]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
dcf246fa52819c1a42d4496e742071553a0a94bd
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70
71 target_type_t cortexa8_target =
72 {
73         .name = "cortex_a8",
74
75         .poll = cortex_a8_poll,
76         .arch_state = armv7a_arch_state,
77
78         .target_request_data = NULL,
79
80         .halt = cortex_a8_halt,
81         .resume = cortex_a8_resume,
82         .step = cortex_a8_step,
83
84         .assert_reset = NULL,
85         .deassert_reset = NULL,
86         .soft_reset_halt = NULL,
87
88 //      .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
89         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
90
91         .read_memory = cortex_a8_read_memory,
92         .write_memory = cortex_a8_write_memory,
93         .bulk_write_memory = cortex_a8_bulk_write_memory,
94         .checksum_memory = arm7_9_checksum_memory,
95         .blank_check_memory = arm7_9_blank_check_memory,
96
97         .run_algorithm = armv4_5_run_algorithm,
98
99         .add_breakpoint = cortex_a8_add_breakpoint,
100         .remove_breakpoint = cortex_a8_remove_breakpoint,
101         .add_watchpoint = NULL,
102         .remove_watchpoint = NULL,
103
104         .register_commands = cortex_a8_register_commands,
105         .target_create = cortex_a8_target_create,
106         .init_target = cortex_a8_init_target,
107         .examine = cortex_a8_examine,
108         .quit = NULL
109 };
110
111 /*
112  * FIXME do topology discovery using the ROM; don't
113  * assume this is an OMAP3.
114  */
115 #define swjdp_memoryap 0
116 #define swjdp_debugap 1
117 #define OMAP3530_DEBUG_BASE 0x54011000
118
119 /*
120  * Cortex-A8 Basic debug access, very low level assumes state is saved
121  */
122 int cortex_a8_init_debug_access(target_t *target)
123 {
124 #if 0
125 # Unlocking the debug registers for modification
126 mww 0x54011FB0 0xC5ACCE55 4
127
128 # Clear Sticky Power Down status Bit to enable access to
129 # the registers in the Core Power Domain
130 mdw 0x54011314
131 # Check that it is cleared
132 mdw 0x54011314
133 # Now we can read Core Debug Registers at offset 0x080
134 mdw 0x54011080 4
135 # We can also read RAM.
136 mdw 0x80000000 32
137
138 mdw 0x5401d030
139 mdw 0x54011FB8
140
141 # Set DBGEN line for hardware debug (OMAP35xx)
142 mww 0x5401d030 0x00002000
143
144 #Check AUTHSTATUS
145 mdw 0x54011FB8
146
147 # Instr enable
148 mww 0x54011088 0x2000
149 mdw 0x54011080 4
150 #endif
151         return ERROR_OK;
152 }
153
154 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
155 {
156         uint32_t dscr;
157         int retvalue;
158         /* get pointers to arch-specific information */
159         armv4_5_common_t *armv4_5 = target->arch_info;
160         armv7a_common_t *armv7a = armv4_5->arch_info;
161         swjdp_common_t *swjdp = &armv7a->swjdp_info;
162
163         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
164         do
165         {
166                 retvalue = mem_ap_read_atomic_u32(swjdp,
167                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
168         }
169         while ((dscr & (1 << 24)) == 0); /* Wait for InstrCompl bit to be set */
170
171         mem_ap_write_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_ITR, opcode);
172
173         do
174         {
175                 retvalue = mem_ap_read_atomic_u32(swjdp,
176                                 OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
177         }
178         while ((dscr & (1 << 24)) == 0); /* Wait for InstrCompl bit to be set */
179
180         return retvalue;
181 }
182
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
188                 uint32_t * regfile)
189 {
190         int retval = ERROR_OK;
191         /* get pointers to arch-specific information */
192         armv4_5_common_t *armv4_5 = target->arch_info;
193         armv7a_common_t *armv7a = armv4_5->arch_info;
194         swjdp_common_t *swjdp = &armv7a->swjdp_info;
195
196         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197         cortex_a8_dap_write_coreregister_u32(target, address, 0);
198         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
199         dap_ap_select(swjdp, swjdp_memoryap);
200         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
201         dap_ap_select(swjdp, swjdp_debugap);
202
203         return retval;
204 }
205
206 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
207                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
208 {
209         int retval;
210         /* get pointers to arch-specific information */
211         armv4_5_common_t *armv4_5 = target->arch_info;
212         armv7a_common_t *armv7a = armv4_5->arch_info;
213         swjdp_common_t *swjdp = &armv7a->swjdp_info;
214
215         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
216         /* Move R0 to DTRTX */
217         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
218
219         /* Read DCCTX */
220         retval = mem_ap_read_atomic_u32(swjdp,
221                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
222
223         return retval;
224 }
225
226 int cortex_a8_write_cp(target_t *target, uint32_t value,
227         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
228 /* TODO Fix this */
229 {
230         int retval;
231         /* get pointers to arch-specific information */
232         armv4_5_common_t *armv4_5 = target->arch_info;
233         armv7a_common_t *armv7a = armv4_5->arch_info;
234         swjdp_common_t *swjdp = &armv7a->swjdp_info;
235
236         retval = mem_ap_write_u32(swjdp,
237                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
238         /* Move DTRRX to r0 */
239         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
240
241         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, 0, 0, 0, 5, 0));
242         return retval;
243 }
244
245 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
246                 uint32_t CRn, uint32_t CRm, uint32_t *value)
247 {
248         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
249 }
250
251 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
252                 uint32_t CRn, uint32_t CRm, uint32_t value)
253 {
254         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
255 }
256
257 int cortex_a8_dap_read_coreregister_u32(target_t *target,
258                 uint32_t *value, int regnum)
259 {
260         int retval = ERROR_OK;
261         uint8_t reg = regnum&0xFF;
262
263         /* get pointers to arch-specific information */
264         armv4_5_common_t *armv4_5 = target->arch_info;
265         armv7a_common_t *armv7a = armv4_5->arch_info;
266         swjdp_common_t *swjdp = &armv7a->swjdp_info;
267
268         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
269
270         if (reg > 16)
271                 return retval;
272
273         if (reg < 15)
274         {
275                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
276                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
277         }
278         else if (reg == 15)
279         {
280                 cortex_a8_exec_opcode(target, 0xE1A0000F);
281                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
282         }
283         else if (reg == 16)
284         {
285                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
286                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
287         }
288
289         /* Read DCCTX */
290         retval = mem_ap_read_atomic_u32(swjdp,
291                         OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
292 //      retval = mem_ap_read_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DTRTX, value);
293
294         return retval;
295 }
296
297 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
298 {
299         int retval = ERROR_OK;
300         uint8_t Rd = regnum&0xFF;
301
302         /* get pointers to arch-specific information */
303         armv4_5_common_t *armv4_5 = target->arch_info;
304         armv7a_common_t *armv7a = armv4_5->arch_info;
305         swjdp_common_t *swjdp = &armv7a->swjdp_info;
306
307         if (Rd > 16)
308                 return retval;
309
310         /* Write to DCCRX */
311         retval = mem_ap_write_u32(swjdp,
312                         OMAP3530_DEBUG_BASE + CPUDBG_DTRRX, value);
313
314         if (Rd < 15)
315         {
316                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
318         }
319         else if (Rd == 15)
320         {
321                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
322                 cortex_a8_exec_opcode(target, 0xE1A0F000);
323         }
324         else if (Rd == 16)
325         {
326                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
327                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
328                 /* Execute a PrefetchFlush instruction through the ITR. */
329                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
330         }
331
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 int cortex_a8_poll(target_t *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         /* get pointers to arch-specific information */
344         armv4_5_common_t *armv4_5 = target->arch_info;
345         armv7a_common_t *armv7a = armv4_5->arch_info;
346         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
347         swjdp_common_t *swjdp = &armv7a->swjdp_info;
348
349
350         enum target_state prev_target_state = target->state;
351
352         uint8_t saved_apsel = dap_ap_get_select(swjdp);
353         dap_ap_select(swjdp, swjdp_debugap);
354         retval = mem_ap_read_atomic_u32(swjdp,
355                         OMAP3530_DEBUG_BASE + CPUDBG_DSCR, &dscr);
356         if (retval != ERROR_OK)
357         {
358                 dap_ap_select(swjdp, saved_apsel);
359                 return retval;
360         }
361         cortex_a8->cpudbg_dscr = dscr;
362
363         if ((dscr & 0x3) == 0x3)
364         {
365                 if (prev_target_state != TARGET_HALTED)
366                 {
367                         /* We have a halting debug event */
368                         LOG_DEBUG("Target halted");
369                         target->state = TARGET_HALTED;
370                         if ((prev_target_state == TARGET_RUNNING)
371                                         || (prev_target_state == TARGET_RESET))
372                         {
373                                 retval = cortex_a8_debug_entry(target);
374                                 if (retval != ERROR_OK)
375                                         return retval;
376
377                                 target_call_event_callbacks(target,
378                                                 TARGET_EVENT_HALTED);
379                         }
380                         if (prev_target_state == TARGET_DEBUG_RUNNING)
381                         {
382                                 LOG_DEBUG(" ");
383
384                                 retval = cortex_a8_debug_entry(target);
385                                 if (retval != ERROR_OK)
386                                         return retval;
387
388                                 target_call_event_callbacks(target,
389                                                 TARGET_EVENT_DEBUG_HALTED);
390                         }
391                 }
392         }
393         else if ((dscr & 0x3) == 0x2)
394         {
395                 target->state = TARGET_RUNNING;
396         }
397         else
398         {
399                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
400                 target->state = TARGET_UNKNOWN;
401         }
402
403         dap_ap_select(swjdp, saved_apsel);
404
405         return retval;
406 }
407
408 int cortex_a8_halt(target_t *target)
409 {
410         int retval = ERROR_OK;
411         /* get pointers to arch-specific information */
412         armv4_5_common_t *armv4_5 = target->arch_info;
413         armv7a_common_t *armv7a = armv4_5->arch_info;
414         swjdp_common_t *swjdp = &armv7a->swjdp_info;
415
416         uint8_t saved_apsel = dap_ap_get_select(swjdp);
417         dap_ap_select(swjdp, swjdp_debugap);
418
419         /* Perhaps we should do a read-modify-write here */
420         retval = mem_ap_write_atomic_u32(swjdp,
421                         OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x1);
422
423         target->debug_reason = DBG_REASON_DBGRQ;
424         dap_ap_select(swjdp, saved_apsel);
425
426         return retval;
427 }
428
429 int cortex_a8_resume(struct target_s *target, int current,
430                 uint32_t address, int handle_breakpoints, int debug_execution)
431 {
432         /* get pointers to arch-specific information */
433         armv4_5_common_t *armv4_5 = target->arch_info;
434         armv7a_common_t *armv7a = armv4_5->arch_info;
435         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
436         swjdp_common_t *swjdp = &armv7a->swjdp_info;
437
438 //      breakpoint_t *breakpoint = NULL;
439         uint32_t resume_pc;
440
441         uint8_t saved_apsel = dap_ap_get_select(swjdp);
442         dap_ap_select(swjdp, swjdp_debugap);
443
444         if (!debug_execution)
445         {
446                 target_free_all_working_areas(target);
447 //              cortex_m3_enable_breakpoints(target);
448 //              cortex_m3_enable_watchpoints(target);
449         }
450
451 #if 0
452         if (debug_execution)
453         {
454                 /* Disable interrupts */
455                 /* We disable interrupts in the PRIMASK register instead of
456                  * masking with C_MASKINTS,
457                  * This is probably the same issue as Cortex-M3 Errata 377493:
458                  * C_MASKINTS in parallel with disabled interrupts can cause
459                  * local faults to not be taken. */
460                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
461                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
462                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
463
464                 /* Make sure we are in Thumb mode */
465                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
466                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
467                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
468                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
469         }
470 #endif
471
472         /* current = 1: continue on current pc, otherwise continue at <address> */
473         resume_pc = buf_get_u32(
474                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
475                                 armv4_5->core_mode, 15).value,
476                         0, 32);
477         if (!current)
478                 resume_pc = address;
479
480         /* Make sure that the Armv7 gdb thumb fixups does not
481          * kill the return address
482          */
483         if (!(cortex_a8->cpudbg_dscr & (1 << 5)))
484         {
485                 resume_pc &= 0xFFFFFFFC;
486         }
487         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
488         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
489                                 armv4_5->core_mode, 15).value,
490                         0, 32, resume_pc);
491         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
492                         armv4_5->core_mode, 15).dirty = 1;
493         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
494                         armv4_5->core_mode, 15).valid = 1;
495
496         cortex_a8_restore_context(target);
497 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
498 #if 0
499         /* the front-end may request us not to handle breakpoints */
500         if (handle_breakpoints)
501         {
502                 /* Single step past breakpoint at current address */
503                 if ((breakpoint = breakpoint_find(target, resume_pc)))
504                 {
505                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
506                         cortex_m3_unset_breakpoint(target, breakpoint);
507                         cortex_m3_single_step_core(target);
508                         cortex_m3_set_breakpoint(target, breakpoint);
509                 }
510         }
511
512 #endif
513         /* Restart core */
514         /* Perhaps we should do a read-modify-write here */
515         mem_ap_write_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_DRCR, 0x2);
516
517         target->debug_reason = DBG_REASON_NOTHALTED;
518         target->state = TARGET_RUNNING;
519
520         /* registers are now invalid */
521         armv4_5_invalidate_core_regs(target);
522
523         if (!debug_execution)
524         {
525                 target->state = TARGET_RUNNING;
526                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
527                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
528         }
529         else
530         {
531                 target->state = TARGET_DEBUG_RUNNING;
532                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
533                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
534         }
535
536         dap_ap_select(swjdp, saved_apsel);
537
538         return ERROR_OK;
539 }
540
541 int cortex_a8_debug_entry(target_t *target)
542 {
543         int i;
544         uint32_t regfile[16], pc, cpsr;
545         int retval = ERROR_OK;
546         working_area_t *regfile_working_area = NULL;
547
548         /* get pointers to arch-specific information */
549         armv4_5_common_t *armv4_5 = target->arch_info;
550         armv7a_common_t *armv7a = armv4_5->arch_info;
551         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
552         swjdp_common_t *swjdp = &armv7a->swjdp_info;
553
554         if (armv7a->pre_debug_entry)
555                 armv7a->pre_debug_entry(target);
556
557         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
558
559         /* Examine debug reason */
560         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
561         {
562                 case 0:
563                 case 4:
564                         target->debug_reason = DBG_REASON_DBGRQ;
565                         break;
566                 case 1:
567                 case 3:
568                         target->debug_reason = DBG_REASON_BREAKPOINT;
569                         break;
570                 case 10:
571                         target->debug_reason = DBG_REASON_WATCHPOINT;
572                         break;
573                 default:
574                         target->debug_reason = DBG_REASON_UNDEFINED;
575                         break;
576         }
577
578         /* Examine target state and mode */
579         dap_ap_select(swjdp, swjdp_memoryap);
580         if (cortex_a8->fast_reg_read)
581                 target_alloc_working_area(target, 64, &regfile_working_area);
582
583         /* First load register acessible through core debug port*/
584         if (!regfile_working_area)
585         {
586                 for (i = 0; i <= 15; i++)
587                         cortex_a8_dap_read_coreregister_u32(target,
588                                         &regfile[i], i);
589         }
590         else
591         {
592                 cortex_a8_read_regs_through_mem(target,
593                                 regfile_working_area->address, regfile);
594                 dap_ap_select(swjdp, swjdp_memoryap);
595                 target_free_working_area(target, regfile_working_area);
596         }
597
598         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
599         pc = regfile[15];
600         dap_ap_select(swjdp, swjdp_debugap);
601         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
602
603         armv4_5->core_mode = cpsr & 0x3F;
604
605         for (i = 0; i <= ARM_PC; i++)
606         {
607                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
608                                         armv4_5->core_mode, i).value,
609                                 0, 32, regfile[i]);
610                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
611                                 armv4_5->core_mode, i).valid = 1;
612                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
613                                 armv4_5->core_mode, i).dirty = 0;
614         }
615         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
616                                 armv4_5->core_mode, 16).value,
617                         0, 32, cpsr);
618         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
619         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
620
621         /* Fixup PC Resume Address */
622         /* TODO Her we should use arch->core_state */
623         if (cortex_a8->cpudbg_dscr & (1 << 5))
624         {
625                 // T bit set for Thumb or ThumbEE state
626                 regfile[ARM_PC] -= 4;
627         }
628         else
629         {
630                 // ARM state
631                 regfile[ARM_PC] -= 8;
632         }
633         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
634                                 armv4_5->core_mode, ARM_PC).value,
635                         0, 32, regfile[ARM_PC]);
636
637         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
638                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
639                                 armv4_5->core_mode, 0).valid;
640         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
641                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
642                                 armv4_5->core_mode, 15).valid;
643
644 #if 0
645 /* TODO, Move this */
646         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
647         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
648         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
649
650         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
651         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
652
653         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
654         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
655 #endif
656
657         /* Are we in an exception handler */
658 //      armv4_5->exception_number = 0;
659         if (armv7a->post_debug_entry)
660                 armv7a->post_debug_entry(target);
661
662
663
664         return retval;
665
666 }
667
668 void cortex_a8_post_debug_entry(target_t *target)
669 {
670         /* get pointers to arch-specific information */
671         armv4_5_common_t *armv4_5 = target->arch_info;
672         armv7a_common_t *armv7a = armv4_5->arch_info;
673         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
674
675 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
676         /* examine cp15 control reg */
677         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
678         jtag_execute_queue();
679         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
680
681         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
682         {
683                 uint32_t cache_type_reg;
684                 /* identify caches */
685                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
686                 jtag_execute_queue();
687                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
688                 armv4_5_identify_cache(cache_type_reg,
689                                 &armv7a->armv4_5_mmu.armv4_5_cache);
690         }
691
692         armv7a->armv4_5_mmu.mmu_enabled =
693                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
694         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
695                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
696         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
697                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
698
699
700 }
701
702 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
703                 int handle_breakpoints)
704 {
705         /* get pointers to arch-specific information */
706         armv4_5_common_t *armv4_5 = target->arch_info;
707         armv7a_common_t *armv7a = armv4_5->arch_info;
708         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
709         breakpoint_t *breakpoint = NULL;
710         breakpoint_t stepbreakpoint;
711
712         int timeout = 100;
713
714         if (target->state != TARGET_HALTED)
715         {
716                 LOG_WARNING("target not halted");
717                 return ERROR_TARGET_NOT_HALTED;
718         }
719
720         /* current = 1: continue on current pc, otherwise continue at <address> */
721         if (!current)
722         {
723                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
724                                         armv4_5->core_mode, ARM_PC).value,
725                                 0, 32, address);
726         }
727         else
728         {
729                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
730                                         armv4_5->core_mode, ARM_PC).value,
731                                 0, 32);
732         }
733
734         /* The front-end may request us not to handle breakpoints.
735          * But since Cortex-A8 uses breakpoint for single step,
736          * we MUST handle breakpoints.
737          */
738         handle_breakpoints = 1;
739         if (handle_breakpoints) {
740                 breakpoint = breakpoint_find(target,
741                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
742                                         armv4_5->core_mode, 15).value,
743                         0, 32));
744                 if (breakpoint)
745                         cortex_a8_unset_breakpoint(target, breakpoint);
746         }
747
748         /* Setup single step breakpoint */
749         stepbreakpoint.address = address;
750         stepbreakpoint.length = (cortex_a8->cpudbg_dscr & (1 << 5)) ? 2 : 4;
751         stepbreakpoint.type = BKPT_HARD;
752         stepbreakpoint.set = 0;
753
754         /* Break on IVA mismatch */
755         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
756
757         target->debug_reason = DBG_REASON_SINGLESTEP;
758
759         cortex_a8_resume(target, 1, address, 0, 0);
760
761         while (target->state != TARGET_HALTED)
762         {
763                 cortex_a8_poll(target);
764                 if (--timeout == 0)
765                 {
766                         LOG_WARNING("timeout waiting for target halt");
767                         break;
768                 }
769         }
770
771         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
772         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
773
774         if (breakpoint)
775                 cortex_a8_set_breakpoint(target, breakpoint, 0);
776
777         if (target->state != TARGET_HALTED)
778                 LOG_DEBUG("target stepped");
779
780         return ERROR_OK;
781 }
782
783 int cortex_a8_restore_context(target_t *target)
784 {
785         int i;
786         uint32_t value;
787
788         /* get pointers to arch-specific information */
789         armv4_5_common_t *armv4_5 = target->arch_info;
790         armv7a_common_t *armv7a = armv4_5->arch_info;
791
792         LOG_DEBUG(" ");
793
794         if (armv7a->pre_restore_context)
795                 armv7a->pre_restore_context(target);
796
797         for (i = 15; i >= 0; i--)
798         {
799                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
800                                         armv4_5->core_mode, i).dirty)
801                 {
802                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
803                                                 armv4_5->core_mode, i).value,
804                                         0, 32);
805                         /* TODO Check return values */
806                         cortex_a8_dap_write_coreregister_u32(target, value, i);
807                 }
808         }
809
810         if (armv7a->post_restore_context)
811                 armv7a->post_restore_context(target);
812
813         return ERROR_OK;
814 }
815
816
817 /*
818  * Cortex-A8 Core register functions
819  */
820
821 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
822                 armv4_5_mode_t mode, uint32_t * value)
823 {
824         int retval;
825         /* get pointers to arch-specific information */
826         armv4_5_common_t *armv4_5 = target->arch_info;
827
828         if ((num <= ARM_CPSR))
829         {
830                 /* read a normal core register */
831                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
832
833                 if (retval != ERROR_OK)
834                 {
835                         LOG_ERROR("JTAG failure %i", retval);
836                         return ERROR_JTAG_DEVICE_ERROR;
837                 }
838                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
839         }
840         else
841         {
842                 return ERROR_INVALID_ARGUMENTS;
843         }
844
845         /* Register other than r0 - r14 uses r0 for access */
846         if (num > 14)
847                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
848                                 armv4_5->core_mode, 0).dirty =
849                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
850                                 armv4_5->core_mode, 0).valid;
851         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
852                                 armv4_5->core_mode, 15).dirty =
853                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
854                                 armv4_5->core_mode, 15).valid;
855
856         return ERROR_OK;
857 }
858
859 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
860                 armv4_5_mode_t mode, uint32_t value)
861 {
862         int retval;
863 //      uint32_t reg;
864
865         /* get pointers to arch-specific information */
866         armv4_5_common_t *armv4_5 = target->arch_info;
867
868 #ifdef ARMV7_GDB_HACKS
869         /* If the LR register is being modified, make sure it will put us
870          * in "thumb" mode, or an INVSTATE exception will occur. This is a
871          * hack to deal with the fact that gdb will sometimes "forge"
872          * return addresses, and doesn't set the LSB correctly (i.e., when
873          * printing expressions containing function calls, it sets LR=0.) */
874
875         if (num == 14)
876                 value |= 0x01;
877 #endif
878
879         if ((num <= ARM_CPSR))
880         {
881                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
882                 if (retval != ERROR_OK)
883                 {
884                         LOG_ERROR("JTAG failure %i", retval);
885                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
886                                         armv4_5->core_mode, num).dirty =
887                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
888                                         armv4_5->core_mode, num).valid;
889                         return ERROR_JTAG_DEVICE_ERROR;
890                 }
891                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
892         }
893         else
894         {
895                 return ERROR_INVALID_ARGUMENTS;
896         }
897
898         return ERROR_OK;
899 }
900
901
902 int cortex_a8_read_core_reg(struct target_s *target, int num,
903                 enum armv4_5_mode mode)
904 {
905         uint32_t value;
906         int retval;
907         armv4_5_common_t *armv4_5 = target->arch_info;
908         cortex_a8_dap_read_coreregister_u32(target, &value, num);
909
910         if ((retval = jtag_execute_queue()) != ERROR_OK)
911         {
912                 return retval;
913         }
914
915         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
916         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
917         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
918                         mode, num).value, 0, 32, value);
919
920         return ERROR_OK;
921 }
922
923 int cortex_a8_write_core_reg(struct target_s *target, int num,
924                 enum armv4_5_mode mode, uint32_t value)
925 {
926         int retval;
927         armv4_5_common_t *armv4_5 = target->arch_info;
928
929         cortex_a8_dap_write_coreregister_u32(target, value, num);
930         if ((retval = jtag_execute_queue()) != ERROR_OK)
931         {
932                 return retval;
933         }
934
935         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
936         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
937
938         return ERROR_OK;
939 }
940
941
942 /*
943  * Cortex-A8 Breakpoint and watchpoint fuctions
944  */
945
946 /* Setup hardware Breakpoint Register Pair */
947 int cortex_a8_set_breakpoint(struct target_s *target,
948                 breakpoint_t *breakpoint, uint8_t matchmode)
949 {
950         int retval;
951         int brp_i=0;
952         uint32_t control;
953         uint8_t byte_addr_select = 0x0F;
954
955
956         /* get pointers to arch-specific information */
957         armv4_5_common_t *armv4_5 = target->arch_info;
958         armv7a_common_t *armv7a = armv4_5->arch_info;
959         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
960         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
961
962         if (breakpoint->set)
963         {
964                 LOG_WARNING("breakpoint already set");
965                 return ERROR_OK;
966         }
967
968         if (breakpoint->type == BKPT_HARD)
969         {
970                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
971                         brp_i++ ;
972                 if (brp_i >= cortex_a8->brp_num)
973                 {
974                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
975                         exit(-1);
976                 }
977                 breakpoint->set = brp_i + 1;
978                 if (breakpoint->length == 2)
979                 {
980                         byte_addr_select = (3 << (breakpoint->address & 0x02));
981                 }
982                 control = ((matchmode & 0x7) << 20)
983                                 | (byte_addr_select << 5)
984                                 | (3 << 1) | 1;
985                 brp_list[brp_i].used = 1;
986                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
987                 brp_list[brp_i].control = control;
988                 target_write_u32(target, OMAP3530_DEBUG_BASE
989                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
990                                 brp_list[brp_i].value);
991                 target_write_u32(target, OMAP3530_DEBUG_BASE
992                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
993                                 brp_list[brp_i].control);
994                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
995                                 brp_list[brp_i].control,
996                                 brp_list[brp_i].value);
997         }
998         else if (breakpoint->type == BKPT_SOFT)
999         {
1000                 uint8_t code[4];
1001                 if (breakpoint->length == 2)
1002                 {
1003                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1004                 }
1005                 else
1006                 {
1007                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1008                 }
1009                 retval = target->type->read_memory(target,
1010                                 breakpoint->address & 0xFFFFFFFE,
1011                                 breakpoint->length, 1,
1012                                 breakpoint->orig_instr);
1013                 if (retval != ERROR_OK)
1014                         return retval;
1015                 retval = target->type->write_memory(target,
1016                                 breakpoint->address & 0xFFFFFFFE,
1017                                 breakpoint->length, 1, code);
1018                 if (retval != ERROR_OK)
1019                         return retval;
1020                 breakpoint->set = 0x11; /* Any nice value but 0 */
1021         }
1022
1023         return ERROR_OK;
1024 }
1025
1026 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1027 {
1028         int retval;
1029         /* get pointers to arch-specific information */
1030         armv4_5_common_t *armv4_5 = target->arch_info;
1031         armv7a_common_t *armv7a = armv4_5->arch_info;
1032         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1033         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1034
1035         if (!breakpoint->set)
1036         {
1037                 LOG_WARNING("breakpoint not set");
1038                 return ERROR_OK;
1039         }
1040
1041         if (breakpoint->type == BKPT_HARD)
1042         {
1043                 int brp_i = breakpoint->set - 1;
1044                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1045                 {
1046                         LOG_DEBUG("Invalid BRP number in breakpoint");
1047                         return ERROR_OK;
1048                 }
1049                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1050                                 brp_list[brp_i].control, brp_list[brp_i].value);
1051                 brp_list[brp_i].used = 0;
1052                 brp_list[brp_i].value = 0;
1053                 brp_list[brp_i].control = 0;
1054                 target_write_u32(target, OMAP3530_DEBUG_BASE
1055                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1056                                 brp_list[brp_i].control);
1057                 target_write_u32(target, OMAP3530_DEBUG_BASE
1058                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1059                                 brp_list[brp_i].value);
1060         }
1061         else
1062         {
1063                 /* restore original instruction (kept in target endianness) */
1064                 if (breakpoint->length == 4)
1065                 {
1066                         retval = target->type->write_memory(target,
1067                                         breakpoint->address & 0xFFFFFFFE,
1068                                         4, 1, breakpoint->orig_instr);
1069                         if (retval != ERROR_OK)
1070                                 return retval;
1071                 }
1072                 else
1073                 {
1074                         retval = target->type->write_memory(target,
1075                                         breakpoint->address & 0xFFFFFFFE,
1076                                         2, 1, breakpoint->orig_instr);
1077                         if (retval != ERROR_OK)
1078                                 return retval;
1079                 }
1080         }
1081         breakpoint->set = 0;
1082
1083         return ERROR_OK;
1084 }
1085
1086 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1087 {
1088         /* get pointers to arch-specific information */
1089         armv4_5_common_t *armv4_5 = target->arch_info;
1090         armv7a_common_t *armv7a = armv4_5->arch_info;
1091         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1092
1093         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1094         {
1095                 LOG_INFO("no hardware breakpoint available");
1096                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1097         }
1098
1099         if (breakpoint->type == BKPT_HARD)
1100                 cortex_a8->brp_num_available--;
1101         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1102
1103         return ERROR_OK;
1104 }
1105
1106 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1107 {
1108         /* get pointers to arch-specific information */
1109         armv4_5_common_t *armv4_5 = target->arch_info;
1110         armv7a_common_t *armv7a = armv4_5->arch_info;
1111         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1112
1113 #if 0
1114 /* It is perfectly possible to remove brakpoints while the taget is running */
1115         if (target->state != TARGET_HALTED)
1116         {
1117                 LOG_WARNING("target not halted");
1118                 return ERROR_TARGET_NOT_HALTED;
1119         }
1120 #endif
1121
1122         if (breakpoint->set)
1123         {
1124                 cortex_a8_unset_breakpoint(target, breakpoint);
1125                 if (breakpoint->type == BKPT_HARD)
1126                         cortex_a8->brp_num_available++ ;
1127         }
1128
1129
1130         return ERROR_OK;
1131 }
1132
1133
1134
1135 /*
1136  * Cortex-A8 Reset fuctions
1137  */
1138
1139
1140 /*
1141  * Cortex-A8 Memory access
1142  *
1143  * This is same Cortex M3 but we must also use the correct
1144  * ap number for every access.
1145  */
1146
1147 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1148                 uint32_t size, uint32_t count, uint8_t *buffer)
1149 {
1150         /* get pointers to arch-specific information */
1151         armv4_5_common_t *armv4_5 = target->arch_info;
1152         armv7a_common_t *armv7a = armv4_5->arch_info;
1153         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1154
1155         int retval = ERROR_OK;
1156
1157         /* sanitize arguments */
1158         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1159                 return ERROR_INVALID_ARGUMENTS;
1160
1161         /* cortex_a8 handles unaligned memory access */
1162
1163 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1164
1165         switch (size)
1166         {
1167                 case 4:
1168                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1169                         break;
1170                 case 2:
1171                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1172                         break;
1173                 case 1:
1174                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1175                         break;
1176                 default:
1177                         LOG_ERROR("BUG: we shouldn't get here");
1178                         exit(-1);
1179         }
1180
1181         return retval;
1182 }
1183
1184 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1185                 uint32_t size, uint32_t count, uint8_t *buffer)
1186 {
1187         /* get pointers to arch-specific information */
1188         armv4_5_common_t *armv4_5 = target->arch_info;
1189         armv7a_common_t *armv7a = armv4_5->arch_info;
1190         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1191
1192         int retval;
1193
1194         /* sanitize arguments */
1195         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1196                 return ERROR_INVALID_ARGUMENTS;
1197
1198 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1199
1200         switch (size)
1201         {
1202                 case 4:
1203                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1204                         break;
1205                 case 2:
1206                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1207                         break;
1208                 case 1:
1209                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1210                         break;
1211                 default:
1212                         LOG_ERROR("BUG: we shouldn't get here");
1213                         exit(-1);
1214         }
1215
1216         return retval;
1217 }
1218
1219 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1220                 uint32_t count, uint8_t *buffer)
1221 {
1222         return cortex_a8_write_memory(target, address, 4, count, buffer);
1223 }
1224
1225
1226 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1227 {
1228 #if 0
1229         u16 dcrdr;
1230
1231         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1232         *ctrl = (uint8_t)dcrdr;
1233         *value = (uint8_t)(dcrdr >> 8);
1234
1235         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1236
1237         /* write ack back to software dcc register
1238          * signify we have read data */
1239         if (dcrdr & (1 << 0))
1240         {
1241                 dcrdr = 0;
1242                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1243         }
1244 #endif
1245         return ERROR_OK;
1246 }
1247
1248
1249 int cortex_a8_handle_target_request(void *priv)
1250 {
1251         target_t *target = priv;
1252         if (!target->type->examined)
1253                 return ERROR_OK;
1254         armv4_5_common_t *armv4_5 = target->arch_info;
1255         armv7a_common_t *armv7a = armv4_5->arch_info;
1256         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1257
1258
1259         if (!target->dbg_msg_enabled)
1260                 return ERROR_OK;
1261
1262         if (target->state == TARGET_RUNNING)
1263         {
1264                 uint8_t data = 0;
1265                 uint8_t ctrl = 0;
1266
1267                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1268
1269                 /* check if we have data */
1270                 if (ctrl & (1 << 0))
1271                 {
1272                         uint32_t request;
1273
1274                         /* we assume target is quick enough */
1275                         request = data;
1276                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1277                         request |= (data << 8);
1278                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1279                         request |= (data << 16);
1280                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1281                         request |= (data << 24);
1282                         target_request(target, request);
1283                 }
1284         }
1285
1286         return ERROR_OK;
1287 }
1288
1289 /*
1290  * Cortex-A8 target information and configuration
1291  */
1292
1293 int cortex_a8_examine(struct target_s *target)
1294 {
1295         /* get pointers to arch-specific information */
1296         armv4_5_common_t *armv4_5 = target->arch_info;
1297         armv7a_common_t *armv7a = armv4_5->arch_info;
1298         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1299         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1300
1301
1302         int i;
1303         int retval = ERROR_OK;
1304         uint32_t didr, ctypr, ttypr, cpuid;
1305
1306         LOG_DEBUG("TODO");
1307
1308         /* We do one extra read to ensure DAP is configured,
1309          * we call ahbap_debugport_init(swjdp) instead
1310          */
1311         ahbap_debugport_init(swjdp);
1312         mem_ap_read_atomic_u32(swjdp, OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid);
1313         if ((retval = mem_ap_read_atomic_u32(swjdp,
1314                         OMAP3530_DEBUG_BASE + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1315         {
1316                 LOG_DEBUG("Examine failed");
1317                 return retval;
1318         }
1319
1320         if ((retval = mem_ap_read_atomic_u32(swjdp,
1321                         OMAP3530_DEBUG_BASE + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1322         {
1323                 LOG_DEBUG("Examine failed");
1324                 return retval;
1325         }
1326
1327         if ((retval = mem_ap_read_atomic_u32(swjdp,
1328                         OMAP3530_DEBUG_BASE + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1329         {
1330                 LOG_DEBUG("Examine failed");
1331                 return retval;
1332         }
1333
1334         if ((retval = mem_ap_read_atomic_u32(swjdp,
1335                         OMAP3530_DEBUG_BASE + CPUDBG_DIDR, &didr)) != ERROR_OK)
1336         {
1337                 LOG_DEBUG("Examine failed");
1338                 return retval;
1339         }
1340
1341         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1342         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1343         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1344         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1345
1346         /* Setup Breakpoint Register Pairs */
1347         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1348         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1349         cortex_a8->brp_num_available = cortex_a8->brp_num;
1350         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1351 //      cortex_a8->brb_enabled = ????;
1352         for (i = 0; i < cortex_a8->brp_num; i++)
1353         {
1354                 cortex_a8->brp_list[i].used = 0;
1355                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1356                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1357                 else
1358                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1359                 cortex_a8->brp_list[i].value = 0;
1360                 cortex_a8->brp_list[i].control = 0;
1361                 cortex_a8->brp_list[i].BRPn = i;
1362         }
1363
1364         /* Setup Watchpoint Register Pairs */
1365         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1366         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1367         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1368         for (i = 0; i < cortex_a8->wrp_num; i++)
1369         {
1370                 cortex_a8->wrp_list[i].used = 0;
1371                 cortex_a8->wrp_list[i].type = 0;
1372                 cortex_a8->wrp_list[i].value = 0;
1373                 cortex_a8->wrp_list[i].control = 0;
1374                 cortex_a8->wrp_list[i].WRPn = i;
1375         }
1376         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1377                         cortex_a8->brp_num , cortex_a8->wrp_num);
1378
1379         target->type->examined = 1;
1380
1381         return retval;
1382 }
1383
1384 /*
1385  *      Cortex-A8 target creation and initialization
1386  */
1387
1388 void cortex_a8_build_reg_cache(target_t *target)
1389 {
1390         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1391         /* get pointers to arch-specific information */
1392         armv4_5_common_t *armv4_5 = target->arch_info;
1393
1394         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1395         armv4_5->core_cache = (*cache_p);
1396 }
1397
1398
1399 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1400                 struct target_s *target)
1401 {
1402         cortex_a8_build_reg_cache(target);
1403         return ERROR_OK;
1404 }
1405
1406 int cortex_a8_init_arch_info(target_t *target,
1407                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1408 {
1409         armv4_5_common_t *armv4_5;
1410         armv7a_common_t *armv7a;
1411
1412         armv7a = &cortex_a8->armv7a_common;
1413         armv4_5 = &armv7a->armv4_5_common;
1414         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1415
1416         /* Setup cortex_a8_common_t */
1417         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1418         cortex_a8->arch_info = NULL;
1419         armv7a->arch_info = cortex_a8;
1420         armv4_5->arch_info = armv7a;
1421
1422         armv4_5_init_arch_info(target, armv4_5);
1423
1424         /* prepare JTAG information for the new target */
1425         cortex_a8->jtag_info.tap = tap;
1426         cortex_a8->jtag_info.scann_size = 4;
1427 LOG_DEBUG(" ");
1428         swjdp->dp_select_value = -1;
1429         swjdp->ap_csw_value = -1;
1430         swjdp->ap_tar_value = -1;
1431         swjdp->jtag_info = &cortex_a8->jtag_info;
1432         swjdp->memaccess_tck = 80;
1433
1434         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1435         swjdp->tar_autoincr_block = (1 << 10);
1436
1437         cortex_a8->fast_reg_read = 0;
1438
1439
1440         /* register arch-specific functions */
1441         armv7a->examine_debug_reason = NULL;
1442
1443         armv7a->pre_debug_entry = NULL;
1444         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1445
1446         armv7a->pre_restore_context = NULL;
1447         armv7a->post_restore_context = NULL;
1448         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1449 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1450         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1451         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1452 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1453 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1454         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1455         armv7a->armv4_5_mmu.mmu_enabled = 0;
1456         armv7a->read_cp15 = cortex_a8_read_cp15;
1457         armv7a->write_cp15 = cortex_a8_write_cp15;
1458
1459
1460 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1461
1462         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1463         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1464 //      armv4_5->full_context = arm7_9_full_context;
1465
1466 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1467 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1468 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1469 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1470
1471         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1472
1473         return ERROR_OK;
1474 }
1475
1476 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1477 {
1478         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1479
1480         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1481
1482         return ERROR_OK;
1483 }
1484
1485 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1486                 char *cmd, char **args, int argc)
1487 {
1488         target_t *target = get_current_target(cmd_ctx);
1489         armv4_5_common_t *armv4_5 = target->arch_info;
1490         armv7a_common_t *armv7a = armv4_5->arch_info;
1491
1492         return armv4_5_handle_cache_info_command(cmd_ctx,
1493                         &armv7a->armv4_5_mmu.armv4_5_cache);
1494 }
1495
1496
1497 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1498 {
1499         command_t *cortex_a8_cmd;
1500         int retval = ERROR_OK;
1501
1502         armv4_5_register_commands(cmd_ctx);
1503         armv7a_register_commands(cmd_ctx);
1504
1505         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1506                         NULL, COMMAND_ANY,
1507                         "cortex_a8 specific commands");
1508
1509         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1510                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1511                         "display information about target caches");
1512
1513         return retval;
1514 }