]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
c0a7466733b3f13a73f52e594fa9e73875faaa8d
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 16)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 /* "MOV r0, r15"; then move r0 to DCCTX */
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else if (reg == 16)
255         {
256                 /* "MRS r0, CPSR"; then move r0 to DCCTX */
257                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
258                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
259         }
260
261         /* Read DTRRTX */
262         do
263         {
264                 retval = mem_ap_read_atomic_u32(swjdp,
265                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
266         }
267         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
268
269         retval = mem_ap_read_atomic_u32(swjdp,
270                         armv7a->debug_base + CPUDBG_DTRTX, value);
271
272         return retval;
273 }
274
275 static int cortex_a8_dap_write_coreregister_u32(struct target *target, uint32_t value, int regnum)
276 {
277         int retval = ERROR_OK;
278         uint8_t Rd = regnum&0xFF;
279         uint32_t dscr;
280         struct armv7a_common *armv7a = target_to_armv7a(target);
281         struct swjdp_common *swjdp = &armv7a->swjdp_info;
282
283         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
284
285         /* Check that DCCRX is not full */
286         retval = mem_ap_read_atomic_u32(swjdp,
287                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
288         if (dscr & (1 << DSCR_DTR_RX_FULL))
289         {
290                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
291                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
292                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
293         }
294
295         if (Rd > 16)
296                 return retval;
297
298         /* Write to DCCRX */
299         retval = mem_ap_write_u32(swjdp,
300                         armv7a->debug_base + CPUDBG_DTRRX, value);
301
302         if (Rd < 15)
303         {
304                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
305                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
306         }
307         else if (Rd == 15)
308         {
309                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
310                 cortex_a8_exec_opcode(target, 0xE1A0F000);
311         }
312         else if (Rd == 16)
313         {
314                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
315                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
316                 /* Execute a PrefetchFlush instruction through the ITR. */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
318         }
319
320         return retval;
321 }
322
323 /* Write to memory mapped registers directly with no cache or mmu handling */
324 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
325 {
326         int retval;
327         struct armv7a_common *armv7a = target_to_armv7a(target);
328         struct swjdp_common *swjdp = &armv7a->swjdp_info;
329
330         retval = mem_ap_write_atomic_u32(swjdp, address, value);
331
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 static int cortex_a8_poll(struct target *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
344         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
345         struct swjdp_common *swjdp = &armv7a->swjdp_info;
346         enum target_state prev_target_state = target->state;
347         uint8_t saved_apsel = dap_ap_get_select(swjdp);
348
349         dap_ap_select(swjdp, swjdp_debugap);
350         retval = mem_ap_read_atomic_u32(swjdp,
351                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
352         if (retval != ERROR_OK)
353         {
354                 dap_ap_select(swjdp, saved_apsel);
355                 return retval;
356         }
357         cortex_a8->cpudbg_dscr = dscr;
358
359         if ((dscr & 0x3) == 0x3)
360         {
361                 if (prev_target_state != TARGET_HALTED)
362                 {
363                         /* We have a halting debug event */
364                         LOG_DEBUG("Target halted");
365                         target->state = TARGET_HALTED;
366                         if ((prev_target_state == TARGET_RUNNING)
367                                         || (prev_target_state == TARGET_RESET))
368                         {
369                                 retval = cortex_a8_debug_entry(target);
370                                 if (retval != ERROR_OK)
371                                         return retval;
372
373                                 target_call_event_callbacks(target,
374                                                 TARGET_EVENT_HALTED);
375                         }
376                         if (prev_target_state == TARGET_DEBUG_RUNNING)
377                         {
378                                 LOG_DEBUG(" ");
379
380                                 retval = cortex_a8_debug_entry(target);
381                                 if (retval != ERROR_OK)
382                                         return retval;
383
384                                 target_call_event_callbacks(target,
385                                                 TARGET_EVENT_DEBUG_HALTED);
386                         }
387                 }
388         }
389         else if ((dscr & 0x3) == 0x2)
390         {
391                 target->state = TARGET_RUNNING;
392         }
393         else
394         {
395                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
396                 target->state = TARGET_UNKNOWN;
397         }
398
399         dap_ap_select(swjdp, saved_apsel);
400
401         return retval;
402 }
403
404 static int cortex_a8_halt(struct target *target)
405 {
406         int retval = ERROR_OK;
407         uint32_t dscr;
408         struct armv7a_common *armv7a = target_to_armv7a(target);
409         struct swjdp_common *swjdp = &armv7a->swjdp_info;
410         uint8_t saved_apsel = dap_ap_get_select(swjdp);
411         dap_ap_select(swjdp, swjdp_debugap);
412
413         /*
414          * Tell the core to be halted by writing DRCR with 0x1
415          * and then wait for the core to be halted.
416          */
417         retval = mem_ap_write_atomic_u32(swjdp,
418                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
419
420         /*
421          * enter halting debug mode
422          */
423         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
424         retval = mem_ap_write_atomic_u32(swjdp,
425                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
426
427         if (retval != ERROR_OK)
428                 goto out;
429
430         do {
431                 mem_ap_read_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
433         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
434
435         target->debug_reason = DBG_REASON_DBGRQ;
436
437 out:
438         dap_ap_select(swjdp, saved_apsel);
439         return retval;
440 }
441
442 static int cortex_a8_resume(struct target *target, int current,
443                 uint32_t address, int handle_breakpoints, int debug_execution)
444 {
445         struct armv7a_common *armv7a = target_to_armv7a(target);
446         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
447         struct swjdp_common *swjdp = &armv7a->swjdp_info;
448
449 //      struct breakpoint *breakpoint = NULL;
450         uint32_t resume_pc, dscr;
451
452         uint8_t saved_apsel = dap_ap_get_select(swjdp);
453         dap_ap_select(swjdp, swjdp_debugap);
454
455         if (!debug_execution)
456         {
457                 target_free_all_working_areas(target);
458 //              cortex_m3_enable_breakpoints(target);
459 //              cortex_m3_enable_watchpoints(target);
460         }
461
462 #if 0
463         if (debug_execution)
464         {
465                 /* Disable interrupts */
466                 /* We disable interrupts in the PRIMASK register instead of
467                  * masking with C_MASKINTS,
468                  * This is probably the same issue as Cortex-M3 Errata 377493:
469                  * C_MASKINTS in parallel with disabled interrupts can cause
470                  * local faults to not be taken. */
471                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
472                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
473                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
474
475                 /* Make sure we are in Thumb mode */
476                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
477                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
478                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
479                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
480         }
481 #endif
482
483         /* current = 1: continue on current pc, otherwise continue at <address> */
484         resume_pc = buf_get_u32(
485                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
486                                 armv4_5->core_mode, 15).value,
487                         0, 32);
488         if (!current)
489                 resume_pc = address;
490
491         /* Make sure that the Armv7 gdb thumb fixups does not
492          * kill the return address
493          */
494         switch (armv4_5->core_state)
495         {
496         case ARMV4_5_STATE_ARM:
497                 resume_pc &= 0xFFFFFFFC;
498                 break;
499         case ARMV4_5_STATE_THUMB:
500         case ARM_STATE_THUMB_EE:
501                 /* When the return address is loaded into PC
502                  * bit 0 must be 1 to stay in Thumb state
503                  */
504                 resume_pc |= 0x1;
505                 break;
506         case ARMV4_5_STATE_JAZELLE:
507                 LOG_ERROR("How do I resume into Jazelle state??");
508                 return ERROR_FAIL;
509         }
510         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
511         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
512                                 armv4_5->core_mode, 15).value,
513                         0, 32, resume_pc);
514         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
515                         armv4_5->core_mode, 15).dirty = 1;
516         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
517                         armv4_5->core_mode, 15).valid = 1;
518
519         cortex_a8_restore_context(target);
520 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
521 #if 0
522         /* the front-end may request us not to handle breakpoints */
523         if (handle_breakpoints)
524         {
525                 /* Single step past breakpoint at current address */
526                 if ((breakpoint = breakpoint_find(target, resume_pc)))
527                 {
528                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
529                         cortex_m3_unset_breakpoint(target, breakpoint);
530                         cortex_m3_single_step_core(target);
531                         cortex_m3_set_breakpoint(target, breakpoint);
532                 }
533         }
534
535 #endif
536         /* Restart core and wait for it to be started */
537         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
538
539         do {
540                 mem_ap_read_atomic_u32(swjdp,
541                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
542         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
543
544         target->debug_reason = DBG_REASON_NOTHALTED;
545         target->state = TARGET_RUNNING;
546
547         /* registers are now invalid */
548         armv4_5_invalidate_core_regs(target);
549
550         if (!debug_execution)
551         {
552                 target->state = TARGET_RUNNING;
553                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
554                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
555         }
556         else
557         {
558                 target->state = TARGET_DEBUG_RUNNING;
559                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
560                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
561         }
562
563         dap_ap_select(swjdp, saved_apsel);
564
565         return ERROR_OK;
566 }
567
568 static int cortex_a8_debug_entry(struct target *target)
569 {
570         int i;
571         uint32_t regfile[16], pc, cpsr, dscr;
572         int retval = ERROR_OK;
573         struct working_area *regfile_working_area = NULL;
574         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
575         struct armv7a_common *armv7a = target_to_armv7a(target);
576         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
577         struct swjdp_common *swjdp = &armv7a->swjdp_info;
578         struct reg *reg;
579
580         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
581
582         /* Enable the ITR execution once we are in debug mode */
583         mem_ap_read_atomic_u32(swjdp,
584                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
585         dscr |= (1 << DSCR_EXT_INT_EN);
586         retval = mem_ap_write_atomic_u32(swjdp,
587                         armv7a->debug_base + CPUDBG_DSCR, dscr);
588
589         /* Examine debug reason */
590         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
591         {
592                 case 0:
593                 case 4:
594                         target->debug_reason = DBG_REASON_DBGRQ;
595                         break;
596                 case 1:
597                 case 3:
598                         target->debug_reason = DBG_REASON_BREAKPOINT;
599                         break;
600                 case 10:
601                         target->debug_reason = DBG_REASON_WATCHPOINT;
602                         break;
603                 default:
604                         target->debug_reason = DBG_REASON_UNDEFINED;
605                         break;
606         }
607
608         /* Examine target state and mode */
609         if (cortex_a8->fast_reg_read)
610                 target_alloc_working_area(target, 64, &regfile_working_area);
611
612         /* First load register acessible through core debug port*/
613         if (!regfile_working_area)
614         {
615                 /* FIXME we don't actually need all these registers;
616                  * reading them slows us down.  Just R0, PC, CPSR...
617                  */
618                 for (i = 0; i <= 15; i++)
619                         cortex_a8_dap_read_coreregister_u32(target,
620                                         &regfile[i], i);
621         }
622         else
623         {
624                 dap_ap_select(swjdp, swjdp_memoryap);
625                 cortex_a8_read_regs_through_mem(target,
626                                 regfile_working_area->address, regfile);
627                 dap_ap_select(swjdp, swjdp_memoryap);
628                 target_free_working_area(target, regfile_working_area);
629         }
630
631         /* read Current PSR */
632         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
633         pc = regfile[15];
634         dap_ap_select(swjdp, swjdp_debugap);
635         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
636
637         armv4_5->core_mode = cpsr & 0x1F;
638
639         i = (cpsr >> 5) & 1;    /* T */
640         i |= (cpsr >> 23) & 1;  /* J << 1 */
641         switch (i) {
642         case 0: /* J = 0, T = 0 */
643                 armv4_5->core_state = ARMV4_5_STATE_ARM;
644                 break;
645         case 1: /* J = 0, T = 1 */
646                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
647                 break;
648         case 2: /* J = 1, T = 0 */
649                 LOG_WARNING("Jazelle state -- not handled");
650                 armv4_5->core_state = ARMV4_5_STATE_JAZELLE;
651                 break;
652         case 3: /* J = 1, T = 1 */
653                 /* ThumbEE is very much like Thumb, but some of the
654                  * instructions are different.  Single stepping and
655                  * breakpoints need updating...
656                  */
657                 LOG_WARNING("ThumbEE -- incomplete support");
658                 armv4_5->core_state = ARM_STATE_THUMB_EE;
659                 break;
660         }
661
662         /* update cache */
663         reg = armv4_5->core_cache->reg_list + ARMV4_5_CPSR;
664         buf_set_u32(reg->value, 0, 32, cpsr);
665         reg->valid = 1;
666         reg->dirty = 0;
667
668         for (i = 0; i <= ARM_PC; i++)
669         {
670                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
671                                         armv4_5->core_mode, i);
672
673                 buf_set_u32(reg->value, 0, 32, regfile[i]);
674                 reg->valid = 1;
675                 reg->dirty = 0;
676         }
677
678         /* Fixup PC Resume Address */
679         if (cpsr & (1 << 5))
680         {
681                 // T bit set for Thumb or ThumbEE state
682                 regfile[ARM_PC] -= 4;
683         }
684         else
685         {
686                 // ARM state
687                 regfile[ARM_PC] -= 8;
688         }
689         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
690                                 armv4_5->core_mode, ARM_PC).value,
691                         0, 32, regfile[ARM_PC]);
692
693         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
694                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
695                                 armv4_5->core_mode, 0).valid;
696         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
697                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
698                                 armv4_5->core_mode, 15).valid;
699
700 #if 0
701 /* TODO, Move this */
702         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
703         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
704         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
705
706         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
707         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
708
709         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
710         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
711 #endif
712
713         /* Are we in an exception handler */
714 //      armv4_5->exception_number = 0;
715         if (armv7a->post_debug_entry)
716                 armv7a->post_debug_entry(target);
717
718
719
720         return retval;
721
722 }
723
724 static void cortex_a8_post_debug_entry(struct target *target)
725 {
726         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
727         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
728
729 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
730         /* examine cp15 control reg */
731         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
732         jtag_execute_queue();
733         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
734
735         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
736         {
737                 uint32_t cache_type_reg;
738                 /* identify caches */
739                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
740                 jtag_execute_queue();
741                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
742                 armv4_5_identify_cache(cache_type_reg,
743                                 &armv7a->armv4_5_mmu.armv4_5_cache);
744         }
745
746         armv7a->armv4_5_mmu.mmu_enabled =
747                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
748         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
749                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
750         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
751                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
752
753
754 }
755
756 static int cortex_a8_step(struct target *target, int current, uint32_t address,
757                 int handle_breakpoints)
758 {
759         struct armv7a_common *armv7a = target_to_armv7a(target);
760         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
761         struct breakpoint *breakpoint = NULL;
762         struct breakpoint stepbreakpoint;
763
764         int timeout = 100;
765
766         if (target->state != TARGET_HALTED)
767         {
768                 LOG_WARNING("target not halted");
769                 return ERROR_TARGET_NOT_HALTED;
770         }
771
772         /* current = 1: continue on current pc, otherwise continue at <address> */
773         if (!current)
774         {
775                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
776                                         armv4_5->core_mode, ARM_PC).value,
777                                 0, 32, address);
778         }
779         else
780         {
781                 address = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
782                                         armv4_5->core_mode, ARM_PC).value,
783                                 0, 32);
784         }
785
786         /* The front-end may request us not to handle breakpoints.
787          * But since Cortex-A8 uses breakpoint for single step,
788          * we MUST handle breakpoints.
789          */
790         handle_breakpoints = 1;
791         if (handle_breakpoints) {
792                 breakpoint = breakpoint_find(target,
793                                 buf_get_u32(ARMV4_5_CORE_REG_MODE(
794                                         armv4_5->core_cache,
795                                         armv4_5->core_mode, 15).value,
796                         0, 32));
797                 if (breakpoint)
798                         cortex_a8_unset_breakpoint(target, breakpoint);
799         }
800
801         /* Setup single step breakpoint */
802         stepbreakpoint.address = address;
803         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
804                         ? 2 : 4;
805         stepbreakpoint.type = BKPT_HARD;
806         stepbreakpoint.set = 0;
807
808         /* Break on IVA mismatch */
809         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
810
811         target->debug_reason = DBG_REASON_SINGLESTEP;
812
813         cortex_a8_resume(target, 1, address, 0, 0);
814
815         while (target->state != TARGET_HALTED)
816         {
817                 cortex_a8_poll(target);
818                 if (--timeout == 0)
819                 {
820                         LOG_WARNING("timeout waiting for target halt");
821                         break;
822                 }
823         }
824
825         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
826         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
827
828         if (breakpoint)
829                 cortex_a8_set_breakpoint(target, breakpoint, 0);
830
831         if (target->state != TARGET_HALTED)
832                 LOG_DEBUG("target stepped");
833
834         return ERROR_OK;
835 }
836
837 static int cortex_a8_restore_context(struct target *target)
838 {
839         int i;
840         uint32_t value;
841         struct armv7a_common *armv7a = target_to_armv7a(target);
842         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
843
844         LOG_DEBUG(" ");
845
846         if (armv7a->pre_restore_context)
847                 armv7a->pre_restore_context(target);
848
849         for (i = 15; i >= 0; i--)
850         {
851                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
852                                         armv4_5->core_mode, i).dirty)
853                 {
854                         value = buf_get_u32(ARMV4_5_CORE_REG_MODE(
855                                                 armv4_5->core_cache,
856                                                 armv4_5->core_mode, i).value,
857                                         0, 32);
858                         /* TODO Check return values */
859                         cortex_a8_dap_write_coreregister_u32(target, value, i);
860                 }
861         }
862
863         if (armv7a->post_restore_context)
864                 armv7a->post_restore_context(target);
865
866         return ERROR_OK;
867 }
868
869
870 #if 0
871 /*
872  * Cortex-A8 Core register functions
873  */
874 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
875                 armv4_5_mode_t mode, uint32_t * value)
876 {
877         int retval;
878         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
879
880         if ((num <= ARM_CPSR))
881         {
882                 /* read a normal core register */
883                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
884
885                 if (retval != ERROR_OK)
886                 {
887                         LOG_ERROR("JTAG failure %i", retval);
888                         return ERROR_JTAG_DEVICE_ERROR;
889                 }
890                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
891         }
892         else
893         {
894                 return ERROR_INVALID_ARGUMENTS;
895         }
896
897         /* Register other than r0 - r14 uses r0 for access */
898         if (num > 14)
899                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
900                                 armv4_5->core_mode, 0).dirty =
901                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
902                                 armv4_5->core_mode, 0).valid;
903         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
904                                 armv4_5->core_mode, 15).dirty =
905                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
906                                 armv4_5->core_mode, 15).valid;
907
908         return ERROR_OK;
909 }
910
911 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
912                 armv4_5_mode_t mode, uint32_t value)
913 {
914         int retval;
915 //      uint32_t reg;
916         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
917
918 #ifdef ARMV7_GDB_HACKS
919         /* If the LR register is being modified, make sure it will put us
920          * in "thumb" mode, or an INVSTATE exception will occur. This is a
921          * hack to deal with the fact that gdb will sometimes "forge"
922          * return addresses, and doesn't set the LSB correctly (i.e., when
923          * printing expressions containing function calls, it sets LR=0.) */
924
925         if (num == 14)
926                 value |= 0x01;
927 #endif
928
929         if ((num <= ARM_CPSR))
930         {
931                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
932                 if (retval != ERROR_OK)
933                 {
934                         LOG_ERROR("JTAG failure %i", retval);
935                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
936                                         armv4_5->core_mode, num).dirty =
937                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
938                                         armv4_5->core_mode, num).valid;
939                         return ERROR_JTAG_DEVICE_ERROR;
940                 }
941                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
942         }
943         else
944         {
945                 return ERROR_INVALID_ARGUMENTS;
946         }
947
948         return ERROR_OK;
949 }
950 #endif
951
952
953 static int cortex_a8_read_core_reg(struct target *target, int num,
954                 enum armv4_5_mode mode)
955 {
956         uint32_t value;
957         int retval;
958         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
959
960         /* FIXME cortex may not be in "mode" ... */
961
962         cortex_a8_dap_read_coreregister_u32(target, &value, num);
963
964         if ((retval = jtag_execute_queue()) != ERROR_OK)
965         {
966                 return retval;
967         }
968
969         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
970         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
971         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
972                         mode, num).value, 0, 32, value);
973
974         return ERROR_OK;
975 }
976
977 static int cortex_a8_write_core_reg(struct target *target, int num,
978                 enum armv4_5_mode mode, uint32_t value)
979 {
980         int retval;
981         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
982
983         /* FIXME cortex may not be in "mode" ... */
984
985         cortex_a8_dap_write_coreregister_u32(target, value, num);
986         if ((retval = jtag_execute_queue()) != ERROR_OK)
987         {
988                 return retval;
989         }
990
991         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
992         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
993
994         return ERROR_OK;
995 }
996
997
998 /*
999  * Cortex-A8 Breakpoint and watchpoint fuctions
1000  */
1001
1002 /* Setup hardware Breakpoint Register Pair */
1003 static int cortex_a8_set_breakpoint(struct target *target,
1004                 struct breakpoint *breakpoint, uint8_t matchmode)
1005 {
1006         int retval;
1007         int brp_i=0;
1008         uint32_t control;
1009         uint8_t byte_addr_select = 0x0F;
1010         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1011         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1012         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1013
1014         if (breakpoint->set)
1015         {
1016                 LOG_WARNING("breakpoint already set");
1017                 return ERROR_OK;
1018         }
1019
1020         if (breakpoint->type == BKPT_HARD)
1021         {
1022                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1023                         brp_i++ ;
1024                 if (brp_i >= cortex_a8->brp_num)
1025                 {
1026                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1027                         return ERROR_FAIL;
1028                 }
1029                 breakpoint->set = brp_i + 1;
1030                 if (breakpoint->length == 2)
1031                 {
1032                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1033                 }
1034                 control = ((matchmode & 0x7) << 20)
1035                                 | (byte_addr_select << 5)
1036                                 | (3 << 1) | 1;
1037                 brp_list[brp_i].used = 1;
1038                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1039                 brp_list[brp_i].control = control;
1040                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1041                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1042                                 brp_list[brp_i].value);
1043                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1044                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1045                                 brp_list[brp_i].control);
1046                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1047                                 brp_list[brp_i].control,
1048                                 brp_list[brp_i].value);
1049         }
1050         else if (breakpoint->type == BKPT_SOFT)
1051         {
1052                 uint8_t code[4];
1053                 if (breakpoint->length == 2)
1054                 {
1055                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1056                 }
1057                 else
1058                 {
1059                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1060                 }
1061                 retval = target->type->read_memory(target,
1062                                 breakpoint->address & 0xFFFFFFFE,
1063                                 breakpoint->length, 1,
1064                                 breakpoint->orig_instr);
1065                 if (retval != ERROR_OK)
1066                         return retval;
1067                 retval = target->type->write_memory(target,
1068                                 breakpoint->address & 0xFFFFFFFE,
1069                                 breakpoint->length, 1, code);
1070                 if (retval != ERROR_OK)
1071                         return retval;
1072                 breakpoint->set = 0x11; /* Any nice value but 0 */
1073         }
1074
1075         return ERROR_OK;
1076 }
1077
1078 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1079 {
1080         int retval;
1081         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1082         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1083         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1084
1085         if (!breakpoint->set)
1086         {
1087                 LOG_WARNING("breakpoint not set");
1088                 return ERROR_OK;
1089         }
1090
1091         if (breakpoint->type == BKPT_HARD)
1092         {
1093                 int brp_i = breakpoint->set - 1;
1094                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1095                 {
1096                         LOG_DEBUG("Invalid BRP number in breakpoint");
1097                         return ERROR_OK;
1098                 }
1099                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1100                                 brp_list[brp_i].control, brp_list[brp_i].value);
1101                 brp_list[brp_i].used = 0;
1102                 brp_list[brp_i].value = 0;
1103                 brp_list[brp_i].control = 0;
1104                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1105                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1106                                 brp_list[brp_i].control);
1107                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1108                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1109                                 brp_list[brp_i].value);
1110         }
1111         else
1112         {
1113                 /* restore original instruction (kept in target endianness) */
1114                 if (breakpoint->length == 4)
1115                 {
1116                         retval = target->type->write_memory(target,
1117                                         breakpoint->address & 0xFFFFFFFE,
1118                                         4, 1, breakpoint->orig_instr);
1119                         if (retval != ERROR_OK)
1120                                 return retval;
1121                 }
1122                 else
1123                 {
1124                         retval = target->type->write_memory(target,
1125                                         breakpoint->address & 0xFFFFFFFE,
1126                                         2, 1, breakpoint->orig_instr);
1127                         if (retval != ERROR_OK)
1128                                 return retval;
1129                 }
1130         }
1131         breakpoint->set = 0;
1132
1133         return ERROR_OK;
1134 }
1135
1136 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1137 {
1138         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1139
1140         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1141         {
1142                 LOG_INFO("no hardware breakpoint available");
1143                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1144         }
1145
1146         if (breakpoint->type == BKPT_HARD)
1147                 cortex_a8->brp_num_available--;
1148         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1149
1150         return ERROR_OK;
1151 }
1152
1153 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1154 {
1155         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1156
1157 #if 0
1158 /* It is perfectly possible to remove brakpoints while the taget is running */
1159         if (target->state != TARGET_HALTED)
1160         {
1161                 LOG_WARNING("target not halted");
1162                 return ERROR_TARGET_NOT_HALTED;
1163         }
1164 #endif
1165
1166         if (breakpoint->set)
1167         {
1168                 cortex_a8_unset_breakpoint(target, breakpoint);
1169                 if (breakpoint->type == BKPT_HARD)
1170                         cortex_a8->brp_num_available++ ;
1171         }
1172
1173
1174         return ERROR_OK;
1175 }
1176
1177
1178
1179 /*
1180  * Cortex-A8 Reset fuctions
1181  */
1182
1183 static int cortex_a8_assert_reset(struct target *target)
1184 {
1185
1186         LOG_DEBUG(" ");
1187
1188         /* registers are now invalid */
1189         armv4_5_invalidate_core_regs(target);
1190
1191         target->state = TARGET_RESET;
1192
1193         return ERROR_OK;
1194 }
1195
1196 static int cortex_a8_deassert_reset(struct target *target)
1197 {
1198
1199         LOG_DEBUG(" ");
1200
1201         if (target->reset_halt)
1202         {
1203                 int retval;
1204                 if ((retval = target_halt(target)) != ERROR_OK)
1205                         return retval;
1206         }
1207
1208         return ERROR_OK;
1209 }
1210
1211 /*
1212  * Cortex-A8 Memory access
1213  *
1214  * This is same Cortex M3 but we must also use the correct
1215  * ap number for every access.
1216  */
1217
1218 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1219                 uint32_t size, uint32_t count, uint8_t *buffer)
1220 {
1221         struct armv7a_common *armv7a = target_to_armv7a(target);
1222         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1223         int retval = ERROR_INVALID_ARGUMENTS;
1224
1225         /* cortex_a8 handles unaligned memory access */
1226
1227 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1228
1229         if (count && buffer) {
1230                 switch (size) {
1231                 case 4:
1232                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1233                         break;
1234                 case 2:
1235                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1236                         break;
1237                 case 1:
1238                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1239                         break;
1240                 }
1241         }
1242
1243         return retval;
1244 }
1245
1246 int cortex_a8_write_memory(struct target *target, uint32_t address,
1247                 uint32_t size, uint32_t count, uint8_t *buffer)
1248 {
1249         struct armv7a_common *armv7a = target_to_armv7a(target);
1250         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1251         int retval = ERROR_INVALID_ARGUMENTS;
1252
1253 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1254
1255         if (count && buffer) {
1256                 switch (size) {
1257                 case 4:
1258                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1259                         break;
1260                 case 2:
1261                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1262                         break;
1263                 case 1:
1264                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1265                         break;
1266                 }
1267         }
1268
1269         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1270         {
1271                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1272                 /* invalidate I-Cache */
1273                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1274                 {
1275                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1276                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1277                         /* Invalidate Cache single entry with MVA to PoU */
1278                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1279                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1280                 }
1281                 /* invalidate D-Cache */
1282                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1283                 {
1284                         /* Invalidate Cache single entry with MVA to PoC */
1285                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1286                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1287                 }
1288         }
1289
1290         return retval;
1291 }
1292
1293 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1294                 uint32_t count, uint8_t *buffer)
1295 {
1296         return cortex_a8_write_memory(target, address, 4, count, buffer);
1297 }
1298
1299
1300 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1301 {
1302 #if 0
1303         u16 dcrdr;
1304
1305         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1306         *ctrl = (uint8_t)dcrdr;
1307         *value = (uint8_t)(dcrdr >> 8);
1308
1309         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1310
1311         /* write ack back to software dcc register
1312          * signify we have read data */
1313         if (dcrdr & (1 << 0))
1314         {
1315                 dcrdr = 0;
1316                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1317         }
1318 #endif
1319         return ERROR_OK;
1320 }
1321
1322
1323 static int cortex_a8_handle_target_request(void *priv)
1324 {
1325         struct target *target = priv;
1326         struct armv7a_common *armv7a = target_to_armv7a(target);
1327         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1328
1329         if (!target_was_examined(target))
1330                 return ERROR_OK;
1331         if (!target->dbg_msg_enabled)
1332                 return ERROR_OK;
1333
1334         if (target->state == TARGET_RUNNING)
1335         {
1336                 uint8_t data = 0;
1337                 uint8_t ctrl = 0;
1338
1339                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1340
1341                 /* check if we have data */
1342                 if (ctrl & (1 << 0))
1343                 {
1344                         uint32_t request;
1345
1346                         /* we assume target is quick enough */
1347                         request = data;
1348                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1349                         request |= (data << 8);
1350                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1351                         request |= (data << 16);
1352                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1353                         request |= (data << 24);
1354                         target_request(target, request);
1355                 }
1356         }
1357
1358         return ERROR_OK;
1359 }
1360
1361 /*
1362  * Cortex-A8 target information and configuration
1363  */
1364
1365 static int cortex_a8_examine_first(struct target *target)
1366 {
1367         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1368         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1369         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1370         int i;
1371         int retval = ERROR_OK;
1372         uint32_t didr, ctypr, ttypr, cpuid;
1373
1374         LOG_DEBUG("TODO");
1375
1376         /* Here we shall insert a proper ROM Table scan */
1377         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1378
1379         /* We do one extra read to ensure DAP is configured,
1380          * we call ahbap_debugport_init(swjdp) instead
1381          */
1382         ahbap_debugport_init(swjdp);
1383         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1384         if ((retval = mem_ap_read_atomic_u32(swjdp,
1385                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1386         {
1387                 LOG_DEBUG("Examine failed");
1388                 return retval;
1389         }
1390
1391         if ((retval = mem_ap_read_atomic_u32(swjdp,
1392                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1393         {
1394                 LOG_DEBUG("Examine failed");
1395                 return retval;
1396         }
1397
1398         if ((retval = mem_ap_read_atomic_u32(swjdp,
1399                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1400         {
1401                 LOG_DEBUG("Examine failed");
1402                 return retval;
1403         }
1404
1405         if ((retval = mem_ap_read_atomic_u32(swjdp,
1406                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1407         {
1408                 LOG_DEBUG("Examine failed");
1409                 return retval;
1410         }
1411
1412         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1413         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1414         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1415         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1416
1417         /* Setup Breakpoint Register Pairs */
1418         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1419         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1420         cortex_a8->brp_num_available = cortex_a8->brp_num;
1421         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1422 //      cortex_a8->brb_enabled = ????;
1423         for (i = 0; i < cortex_a8->brp_num; i++)
1424         {
1425                 cortex_a8->brp_list[i].used = 0;
1426                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1427                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1428                 else
1429                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1430                 cortex_a8->brp_list[i].value = 0;
1431                 cortex_a8->brp_list[i].control = 0;
1432                 cortex_a8->brp_list[i].BRPn = i;
1433         }
1434
1435         /* Setup Watchpoint Register Pairs */
1436         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1437         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1438         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1439         for (i = 0; i < cortex_a8->wrp_num; i++)
1440         {
1441                 cortex_a8->wrp_list[i].used = 0;
1442                 cortex_a8->wrp_list[i].type = 0;
1443                 cortex_a8->wrp_list[i].value = 0;
1444                 cortex_a8->wrp_list[i].control = 0;
1445                 cortex_a8->wrp_list[i].WRPn = i;
1446         }
1447         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1448                         cortex_a8->brp_num , cortex_a8->wrp_num);
1449
1450         target_set_examined(target);
1451         return ERROR_OK;
1452 }
1453
1454 static int cortex_a8_examine(struct target *target)
1455 {
1456         int retval = ERROR_OK;
1457
1458         /* don't re-probe hardware after each reset */
1459         if (!target_was_examined(target))
1460                 retval = cortex_a8_examine_first(target);
1461
1462         /* Configure core debug access */
1463         if (retval == ERROR_OK)
1464                 retval = cortex_a8_init_debug_access(target);
1465
1466         return retval;
1467 }
1468
1469 /*
1470  *      Cortex-A8 target creation and initialization
1471  */
1472
1473 static void cortex_a8_build_reg_cache(struct target *target)
1474 {
1475         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1476         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1477
1478         armv4_5->core_type = ARM_MODE_MON;
1479
1480         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1481         armv4_5->core_cache = (*cache_p);
1482 }
1483
1484
1485 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1486                 struct target *target)
1487 {
1488         cortex_a8_build_reg_cache(target);
1489         return ERROR_OK;
1490 }
1491
1492 int cortex_a8_init_arch_info(struct target *target,
1493                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1494 {
1495         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1496         struct arm *armv4_5 = &armv7a->armv4_5_common;
1497         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1498
1499         /* Setup struct cortex_a8_common */
1500         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1501         armv4_5->arch_info = armv7a;
1502
1503         /* prepare JTAG information for the new target */
1504         cortex_a8->jtag_info.tap = tap;
1505         cortex_a8->jtag_info.scann_size = 4;
1506 LOG_DEBUG(" ");
1507         swjdp->dp_select_value = -1;
1508         swjdp->ap_csw_value = -1;
1509         swjdp->ap_tar_value = -1;
1510         swjdp->jtag_info = &cortex_a8->jtag_info;
1511         swjdp->memaccess_tck = 80;
1512
1513         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1514         swjdp->tar_autoincr_block = (1 << 10);
1515
1516         cortex_a8->fast_reg_read = 0;
1517
1518
1519         /* register arch-specific functions */
1520         armv7a->examine_debug_reason = NULL;
1521
1522         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1523
1524         armv7a->pre_restore_context = NULL;
1525         armv7a->post_restore_context = NULL;
1526         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1527 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1528         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1529         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1530 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1531 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1532         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1533         armv7a->armv4_5_mmu.mmu_enabled = 0;
1534         armv7a->read_cp15 = cortex_a8_read_cp15;
1535         armv7a->write_cp15 = cortex_a8_write_cp15;
1536
1537
1538 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1539
1540         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1541         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1542
1543         /* REVISIT v7a setup should be in a v7a-specific routine */
1544         armv4_5_init_arch_info(target, armv4_5);
1545         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1546
1547         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1548
1549         return ERROR_OK;
1550 }
1551
1552 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1553 {
1554         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1555
1556         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1557
1558         return ERROR_OK;
1559 }
1560
1561 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1562 {
1563         struct target *target = get_current_target(CMD_CTX);
1564         struct armv7a_common *armv7a = target_to_armv7a(target);
1565
1566         return armv4_5_handle_cache_info_command(CMD_CTX,
1567                         &armv7a->armv4_5_mmu.armv4_5_cache);
1568 }
1569
1570
1571 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1572 {
1573         struct target *target = get_current_target(CMD_CTX);
1574
1575         cortex_a8_init_debug_access(target);
1576
1577         return ERROR_OK;
1578 }
1579
1580
1581 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1582 {
1583         struct command *cortex_a8_cmd;
1584         int retval = ERROR_OK;
1585
1586         armv4_5_register_commands(cmd_ctx);
1587         armv7a_register_commands(cmd_ctx);
1588
1589         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1590                         NULL, COMMAND_ANY,
1591                         "cortex_a8 specific commands");
1592
1593         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1594                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1595                         "display information about target caches");
1596
1597         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1598                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1599                         "Initialize core debug");
1600
1601         return retval;
1602 }
1603
1604 struct target_type cortexa8_target = {
1605         .name = "cortex_a8",
1606
1607         .poll = cortex_a8_poll,
1608         .arch_state = armv7a_arch_state,
1609
1610         .target_request_data = NULL,
1611
1612         .halt = cortex_a8_halt,
1613         .resume = cortex_a8_resume,
1614         .step = cortex_a8_step,
1615
1616         .assert_reset = cortex_a8_assert_reset,
1617         .deassert_reset = cortex_a8_deassert_reset,
1618         .soft_reset_halt = NULL,
1619
1620         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1621
1622         .read_memory = cortex_a8_read_memory,
1623         .write_memory = cortex_a8_write_memory,
1624         .bulk_write_memory = cortex_a8_bulk_write_memory,
1625
1626         .checksum_memory = arm_checksum_memory,
1627         .blank_check_memory = arm_blank_check_memory,
1628
1629         .run_algorithm = armv4_5_run_algorithm,
1630
1631         .add_breakpoint = cortex_a8_add_breakpoint,
1632         .remove_breakpoint = cortex_a8_remove_breakpoint,
1633         .add_watchpoint = NULL,
1634         .remove_watchpoint = NULL,
1635
1636         .register_commands = cortex_a8_register_commands,
1637         .target_create = cortex_a8_target_create,
1638         .init_target = cortex_a8_init_target,
1639         .examine = cortex_a8_examine,
1640         .mrc = cortex_a8_mrc,
1641         .mcr = cortex_a8_mcr,
1642 };