 /*
350  * Cortex-A8 Run control
351  */
352
353 static int cortex_a8_poll(struct target *target)
354 {
355         int retval = ERROR_OK;
356         uint32_t dscr;
357         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
358         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
359         struct swjdp_common *swjdp = &armv7a->swjdp_info;
360         enum target_state prev_target_state = target->state;
361         uint8_t saved_apsel = dap_ap_get_select(swjdp);
362
363         dap_ap_select(swjdp, swjdp_debugap);
364         retval = mem_ap_read_atomic_u32(swjdp,
365                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
366         if (retval != ERROR_OK)
367         {
368                 dap_ap_select(swjdp, saved_apsel);
369                 return retval;
370         }
371         cortex_a8->cpudbg_dscr = dscr;
372
373         if ((dscr & 0x3) == 0x3)
374         {
375                 if (prev_target_state != TARGET_HALTED)
376                 {
377                         /* We have a halting debug event */
378                         LOG_DEBUG("Target halted");
379                         target->state = TARGET_HALTED;
380                         if ((prev_target_state == TARGET_RUNNING)
381                                         || (prev_target_state == TARGET_RESET))
382                         {
383                                 retval = cortex_a8_debug_entry(target);
384                                 if (retval != ERROR_OK)
385                                         return retval;
386
387                                 target_call_event_callbacks(target,
388                                                 TARGET_EVENT_HALTED);
389                         }
390                         if (prev_target_state == TARGET_DEBUG_RUNNING)
391                         {
392                                 LOG_DEBUG(" ");
393
394                                 retval = cortex_a8_debug_entry(target);
395                                 if (retval != ERROR_OK)
396                                         return retval;
397
398                                 target_call_event_callbacks(target,
399                                                 TARGET_EVENT_DEBUG_HALTED);
400                         }
401                 }
402         }
403         else if ((dscr & 0x3) == 0x2)
404         {
405                 target->state = TARGET_RUNNING;
406         }
407         else
408         {
409                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
410                 target->state = TARGET_UNKNOWN;
411         }
412
413         dap_ap_select(swjdp, saved_apsel);
414
415         return retval;
416 }
417
418 static int cortex_a8_halt(struct target *target)
419 {
420         int retval = ERROR_OK;
421         uint32_t dscr;
422         struct armv7a_common *armv7a = target_to_armv7a(target);
423         struct swjdp_common *swjdp = &armv7a->swjdp_info;
424         uint8_t saved_apsel = dap_ap_get_select(swjdp);
425         dap_ap_select(swjdp, swjdp_debugap);
426
427         /*
428          * Tell the core to be halted by writing DRCR with 0x1
429          * and then wait for the core to be halted.
430          */
431         retval = mem_ap_write_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
433
434         /*
435          * enter halting debug mode
436          */
437         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
438         retval = mem_ap_write_atomic_u32(swjdp,
439                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
440
441         if (retval != ERROR_OK)
442                 goto out;
443
444         do {
445                 mem_ap_read_atomic_u32(swjdp,
446                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
447         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
448
449         target->debug_reason = DBG_REASON_DBGRQ;
450
451 out:
452         dap_ap_select(swjdp, saved_apsel);
453         return retval;
454 }
455
456 static int cortex_a8_resume(struct target *target, int current,
457                 uint32_t address, int handle_breakpoints, int debug_execution)
458 {
459         struct armv7a_common *armv7a = target_to_armv7a(target);
460         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
461         struct swjdp_common *swjdp = &armv7a->swjdp_info;
462
463 //      struct breakpoint *breakpoint = NULL;
464         uint32_t resume_pc, dscr;
465
466         uint8_t saved_apsel = dap_ap_get_select(swjdp);
467         dap_ap_select(swjdp, swjdp_debugap);
468
469         if (!debug_execution)
470         {
471                 target_free_all_working_areas(target);
472 //              cortex_m3_enable_breakpoints(target);
473 //              cortex_m3_enable_watchpoints(target);
474         }
475
476 #if 0
477         if (debug_execution)
478         {
479                 /* Disable interrupts */
480                 /* We disable interrupts in the PRIMASK register instead of
481                  * masking with C_MASKINTS,
482                  * This is probably the same issue as Cortex-M3 Errata 377493:
483                  * C_MASKINTS in parallel with disabled interrupts can cause
484                  * local faults to not be taken. */
485                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
486                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
487                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
488
489                 /* Make sure we are in Thumb mode */
490                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
491                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
492                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
493                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
494         }
495 #endif
496
497         /* current = 1: continue on current pc, otherwise continue at <address> */
498         resume_pc = buf_get_u32(
499                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
500                                 armv4_5->core_mode, 15).value,
501                         0, 32);
502         if (!current)
503                 resume_pc = address;
504
505         /* Make sure that the Armv7 gdb thumb fixups does not
506          * kill the return address
507          */
508         switch (armv4_5->core_state)
509         {
510         case ARMV4_5_STATE_ARM:
511                 resume_pc &= 0xFFFFFFFC;
512                 break;
513         case ARMV4_5_STATE_THUMB:
514         case ARM_STATE_THUMB_EE:
515                 /* When the return address is loaded into PC
516                  * bit 0 must be 1 to stay in Thumb state
517                  */
518                 resume_pc |= 0x1;
519                 break;
520         case ARMV4_5_STATE_JAZELLE:
521                 LOG_ERROR("How do I resume into Jazelle state??");
522                 return ERROR_FAIL;
523         }
524         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
525         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
526                                 armv4_5->core_mode, 15).value,
527                         0, 32, resume_pc);
528         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
529                         armv4_5->core_mode, 15).dirty = 1;
530         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
531                         armv4_5->core_mode, 15).valid = 1;
532
533         cortex_a8_restore_context(target);
534
535 #if 0
536         /* the front-end may request us not to handle breakpoints */
537         if (handle_breakpoints)
538         {
539                 /* Single step past breakpoint at current address */
540                 if ((breakpoint = breakpoint_find(target, resume_pc)))
541                 {
542                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
543                         cortex_m3_unset_breakpoint(target, breakpoint);
544                         cortex_m3_single_step_core(target);
545                         cortex_m3_set_breakpoint(target, breakpoint);
546                 }
547         }
548
549 #endif
550         /* Restart core and wait for it to be started */
551         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
552
553         do {
554                 mem_ap_read_atomic_u32(swjdp,
555                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
556         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
557
558         target->debug_reason = DBG_REASON_NOTHALTED;
559         target->state = TARGET_RUNNING;
560
561         /* registers are now invalid */
562         register_cache_invalidate(armv4_5->core_cache);
563
564         if (!debug_execution)
565         {
566                 target->state = TARGET_RUNNING;
567                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
568                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
569         }
570         else
571         {
572                 target->state = TARGET_DEBUG_RUNNING;
573                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
574                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
575         }
576
577         dap_ap_select(swjdp, saved_apsel);
578
579         return ERROR_OK;
580 }
581
582 static int cortex_a8_debug_entry(struct target *target)
583 {
584         int i;
585         uint32_t regfile[16], pc, cpsr, dscr;
586         int retval = ERROR_OK;
587         struct working_area *regfile_working_area = NULL;
588         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
589         struct armv7a_common *armv7a = target_to_armv7a(target);
590         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
591         struct swjdp_common *swjdp = &armv7a->swjdp_info;
592         struct reg *reg;
593
594         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
595
596         /* Enable the ITR execution once we are in debug mode */
597         mem_ap_read_atomic_u32(swjdp,
598                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
599         dscr |= (1 << DSCR_EXT_INT_EN);
600         retval = mem_ap_write_atomic_u32(swjdp,
601                         armv7a->debug_base + CPUDBG_DSCR, dscr);
602
603         /* Examine debug reason */
604         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
605         {
606                 case 0:
607                 case 4:
608                         target->debug_reason = DBG_REASON_DBGRQ;
609                         break;
610                 case 1:
611                 case 3:
612                         target->debug_reason = DBG_REASON_BREAKPOINT;
613                         break;
614                 case 10:
615                         target->debug_reason = DBG_REASON_WATCHPOINT;
616                         break;
617                 default:
618                         target->debug_reason = DBG_REASON_UNDEFINED;
619                         break;
620         }
621
622         /* Examine target state and mode */
623         if (cortex_a8->fast_reg_read)
624                 target_alloc_working_area(target, 64, &regfile_working_area);
625
626         /* First load register acessible through core debug port*/
627         if (!regfile_working_area)
628         {
629                 /* FIXME we don't actually need all these registers;
630                  * reading them slows us down.  Just R0, PC, CPSR...
631                  */
632                 for (i = 0; i <= 15; i++)
633                         cortex_a8_dap_read_coreregister_u32(target,
634                                         &regfile[i], i);
635         }
636         else
637         {
638                 dap_ap_select(swjdp, swjdp_memoryap);
639                 cortex_a8_read_regs_through_mem(target,
640                                 regfile_working_area->address, regfile);
641                 dap_ap_select(swjdp, swjdp_memoryap);
642                 target_free_working_area(target, regfile_working_area);
643         }
644
645         /* read Current PSR */
646         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
647         pc = regfile[15];
648         dap_ap_select(swjdp, swjdp_debugap);
649         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
650
651         arm_set_cpsr(armv4_5, cpsr);
652
653         i = (cpsr >> 5) & 1;    /* T */
654         i |= (cpsr >> 23) & 1;  /* J << 1 */
655         switch (i) {
656         case 0: /* J = 0, T = 0 */
657                 armv4_5->core_state = ARMV4_5_STATE_ARM;
658                 break;
659         case 1: /* J = 0, T = 1 */
660                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
661                 break;
662         case 2: /* J = 1, T = 0 */
663                 LOG_WARNING("Jazelle state -- not handled");
664                 armv4_5->core_state = ARMV4_5_STATE_JAZELLE;
665                 break;
666         case 3: /* J = 1, T = 1 */
667                 /* ThumbEE is very much like Thumb, but some of the
668                  * instructions are different.  Single stepping and
669                  * breakpoints need updating...
670                  */
671                 LOG_WARNING("ThumbEE -- incomplete support");
672                 armv4_5->core_state = ARM_STATE_THUMB_EE;
673                 break;
674         }
675
676         /* update cache */
677         for (i = 0; i <= ARM_PC; i++)
678         {
679                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
680                                         armv4_5->core_mode, i);
681
682                 buf_set_u32(reg->value, 0, 32, regfile[i]);
683                 reg->valid = 1;
684                 reg->dirty = 0;
685         }
686
687         /* Fixup PC Resume Address */
688         if (cpsr & (1 << 5))
689         {
690                 // T bit set for Thumb or ThumbEE state
691                 regfile[ARM_PC] -= 4;
692         }
693         else
694         {
695                 // ARM state
696                 regfile[ARM_PC] -= 8;
697         }
698         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
699                                 armv4_5->core_mode, ARM_PC).value,
700                         0, 32, regfile[ARM_PC]);
701
702         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
703                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
704                                 armv4_5->core_mode, 0).valid;
705         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
706                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
707                                 armv4_5->core_mode, 15).valid;
708
709 #if 0
710 /* TODO, Move this */
711         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
712         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
713         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
714
715         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
716         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
717
718         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
719         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
720 #endif
721
722         /* Are we in an exception handler */
723 //      armv4_5->exception_number = 0;
724         if (armv7a->post_debug_entry)
725                 armv7a->post_debug_entry(target);
726
727
728
729         return retval;
730
731 }
732
733 static void cortex_a8_post_debug_entry(struct target *target)
734 {
735         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
736         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
737
738 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
739         /* examine cp15 control reg */
740         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
741         jtag_execute_queue();
742         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
743
744         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
745         {
746                 uint32_t cache_type_reg;
747                 /* identify caches */
748                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
749                 jtag_execute_queue();
750                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
751                 armv4_5_identify_cache(cache_type_reg,
752                                 &armv7a->armv4_5_mmu.armv4_5_cache);
753         }
754
755         armv7a->armv4_5_mmu.mmu_enabled =
756                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
757         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
758                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
759         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
760                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
761
762
763 }
764
765 static int cortex_a8_step(struct target *target, int current, uint32_t address,
766                 int handle_breakpoints)
767 {
768         struct armv7a_common *armv7a = target_to_armv7a(target);
769         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
770         struct breakpoint *breakpoint = NULL;
771         struct breakpoint stepbreakpoint;
772
773         int timeout = 100;
774
775         if (target->state != TARGET_HALTED)
776         {
777                 LOG_WARNING("target not halted");
778                 return ERROR_TARGET_NOT_HALTED;
779         }
780
781         /* current = 1: continue on current pc, otherwise continue at <address> */
782         if (!current)
783         {
784                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
785                                         armv4_5->core_mode, ARM_PC).value,
786                                 0, 32, address);
787         }
788         else
789         {
790                 address = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
791                                         armv4_5->core_mode, ARM_PC).value,
792                                 0, 32);
793         }
794
795         /* The front-end may request us not to handle breakpoints.
796          * But since Cortex-A8 uses breakpoint for single step,
797          * we MUST handle breakpoints.
798          */
799         handle_breakpoints = 1;
800         if (handle_breakpoints) {
801                 breakpoint = breakpoint_find(target,
802                                 buf_get_u32(ARMV4_5_CORE_REG_MODE(
803                                         armv4_5->core_cache,
804                                         armv4_5->core_mode, 15).value,
805                         0, 32));
806                 if (breakpoint)
807                         cortex_a8_unset_breakpoint(target, breakpoint);
808         }
809
810         /* Setup single step breakpoint */
811         stepbreakpoint.address = address;
812         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
813                         ? 2 : 4;
814         stepbreakpoint.type = BKPT_HARD;
815         stepbreakpoint.set = 0;
816
817         /* Break on IVA mismatch */
818         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
819
820         target->debug_reason = DBG_REASON_SINGLESTEP;
821
822         cortex_a8_resume(target, 1, address, 0, 0);
823
824         while (target->state != TARGET_HALTED)
825         {
826                 cortex_a8_poll(target);
827                 if (--timeout == 0)
828                 {
829                         LOG_WARNING("timeout waiting for target halt");
830                         break;
831                 }
832         }
833
834         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
835         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
836
837         if (breakpoint)
838                 cortex_a8_set_breakpoint(target, breakpoint, 0);
839
840         if (target->state != TARGET_HALTED)
841                 LOG_DEBUG("target stepped");
842
843         return ERROR_OK;
844 }
845
846 static int cortex_a8_restore_context(struct target *target)
847 {
848         uint32_t value;
849         struct armv7a_common *armv7a = target_to_armv7a(target);
850         struct reg_cache *cache = armv7a->armv4_5_common.core_cache;
851         unsigned max = cache->num_regs;
852         struct reg *r;
853         bool flushed, flush_cpsr = false;
854
855         LOG_DEBUG(" ");
856
857         if (armv7a->pre_restore_context)
858                 armv7a->pre_restore_context(target);
859
860         /* Flush all dirty registers from the cache, one mode at a time so
861          * that we write CPSR as little as possible.  Save CPSR and R0 for
862          * last; they're used to change modes and write other registers.
863          *
864          * REVISIT be smarter:  save eventual mode for last loop, don't
865          * need to write CPSR an extra time.
866          */
867         do {
868                 enum armv4_5_mode mode = ARMV4_5_MODE_ANY;
869                 unsigned i;
870
871                 flushed = false;
872
873                 /* write dirty non-{R0,CPSR} registers sharing the same mode */
874                 for (i = max - 1, r = cache->reg_list + 1; i > 0; i--, r++) {
875                         struct arm_reg *reg;
876
877                         if (!r->dirty || r == armv7a->armv4_5_common.cpsr)
878                                 continue;
879                         reg = r->arch_info;
880
881                         /* TODO Check return values */
882
883                         /* Pick a mode and update CPSR; else ignore this
884                          * register if it's for a different mode than what
885                          * we're handling on this pass.
886                          *
887                          * REVISIT don't distinguish SYS and USR modes.
888                          *
889                          * FIXME if we restore from FIQ mode, R8..R12 will
890                          * get wrongly flushed onto FIQ shadows...
891                          */
892                         if (mode == ARMV4_5_MODE_ANY) {
893                                 mode = reg->mode;
894                                 if (mode != ARMV4_5_MODE_ANY) {
895                                         cortex_a8_dap_write_coreregister_u32(
896                                                         target, mode, 16);
897                                         flush_cpsr = true;
898                                 }
899                         } else if (mode != reg->mode)
900                                 continue;
901
902                         /* Write this register */
903                         value = buf_get_u32(r->value, 0, 32);
904                         cortex_a8_dap_write_coreregister_u32(target, value,
905                                         (reg->num == 16) ? 17 : reg->num);
906                         r->dirty = false;
907                         flushed = true;
908                 }
909
910         } while (flushed);
911
912         /* now flush CPSR if needed ... */
913         r = armv7a->armv4_5_common.cpsr;
914         if (flush_cpsr || r->dirty) {
915                 value = buf_get_u32(r->value, 0, 32);
916                 cortex_a8_dap_write_coreregister_u32(target, value, 16);
917                 r->dirty = false;
918         }
919
920         /* ... and R0 always (it was dirtied when we saved context) */
921         r = cache->reg_list + 0;
922         value = buf_get_u32(r->value, 0, 32);
923         cortex_a8_dap_write_coreregister_u32(target, value, 0);
924         r->dirty = false;
925
926         if (armv7a->post_restore_context)
927                 armv7a->post_restore_context(target);
928
929         return ERROR_OK;
930 }
931
932
933 #if 0
934 /*
935  * Cortex-A8 Core register functions
936  */
937 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
938                 armv4_5_mode_t mode, uint32_t * value)
939 {
940         int retval;
941         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
942
943         if ((num <= ARM_CPSR))
944         {
945                 /* read a normal core register */
946                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
947
948                 if (retval != ERROR_OK)
949                 {
950                         LOG_ERROR("JTAG failure %i", retval);
951                         return ERROR_JTAG_DEVICE_ERROR;
952                 }
953                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
954         }
955         else
956         {
957                 return ERROR_INVALID_ARGUMENTS;
958         }
959
960         /* Register other than r0 - r14 uses r0 for access */
961         if (num > 14)
962                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
963                                 armv4_5->core_mode, 0).dirty =
964                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
965                                 armv4_5->core_mode, 0).valid;
966         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
967                                 armv4_5->core_mode, 15).dirty =
968                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
969                                 armv4_5->core_mode, 15).valid;
970
971         return ERROR_OK;
972 }
973
974 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
975                 armv4_5_mode_t mode, uint32_t value)
976 {
977         int retval;
978 //      uint32_t reg;
979         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
980
981 #ifdef ARMV7_GDB_HACKS
982         /* If the LR register is being modified, make sure it will put us
983          * in "thumb" mode, or an INVSTATE exception will occur. This is a
984          * hack to deal with the fact that gdb will sometimes "forge"
985          * return addresses, and doesn't set the LSB correctly (i.e., when
986          * printing expressions containing function calls, it sets LR=0.) */
987
988         if (num == 14)
989                 value |= 0x01;
990 #endif
991
992         if ((num <= ARM_CPSR))
993         {
994                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
995                 if (retval != ERROR_OK)
996                 {
997                         LOG_ERROR("JTAG failure %i", retval);
998                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
999                                         armv4_5->core_mode, num).dirty =
1000                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1001                                         armv4_5->core_mode, num).valid;
1002                         return ERROR_JTAG_DEVICE_ERROR;
1003                 }
1004                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
1005         }
1006         else
1007         {
1008                 return ERROR_INVALID_ARGUMENTS;
1009         }
1010
1011         return ERROR_OK;
1012 }
1013 #endif
1014
1015
1016 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
1017                 int num, enum armv4_5_mode mode, uint32_t value);
1018
1019 static int cortex_a8_read_core_reg(struct target *target, struct reg *r,
1020                 int num, enum armv4_5_mode mode)
1021 {
1022         uint32_t value;
1023         int retval;
1024         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1025         struct reg *cpsr_r = NULL;
1026         uint32_t cpsr = 0;
1027         unsigned cookie = num;
1028
1029         /* avoid some needless mode changes
1030          * FIXME move some of these to shared ARM code...
1031          */
1032         if (mode != armv4_5->core_mode) {
1033                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1034                                 && (mode == ARMV4_5_MODE_USR))
1035                         mode = ARMV4_5_MODE_ANY;
1036                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1037                         mode = ARMV4_5_MODE_ANY;
1038
1039                 if (mode != ARMV4_5_MODE_ANY) {
1040                         cpsr_r = armv4_5->cpsr;
1041                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1042                         cortex_a8_write_core_reg(target, cpsr_r,
1043                                         16, ARMV4_5_MODE_ANY, mode);
1044                 }
1045         }
1046
1047         if (num == 16) {
1048                 switch (mode) {
1049                 case ARMV4_5_MODE_USR:
1050                 case ARMV4_5_MODE_SYS:
1051                 case ARMV4_5_MODE_ANY:
1052                         /* CPSR */
1053                         break;
1054                 default:
1055                         /* SPSR */
1056                         cookie++;
1057                         break;
1058                 }
1059         }
1060
1061         cortex_a8_dap_read_coreregister_u32(target, &value, cookie);
1062         retval = jtag_execute_queue();
1063         if (retval == ERROR_OK) {
1064                 r->valid = 1;
1065                 r->dirty = 0;
1066                 buf_set_u32(r->value, 0, 32, value);
1067         }
1068
1069         if (cpsr_r)
1070                 cortex_a8_write_core_reg(target, cpsr_r,
1071                                 16, ARMV4_5_MODE_ANY, cpsr);
1072         return retval;
1073 }
1074
1075 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
1076                 int num, enum armv4_5_mode mode, uint32_t value)
1077 {
1078         int retval;
1079         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1080         struct reg *cpsr_r = NULL;
1081         uint32_t cpsr = 0;
1082         unsigned cookie = num;
1083
1084         /* avoid some needless mode changes
1085          * FIXME move some of these to shared ARM code...
1086          */
1087         if (mode != armv4_5->core_mode) {
1088                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1089                                 && (mode == ARMV4_5_MODE_USR))
1090                         mode = ARMV4_5_MODE_ANY;
1091                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1092                         mode = ARMV4_5_MODE_ANY;
1093
1094                 if (mode != ARMV4_5_MODE_ANY) {
1095                         cpsr_r = armv4_5->cpsr;
1096                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1097                         cortex_a8_write_core_reg(target, cpsr_r,
1098                                         16, ARMV4_5_MODE_ANY, mode);
1099                 }
1100         }
1101
1102
1103         if (num == 16) {
1104                 switch (mode) {
1105                 case ARMV4_5_MODE_USR:
1106                 case ARMV4_5_MODE_SYS:
1107                 case ARMV4_5_MODE_ANY:
1108                         /* CPSR */
1109                         break;
1110                 default:
1111                         /* SPSR */
1112                         cookie++;
1113                         break;
1114                 }
1115         }
1116
1117         cortex_a8_dap_write_coreregister_u32(target, value, cookie);
1118         if ((retval = jtag_execute_queue()) == ERROR_OK) {
1119                 buf_set_u32(r->value, 0, 32, value);
1120                 r->valid = 1;
1121                 r->dirty = 0;
1122         }
1123
1124         if (cpsr_r)
1125                 cortex_a8_write_core_reg(target, cpsr_r,
1126                                 16, ARMV4_5_MODE_ANY, cpsr);
1127         return retval;
1128 }
1129
1130
1131 /*
1132  * Cortex-A8 Breakpoint and watchpoint fuctions
1133  */
1134
1135 /* Setup hardware Breakpoint Register Pair */
1136 static int cortex_a8_set_breakpoint(struct target *target,
1137                 struct breakpoint *breakpoint, uint8_t matchmode)
1138 {
1139         int retval;
1140         int brp_i=0;
1141         uint32_t control;
1142         uint8_t byte_addr_select = 0x0F;
1143         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1144         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1145         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1146
1147         if (breakpoint->set)
1148         {
1149                 LOG_WARNING("breakpoint already set");
1150                 return ERROR_OK;
1151         }
1152
1153         if (breakpoint->type == BKPT_HARD)
1154         {
1155                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1156                         brp_i++ ;
1157                 if (brp_i >= cortex_a8->brp_num)
1158                 {
1159                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1160                         return ERROR_FAIL;
1161                 }
1162                 breakpoint->set = brp_i + 1;
1163                 if (breakpoint->length == 2)
1164                 {
1165                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1166                 }
1167                 control = ((matchmode & 0x7) << 20)
1168                                 | (byte_addr_select << 5)
1169                                 | (3 << 1) | 1;
1170                 brp_list[brp_i].used = 1;
1171                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1172                 brp_list[brp_i].control = control;
1173                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1174                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1175                                 brp_list[brp_i].value);
1176                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1177                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1178                                 brp_list[brp_i].control);
1179                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1180                                 brp_list[brp_i].control,
1181                                 brp_list[brp_i].value);
1182         }
1183         else if (breakpoint->type == BKPT_SOFT)
1184         {
1185                 uint8_t code[4];
1186                 if (breakpoint->length == 2)
1187                 {
1188                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1189                 }
1190                 else
1191                 {
1192                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1193                 }
1194                 retval = target->type->read_memory(target,
1195                                 breakpoint->address & 0xFFFFFFFE,
1196                                 breakpoint->length, 1,
1197                                 breakpoint->orig_instr);
1198                 if (retval != ERROR_OK)
1199                         return retval;
1200                 retval = target->type->write_memory(target,
1201                                 breakpoint->address & 0xFFFFFFFE,
1202                                 breakpoint->length, 1, code);
1203                 if (retval != ERROR_OK)
1204                         return retval;
1205                 breakpoint->set = 0x11; /* Any nice value but 0 */
1206         }
1207
1208         return ERROR_OK;
1209 }
1210
1211 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1212 {
1213         int retval;
1214         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1215         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1216         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1217
1218         if (!breakpoint->set)
1219         {
1220                 LOG_WARNING("breakpoint not set");
1221                 return ERROR_OK;
1222         }
1223
1224         if (breakpoint->type == BKPT_HARD)
1225         {
1226                 int brp_i = breakpoint->set - 1;
1227                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1228                 {
1229                         LOG_DEBUG("Invalid BRP number in breakpoint");
1230                         return ERROR_OK;
1231                 }
1232                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1233                                 brp_list[brp_i].control, brp_list[brp_i].value);
1234                 brp_list[brp_i].used = 0;
1235                 brp_list[brp_i].value = 0;
1236                 brp_list[brp_i].control = 0;
1237                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1238                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1239                                 brp_list[brp_i].control);
1240                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1241                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1242                                 brp_list[brp_i].value);
1243         }
1244         else
1245         {
1246                 /* restore original instruction (kept in target endianness) */
1247                 if (breakpoint->length == 4)
1248                 {
1249                         retval = target->type->write_memory(target,
1250                                         breakpoint->address & 0xFFFFFFFE,
1251                                         4, 1, breakpoint->orig_instr);
1252                         if (retval != ERROR_OK)
1253                                 return retval;
1254                 }
1255                 else
1256                 {
1257                         retval = target->type->write_memory(target,
1258                                         breakpoint->address & 0xFFFFFFFE,
1259                                         2, 1, breakpoint->orig_instr);
1260                         if (retval != ERROR_OK)
1261                                 return retval;
1262                 }
1263         }
1264         breakpoint->set = 0;
1265
1266         return ERROR_OK;
1267 }
1268
1269 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1270 {
1271         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1272
1273         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1274         {
1275                 LOG_INFO("no hardware breakpoint available");
1276                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1277         }
1278
1279         if (breakpoint->type == BKPT_HARD)
1280                 cortex_a8->brp_num_available--;
1281         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1282
1283         return ERROR_OK;
1284 }
1285
1286 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1287 {
1288         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1289
1290 #if 0
1291 /* It is perfectly possible to remove brakpoints while the taget is running */
1292         if (target->state != TARGET_HALTED)
1293         {
1294                 LOG_WARNING("target not halted");
1295                 return ERROR_TARGET_NOT_HALTED;
1296         }
1297 #endif
1298
1299         if (breakpoint->set)
1300         {
1301                 cortex_a8_unset_breakpoint(target, breakpoint);
1302                 if (breakpoint->type == BKPT_HARD)
1303                         cortex_a8->brp_num_available++ ;
1304         }
1305
1306
1307         return ERROR_OK;
1308 }
1309
1310
1311
1312 /*
1313  * Cortex-A8 Reset fuctions
1314  */
1315
1316 static int cortex_a8_assert_reset(struct target *target)
1317 {
1318         struct armv7a_common *armv7a = target_to_armv7a(target);
1319
1320         LOG_DEBUG(" ");
1321
1322         /* registers are now invalid */
1323         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1324
1325         target->state = TARGET_RESET;
1326
1327         return ERROR_OK;
1328 }
1329
1330 static int cortex_a8_deassert_reset(struct target *target)
1331 {
1332
1333         LOG_DEBUG(" ");
1334
1335         if (target->reset_halt)
1336         {
1337                 int retval;
1338                 if ((retval = target_halt(target)) != ERROR_OK)
1339                         return retval;
1340         }
1341
1342         return ERROR_OK;
1343 }
1344
1345 /*
1346  * Cortex-A8 Memory access
1347  *
1348  * This is same Cortex M3 but we must also use the correct
1349  * ap number for every access.
1350  */
1351
1352 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1353                 uint32_t size, uint32_t count, uint8_t *buffer)
1354 {
1355         struct armv7a_common *armv7a = target_to_armv7a(target);
1356         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1357         int retval = ERROR_INVALID_ARGUMENTS;
1358
1359         /* cortex_a8 handles unaligned memory access */
1360
1361 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1362
1363         if (count && buffer) {
1364                 switch (size) {
1365                 case 4:
1366                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1367                         break;
1368                 case 2:
1369                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1370                         break;
1371                 case 1:
1372                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1373                         break;
1374                 }
1375         }
1376
1377         return retval;
1378 }
1379
1380 int cortex_a8_write_memory(struct target *target, uint32_t address,
1381                 uint32_t size, uint32_t count, uint8_t *buffer)
1382 {
1383         struct armv7a_common *armv7a = target_to_armv7a(target);
1384         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1385         int retval = ERROR_INVALID_ARGUMENTS;
1386
1387 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1388
1389         if (count && buffer) {
1390                 switch (size) {
1391                 case 4:
1392                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1393                         break;
1394                 case 2:
1395                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1396                         break;
1397                 case 1:
1398                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1399                         break;
1400                 }
1401         }
1402
1403         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1404         {
1405                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1406                 /* invalidate I-Cache */
1407                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1408                 {
1409                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1410                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1411                         /* Invalidate Cache single entry with MVA to PoU */
1412                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1413                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1414                 }
1415                 /* invalidate D-Cache */
1416                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1417                 {
1418                         /* Invalidate Cache single entry with MVA to PoC */
1419                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1420                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1421                 }
1422         }
1423
1424         return retval;
1425 }
1426
1427 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1428                 uint32_t count, uint8_t *buffer)
1429 {
1430         return cortex_a8_write_memory(target, address, 4, count, buffer);
1431 }
1432
1433
1434 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1435 {
1436 #if 0
1437         u16 dcrdr;
1438
1439         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1440         *ctrl = (uint8_t)dcrdr;
1441         *value = (uint8_t)(dcrdr >> 8);
1442
1443         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1444
1445         /* write ack back to software dcc register
1446          * signify we have read data */
1447         if (dcrdr & (1 << 0))
1448         {
1449                 dcrdr = 0;
1450                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1451         }
1452 #endif
1453         return ERROR_OK;
1454 }
1455
1456
1457 static int cortex_a8_handle_target_request(void *priv)
1458 {
1459         struct target *target = priv;
1460         struct armv7a_common *armv7a = target_to_armv7a(target);
1461         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1462
1463         if (!target_was_examined(target))
1464                 return ERROR_OK;
1465         if (!target->dbg_msg_enabled)
1466                 return ERROR_OK;
1467
1468         if (target->state == TARGET_RUNNING)
1469         {
1470                 uint8_t data = 0;
1471                 uint8_t ctrl = 0;
1472
1473                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1474
1475                 /* check if we have data */
1476                 if (ctrl & (1 << 0))
1477                 {
1478                         uint32_t request;
1479
1480                         /* we assume target is quick enough */
1481                         request = data;
1482                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1483                         request |= (data << 8);
1484                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1485                         request |= (data << 16);
1486                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1487                         request |= (data << 24);
1488                         target_request(target, request);
1489                 }
1490         }
1491
1492         return ERROR_OK;
1493 }
1494
1495 /*
1496  * Cortex-A8 target information and configuration
1497  */
1498
1499 static int cortex_a8_examine_first(struct target *target)
1500 {
1501         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1502         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1503         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1504         int i;
1505         int retval = ERROR_OK;
1506         uint32_t didr, ctypr, ttypr, cpuid;
1507
1508         LOG_DEBUG("TODO");
1509
1510         /* Here we shall insert a proper ROM Table scan */
1511         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1512
1513         /* We do one extra read to ensure DAP is configured,
1514          * we call ahbap_debugport_init(swjdp) instead
1515          */
1516         ahbap_debugport_init(swjdp);
1517         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1518         if ((retval = mem_ap_read_atomic_u32(swjdp,
1519                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1520         {
1521                 LOG_DEBUG("Examine failed");
1522                 return retval;
1523         }
1524
1525         if ((retval = mem_ap_read_atomic_u32(swjdp,
1526                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1527         {
1528                 LOG_DEBUG("Examine failed");
1529                 return retval;
1530         }
1531
1532         if ((retval = mem_ap_read_atomic_u32(swjdp,
1533                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1534         {
1535                 LOG_DEBUG("Examine failed");
1536                 return retval;
1537         }
1538
1539         if ((retval = mem_ap_read_atomic_u32(swjdp,
1540                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1541         {
1542                 LOG_DEBUG("Examine failed");
1543                 return retval;
1544         }
1545
1546         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1547         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1548         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1549         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1550
1551         /* Setup Breakpoint Register Pairs */
1552         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1553         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1554         cortex_a8->brp_num_available = cortex_a8->brp_num;
1555         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1556 //      cortex_a8->brb_enabled = ????;
1557         for (i = 0; i < cortex_a8->brp_num; i++)
1558         {
1559                 cortex_a8->brp_list[i].used = 0;
1560                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1561                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1562                 else
1563                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1564                 cortex_a8->brp_list[i].value = 0;
1565                 cortex_a8->brp_list[i].control = 0;
1566                 cortex_a8->brp_list[i].BRPn = i;
1567         }
1568
1569         /* Setup Watchpoint Register Pairs */
1570         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1571         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1572         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1573         for (i = 0; i < cortex_a8->wrp_num; i++)
1574         {
1575                 cortex_a8->wrp_list[i].used = 0;
1576                 cortex_a8->wrp_list[i].type = 0;
1577                 cortex_a8->wrp_list[i].value = 0;
1578                 cortex_a8->wrp_list[i].control = 0;
1579                 cortex_a8->wrp_list[i].WRPn = i;
1580         }
1581         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1582                         cortex_a8->brp_num , cortex_a8->wrp_num);
1583
1584         target_set_examined(target);
1585         return ERROR_OK;
1586 }
1587
1588 static int cortex_a8_examine(struct target *target)
1589 {
1590         int retval = ERROR_OK;
1591
1592         /* don't re-probe hardware after each reset */
1593         if (!target_was_examined(target))
1594                 retval = cortex_a8_examine_first(target);
1595
1596         /* Configure core debug access */
1597         if (retval == ERROR_OK)
1598                 retval = cortex_a8_init_debug_access(target);
1599
1600         return retval;
1601 }
1602
1603 /*
1604  *      Cortex-A8 target creation and initialization
1605  */
1606
1607 static void cortex_a8_build_reg_cache(struct target *target)
1608 {
1609         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1610         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1611
1612         armv4_5->core_type = ARM_MODE_MON;
1613
1614         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1615 }
1616
1617
1618 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1619                 struct target *target)
1620 {
1621         cortex_a8_build_reg_cache(target);
1622         return ERROR_OK;
1623 }
1624
1625 int cortex_a8_init_arch_info(struct target *target,
1626                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1627 {
1628         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1629         struct arm *armv4_5 = &armv7a->armv4_5_common;
1630         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1631
1632         /* Setup struct cortex_a8_common */
1633         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1634         armv4_5->arch_info = armv7a;
1635
1636         /* prepare JTAG information for the new target */
1637         cortex_a8->jtag_info.tap = tap;
1638         cortex_a8->jtag_info.scann_size = 4;
1639 LOG_DEBUG(" ");
1640         swjdp->dp_select_value = -1;
1641         swjdp->ap_csw_value = -1;
1642         swjdp->ap_tar_value = -1;
1643         swjdp->jtag_info = &cortex_a8->jtag_info;
1644         swjdp->memaccess_tck = 80;
1645
1646         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1647         swjdp->tar_autoincr_block = (1 << 10);
1648
1649         cortex_a8->fast_reg_read = 0;
1650
1651
1652         /* register arch-specific functions */
1653         armv7a->examine_debug_reason = NULL;
1654
1655         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1656
1657         armv7a->pre_restore_context = NULL;
1658         armv7a->post_restore_context = NULL;
1659         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1660 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1661         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1662         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1663 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1664 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1665         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1666         armv7a->armv4_5_mmu.mmu_enabled = 0;
1667         armv7a->read_cp15 = cortex_a8_read_cp15;
1668         armv7a->write_cp15 = cortex_a8_write_cp15;
1669
1670
1671 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1672
1673         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1674         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1675
1676         /* REVISIT v7a setup should be in a v7a-specific routine */
1677         armv4_5_init_arch_info(target, armv4_5);
1678         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1679
1680         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1681
1682         return ERROR_OK;
1683 }
1684
1685 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1686 {
1687         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1688
1689         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1690
1691         return ERROR_OK;
1692 }
1693
1694 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1695 {
1696         struct target *target = get_current_target(CMD_CTX);
1697         struct armv7a_common *armv7a = target_to_armv7a(target);
1698
1699         return armv4_5_handle_cache_info_command(CMD_CTX,
1700                         &armv7a->armv4_5_mmu.armv4_5_cache);
1701 }
1702
1703
1704 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1705 {
1706         struct target *target = get_current_target(CMD_CTX);
1707
1708         cortex_a8_init_debug_access(target);
1709
1710         return ERROR_OK;
1711 }
1712
1713
1714 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1715 {
1716         struct command *cortex_a8_cmd;
1717         int retval = ERROR_OK;
1718
1719         armv4_5_register_commands(cmd_ctx);
1720         armv7a_register_commands(cmd_ctx);
1721
1722         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1723                         NULL, COMMAND_ANY,
1724                         "cortex_a8 specific commands");
1725
1726         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1727                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1728                         "display information about target caches");
1729
1730         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1731                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1732                         "Initialize core debug");
1733
1734         return retval;
1735 }
1736
1737 struct target_type cortexa8_target = {
1738         .name = "cortex_a8",
1739
1740         .poll = cortex_a8_poll,
1741         .arch_state = armv7a_arch_state,
1742
1743         .target_request_data = NULL,
1744
1745         .halt = cortex_a8_halt,
1746         .resume = cortex_a8_resume,
1747         .step = cortex_a8_step,
1748
1749         .assert_reset = cortex_a8_assert_reset,
1750         .deassert_reset = cortex_a8_deassert_reset,
1751         .soft_reset_halt = NULL,
1752
1753         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1754
1755         .read_memory = cortex_a8_read_memory,
1756         .write_memory = cortex_a8_write_memory,
1757         .bulk_write_memory = cortex_a8_bulk_write_memory,
1758
1759         .checksum_memory = arm_checksum_memory,
1760         .blank_check_memory = arm_blank_check_memory,
1761
1762         .run_algorithm = armv4_5_run_algorithm,
1763
1764         .add_breakpoint = cortex_a8_add_breakpoint,
1765         .remove_breakpoint = cortex_a8_remove_breakpoint,
1766         .add_watchpoint = NULL,
1767         .remove_watchpoint = NULL,
1768
1769         .register_commands = cortex_a8_register_commands,
1770         .target_create = cortex_a8_target_create,
1771         .init_target = cortex_a8_init_target,
1772         .examine = cortex_a8_examine,
1773         .mrc = cortex_a8_mrc,
1774         .mcr = cortex_a8_mcr,
1775 };