]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
e716999063748cee01c69bb728287d36f4c5180a
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "cortex_a8.h"
37 #include "armv7a.h"
38 #include "armv4_5.h"
39
40 #include "target_request.h"
41 #include "target_type.h"
42
43 /* cli handling */
44 int cortex_a8_register_commands(struct command_context_s *cmd_ctx);
45
46 /* forward declarations */
47 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp);
48 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
49                 struct target_s *target);
50 int cortex_a8_examine(struct target_s *target);
51 int cortex_a8_poll(target_t *target);
52 int cortex_a8_halt(target_t *target);
53 int cortex_a8_resume(struct target_s *target, int current, uint32_t address,
54                 int handle_breakpoints, int debug_execution);
55 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
56                 int handle_breakpoints);
57 int cortex_a8_debug_entry(target_t *target);
58 int cortex_a8_restore_context(target_t *target);
59 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
60                 uint32_t count, uint8_t *buffer);
61 int cortex_a8_set_breakpoint(struct target_s *target,
62                 breakpoint_t *breakpoint, uint8_t matchmode);
63 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
64 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
65 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint);
66 int cortex_a8_dap_read_coreregister_u32(target_t *target,
67                 uint32_t *value, int regnum);
68 int cortex_a8_dap_write_coreregister_u32(target_t *target,
69                 uint32_t value, int regnum);
70 int cortex_a8_assert_reset(target_t *target);
71 int cortex_a8_deassert_reset(target_t *target);
72
73 target_type_t cortexa8_target =
74 {
75         .name = "cortex_a8",
76
77         .poll = cortex_a8_poll,
78         .arch_state = armv7a_arch_state,
79
80         .target_request_data = NULL,
81
82         .halt = cortex_a8_halt,
83         .resume = cortex_a8_resume,
84         .step = cortex_a8_step,
85
86         .assert_reset = cortex_a8_assert_reset,
87         .deassert_reset = cortex_a8_deassert_reset,
88         .soft_reset_halt = NULL,
89
90         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
91
92         .read_memory = cortex_a8_read_memory,
93         .write_memory = cortex_a8_write_memory,
94         .bulk_write_memory = cortex_a8_bulk_write_memory,
95         .checksum_memory = arm7_9_checksum_memory,
96         .blank_check_memory = arm7_9_blank_check_memory,
97
98         .run_algorithm = armv4_5_run_algorithm,
99
100         .add_breakpoint = cortex_a8_add_breakpoint,
101         .remove_breakpoint = cortex_a8_remove_breakpoint,
102         .add_watchpoint = NULL,
103         .remove_watchpoint = NULL,
104
105         .register_commands = cortex_a8_register_commands,
106         .target_create = cortex_a8_target_create,
107         .init_target = cortex_a8_init_target,
108         .examine = cortex_a8_examine,
109         .quit = NULL
110 };
111
112 /*
113  * FIXME do topology discovery using the ROM; don't
114  * assume this is an OMAP3.
115  */
116 #define swjdp_memoryap 0
117 #define swjdp_debugap 1
118 #define OMAP3530_DEBUG_BASE 0x54011000
119
120 /*
121  * Cortex-A8 Basic debug access, very low level assumes state is saved
122  */
123 int cortex_a8_init_debug_access(target_t *target)
124 {
125         /* get pointers to arch-specific information */
126         armv4_5_common_t *armv4_5 = target->arch_info;
127         armv7a_common_t *armv7a = armv4_5->arch_info;
128         swjdp_common_t *swjdp = &armv7a->swjdp_info;
129
130         int retval;
131         uint32_t dummy;
132
133         LOG_DEBUG(" ");
134
135         /* Unlocking the debug registers for modification */
136         /* The debugport might be uninitialised so try twice */
137         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
138         if (retval != ERROR_OK)
139                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
140         /* Clear Sticky Power Down status Bit in PRSR to enable access to
141            the registers in the Core Power Domain */
142         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
143         /* Enabling of instruction execution in debug mode is done in debug_entry code */
144
145         /* Resync breakpoint registers */
146
147         /* Since this is likley called from init or reset, update targtet state information*/
148         cortex_a8_poll(target);
149
150         return retval;
151 }
152
153 int cortex_a8_exec_opcode(target_t *target, uint32_t opcode)
154 {
155         uint32_t dscr;
156         int retval;
157         /* get pointers to arch-specific information */
158         armv4_5_common_t *armv4_5 = target->arch_info;
159         armv7a_common_t *armv7a = armv4_5->arch_info;
160         swjdp_common_t *swjdp = &armv7a->swjdp_info;
161
162         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
163         do
164         {
165                 retval = mem_ap_read_atomic_u32(swjdp,
166                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
167                 if (retval != ERROR_OK)
168                 {
169                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
170                         return retval;
171                 }
172         }
173         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
174
175         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
176
177         do
178         {
179                 retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181                 if (retval != ERROR_OK)
182                 {
183                         LOG_ERROR("Could not read DSCR register");
184                         return retval;
185                 }
186         }
187         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
188
189         return retval;
190 }
191
192 /**************************************************************************
193 Read core register with very few exec_opcode, fast but needs work_area.
194 This can cause problems with MMU active.
195 **************************************************************************/
196 int cortex_a8_read_regs_through_mem(target_t *target, uint32_t address,
197                 uint32_t * regfile)
198 {
199         int retval = ERROR_OK;
200         /* get pointers to arch-specific information */
201         armv4_5_common_t *armv4_5 = target->arch_info;
202         armv7a_common_t *armv7a = armv4_5->arch_info;
203         swjdp_common_t *swjdp = &armv7a->swjdp_info;
204
205         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
206         cortex_a8_dap_write_coreregister_u32(target, address, 0);
207         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
208         dap_ap_select(swjdp, swjdp_memoryap);
209         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
210         dap_ap_select(swjdp, swjdp_debugap);
211
212         return retval;
213 }
214
215 int cortex_a8_read_cp(target_t *target, uint32_t *value, uint8_t CP,
216                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
217 {
218         int retval;
219         /* get pointers to arch-specific information */
220         armv4_5_common_t *armv4_5 = target->arch_info;
221         armv7a_common_t *armv7a = armv4_5->arch_info;
222         swjdp_common_t *swjdp = &armv7a->swjdp_info;
223
224         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
225         /* Move R0 to DTRTX */
226         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
227
228         /* Read DCCTX */
229         retval = mem_ap_read_atomic_u32(swjdp,
230                         armv7a->debug_base + CPUDBG_DTRTX, value);
231
232         return retval;
233 }
234
235 int cortex_a8_write_cp(target_t *target, uint32_t value,
236         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
237 {
238         int retval;
239         uint32_t dscr;
240
241         /* get pointers to arch-specific information */
242         armv4_5_common_t *armv4_5 = target->arch_info;
243         armv7a_common_t *armv7a = armv4_5->arch_info;
244         swjdp_common_t *swjdp = &armv7a->swjdp_info;
245
246         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
247
248         /* Check that DCCRX is not full */
249         retval = mem_ap_read_atomic_u32(swjdp,
250                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
251         if (dscr & (1 << DSCR_DTR_RX_FULL))
252         {
253                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
254                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
255                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
256         }
257
258         retval = mem_ap_write_u32(swjdp,
259                         armv7a->debug_base + CPUDBG_DTRRX, value);
260         /* Move DTRRX to r0 */
261         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
262
263         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
264         return retval;
265 }
266
267 int cortex_a8_read_cp15(target_t *target, uint32_t op1, uint32_t op2,
268                 uint32_t CRn, uint32_t CRm, uint32_t *value)
269 {
270         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
271 }
272
273 int cortex_a8_write_cp15(target_t *target, uint32_t op1, uint32_t op2,
274                 uint32_t CRn, uint32_t CRm, uint32_t value)
275 {
276         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
277 }
278
279 int cortex_a8_dap_read_coreregister_u32(target_t *target,
280                 uint32_t *value, int regnum)
281 {
282         int retval = ERROR_OK;
283         uint8_t reg = regnum&0xFF;
284         uint32_t dscr;
285
286         /* get pointers to arch-specific information */
287         armv4_5_common_t *armv4_5 = target->arch_info;
288         armv7a_common_t *armv7a = armv4_5->arch_info;
289         swjdp_common_t *swjdp = &armv7a->swjdp_info;
290
291         if (reg > 16)
292                 return retval;
293
294         if (reg < 15)
295         {
296                 /* Rn to DCCTX, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
297                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
298         }
299         else if (reg == 15)
300         {
301                 cortex_a8_exec_opcode(target, 0xE1A0000F);
302                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
303         }
304         else if (reg == 16)
305         {
306                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
307                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
308         }
309
310         /* Read DTRRTX */
311         do
312         {
313                 retval = mem_ap_read_atomic_u32(swjdp,
314                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
315         }
316         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
317
318         retval = mem_ap_read_atomic_u32(swjdp,
319                         armv7a->debug_base + CPUDBG_DTRTX, value);
320
321         return retval;
322 }
323
324 int cortex_a8_dap_write_coreregister_u32(target_t *target, uint32_t value, int regnum)
325 {
326         int retval = ERROR_OK;
327         uint8_t Rd = regnum&0xFF;
328         uint32_t dscr;
329
330         /* get pointers to arch-specific information */
331         armv4_5_common_t *armv4_5 = target->arch_info;
332         armv7a_common_t *armv7a = armv4_5->arch_info;
333         swjdp_common_t *swjdp = &armv7a->swjdp_info;
334
335         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
336
337         /* Check that DCCRX is not full */
338         retval = mem_ap_read_atomic_u32(swjdp,
339                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
340         if (dscr & (1 << DSCR_DTR_RX_FULL))
341         {
342                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
343                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
344                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
345         }
346
347         if (Rd > 16)
348                 return retval;
349
350         /* Write to DCCRX */
351         retval = mem_ap_write_u32(swjdp,
352                         armv7a->debug_base + CPUDBG_DTRRX, value);
353
354         if (Rd < 15)
355         {
356                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
357                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
358         }
359         else if (Rd == 15)
360         {
361                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
362                 cortex_a8_exec_opcode(target, 0xE1A0F000);
363         }
364         else if (Rd == 16)
365         {
366                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
367                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
368                 /* Execute a PrefetchFlush instruction through the ITR. */
369                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
370         }
371
372         return retval;
373 }
374
375 /* Write to memory mapped registers directly with no cache or mmu handling */
376 int cortex_a8_dap_write_memap_register_u32(target_t *target, uint32_t address, uint32_t value)
377 {
378         int retval;
379
380         /* get pointers to arch-specific information */
381         armv4_5_common_t *armv4_5 = target->arch_info;
382         armv7a_common_t *armv7a = armv4_5->arch_info;
383         swjdp_common_t *swjdp = &armv7a->swjdp_info;
384
385         retval = mem_ap_write_atomic_u32(swjdp, address, value);
386
387         return retval;
388 }
389
390 /*
391  * Cortex-A8 Run control
392  */
393
394 int cortex_a8_poll(target_t *target)
395 {
396         int retval = ERROR_OK;
397         uint32_t dscr;
398         /* get pointers to arch-specific information */
399         armv4_5_common_t *armv4_5 = target->arch_info;
400         armv7a_common_t *armv7a = armv4_5->arch_info;
401         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
402         swjdp_common_t *swjdp = &armv7a->swjdp_info;
403
404
405         enum target_state prev_target_state = target->state;
406
407         uint8_t saved_apsel = dap_ap_get_select(swjdp);
408         dap_ap_select(swjdp, swjdp_debugap);
409         retval = mem_ap_read_atomic_u32(swjdp,
410                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
411         if (retval != ERROR_OK)
412         {
413                 dap_ap_select(swjdp, saved_apsel);
414                 return retval;
415         }
416         cortex_a8->cpudbg_dscr = dscr;
417
418         if ((dscr & 0x3) == 0x3)
419         {
420                 if (prev_target_state != TARGET_HALTED)
421                 {
422                         /* We have a halting debug event */
423                         LOG_DEBUG("Target halted");
424                         target->state = TARGET_HALTED;
425                         if ((prev_target_state == TARGET_RUNNING)
426                                         || (prev_target_state == TARGET_RESET))
427                         {
428                                 retval = cortex_a8_debug_entry(target);
429                                 if (retval != ERROR_OK)
430                                         return retval;
431
432                                 target_call_event_callbacks(target,
433                                                 TARGET_EVENT_HALTED);
434                         }
435                         if (prev_target_state == TARGET_DEBUG_RUNNING)
436                         {
437                                 LOG_DEBUG(" ");
438
439                                 retval = cortex_a8_debug_entry(target);
440                                 if (retval != ERROR_OK)
441                                         return retval;
442
443                                 target_call_event_callbacks(target,
444                                                 TARGET_EVENT_DEBUG_HALTED);
445                         }
446                 }
447         }
448         else if ((dscr & 0x3) == 0x2)
449         {
450                 target->state = TARGET_RUNNING;
451         }
452         else
453         {
454                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
455                 target->state = TARGET_UNKNOWN;
456         }
457
458         dap_ap_select(swjdp, saved_apsel);
459
460         return retval;
461 }
462
463 int cortex_a8_halt(target_t *target)
464 {
465         int retval = ERROR_OK;
466         uint32_t dscr;
467
468         /* get pointers to arch-specific information */
469         armv4_5_common_t *armv4_5 = target->arch_info;
470         armv7a_common_t *armv7a = armv4_5->arch_info;
471         swjdp_common_t *swjdp = &armv7a->swjdp_info;
472
473         uint8_t saved_apsel = dap_ap_get_select(swjdp);
474         dap_ap_select(swjdp, swjdp_debugap);
475
476         /*
477          * Tell the core to be halted by writing DRCR with 0x1
478          * and then wait for the core to be halted.
479          */
480         retval = mem_ap_write_atomic_u32(swjdp,
481                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
482
483         /*
484          * enter halting debug mode
485          */
486         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
487         retval = mem_ap_write_atomic_u32(swjdp,
488                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
489
490         if (retval != ERROR_OK)
491                 goto out;
492
493         do {
494                 mem_ap_read_atomic_u32(swjdp,
495                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
496         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
497
498         target->debug_reason = DBG_REASON_DBGRQ;
499
500 out:
501         dap_ap_select(swjdp, saved_apsel);
502         return retval;
503 }
504
505 int cortex_a8_resume(struct target_s *target, int current,
506                 uint32_t address, int handle_breakpoints, int debug_execution)
507 {
508         /* get pointers to arch-specific information */
509         armv4_5_common_t *armv4_5 = target->arch_info;
510         armv7a_common_t *armv7a = armv4_5->arch_info;
511         swjdp_common_t *swjdp = &armv7a->swjdp_info;
512
513 //      breakpoint_t *breakpoint = NULL;
514         uint32_t resume_pc, dscr;
515
516         uint8_t saved_apsel = dap_ap_get_select(swjdp);
517         dap_ap_select(swjdp, swjdp_debugap);
518
519         if (!debug_execution)
520         {
521                 target_free_all_working_areas(target);
522 //              cortex_m3_enable_breakpoints(target);
523 //              cortex_m3_enable_watchpoints(target);
524         }
525
526 #if 0
527         if (debug_execution)
528         {
529                 /* Disable interrupts */
530                 /* We disable interrupts in the PRIMASK register instead of
531                  * masking with C_MASKINTS,
532                  * This is probably the same issue as Cortex-M3 Errata 377493:
533                  * C_MASKINTS in parallel with disabled interrupts can cause
534                  * local faults to not be taken. */
535                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
536                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
537                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
538
539                 /* Make sure we are in Thumb mode */
540                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
541                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
542                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
543                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
544         }
545 #endif
546
547         /* current = 1: continue on current pc, otherwise continue at <address> */
548         resume_pc = buf_get_u32(
549                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
550                                 armv4_5->core_mode, 15).value,
551                         0, 32);
552         if (!current)
553                 resume_pc = address;
554
555         /* Make sure that the Armv7 gdb thumb fixups does not
556          * kill the return address
557          */
558         if (armv7a->core_state == ARMV7A_STATE_ARM)
559         {
560                 resume_pc &= 0xFFFFFFFC;
561         }
562         /* When the return address is loaded into PC
563          * bit 0 must be 1 to stay in Thumb state
564          */
565         if (armv7a->core_state == ARMV7A_STATE_THUMB)
566         {
567                 resume_pc |= 0x1;
568         }
569         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
570         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
571                                 armv4_5->core_mode, 15).value,
572                         0, 32, resume_pc);
573         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
574                         armv4_5->core_mode, 15).dirty = 1;
575         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
576                         armv4_5->core_mode, 15).valid = 1;
577
578         cortex_a8_restore_context(target);
579 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
580 #if 0
581         /* the front-end may request us not to handle breakpoints */
582         if (handle_breakpoints)
583         {
584                 /* Single step past breakpoint at current address */
585                 if ((breakpoint = breakpoint_find(target, resume_pc)))
586                 {
587                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
588                         cortex_m3_unset_breakpoint(target, breakpoint);
589                         cortex_m3_single_step_core(target);
590                         cortex_m3_set_breakpoint(target, breakpoint);
591                 }
592         }
593
594 #endif
595         /* Restart core and wait for it to be started */
596         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
597
598         do {
599                 mem_ap_read_atomic_u32(swjdp,
600                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
601         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
602
603         target->debug_reason = DBG_REASON_NOTHALTED;
604         target->state = TARGET_RUNNING;
605
606         /* registers are now invalid */
607         armv4_5_invalidate_core_regs(target);
608
609         if (!debug_execution)
610         {
611                 target->state = TARGET_RUNNING;
612                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
613                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
614         }
615         else
616         {
617                 target->state = TARGET_DEBUG_RUNNING;
618                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
619                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
620         }
621
622         dap_ap_select(swjdp, saved_apsel);
623
624         return ERROR_OK;
625 }
626
627 int cortex_a8_debug_entry(target_t *target)
628 {
629         int i;
630         uint32_t regfile[16], pc, cpsr, dscr;
631         int retval = ERROR_OK;
632         working_area_t *regfile_working_area = NULL;
633
634         /* get pointers to arch-specific information */
635         armv4_5_common_t *armv4_5 = target->arch_info;
636         armv7a_common_t *armv7a = armv4_5->arch_info;
637         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
638         swjdp_common_t *swjdp = &armv7a->swjdp_info;
639
640         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
641
642         /* Enable the ITR execution once we are in debug mode */
643         mem_ap_read_atomic_u32(swjdp,
644                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
645         dscr |= (1 << DSCR_EXT_INT_EN);
646         retval = mem_ap_write_atomic_u32(swjdp,
647                         armv7a->debug_base + CPUDBG_DSCR, dscr);
648
649         /* Examine debug reason */
650         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
651         {
652                 case 0:
653                 case 4:
654                         target->debug_reason = DBG_REASON_DBGRQ;
655                         break;
656                 case 1:
657                 case 3:
658                         target->debug_reason = DBG_REASON_BREAKPOINT;
659                         break;
660                 case 10:
661                         target->debug_reason = DBG_REASON_WATCHPOINT;
662                         break;
663                 default:
664                         target->debug_reason = DBG_REASON_UNDEFINED;
665                         break;
666         }
667
668         /* Examine target state and mode */
669         if (cortex_a8->fast_reg_read)
670                 target_alloc_working_area(target, 64, &regfile_working_area);
671
672         /* First load register acessible through core debug port*/
673         if (!regfile_working_area)
674         {
675                 for (i = 0; i <= 15; i++)
676                         cortex_a8_dap_read_coreregister_u32(target,
677                                         &regfile[i], i);
678         }
679         else
680         {
681                 dap_ap_select(swjdp, swjdp_memoryap);
682                 cortex_a8_read_regs_through_mem(target,
683                                 regfile_working_area->address, regfile);
684                 dap_ap_select(swjdp, swjdp_memoryap);
685                 target_free_working_area(target, regfile_working_area);
686         }
687
688         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
689         pc = regfile[15];
690         dap_ap_select(swjdp, swjdp_debugap);
691         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
692
693         armv4_5->core_mode = cpsr & 0x1F;
694         armv7a->core_state = (cpsr & 0x20)?ARMV7A_STATE_THUMB:ARMV7A_STATE_ARM;
695
696         for (i = 0; i <= ARM_PC; i++)
697         {
698                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
699                                         armv4_5->core_mode, i).value,
700                                 0, 32, regfile[i]);
701                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
702                                 armv4_5->core_mode, i).valid = 1;
703                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
704                                 armv4_5->core_mode, i).dirty = 0;
705         }
706         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
707                                 armv4_5->core_mode, 16).value,
708                         0, 32, cpsr);
709         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
710         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
711
712         /* Fixup PC Resume Address */
713         if (armv7a->core_state == ARMV7A_STATE_THUMB)
714         {
715                 // T bit set for Thumb or ThumbEE state
716                 regfile[ARM_PC] -= 4;
717         }
718         else
719         {
720                 // ARM state
721                 regfile[ARM_PC] -= 8;
722         }
723         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
724                                 armv4_5->core_mode, ARM_PC).value,
725                         0, 32, regfile[ARM_PC]);
726
727         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
728                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
729                                 armv4_5->core_mode, 0).valid;
730         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
731                 .dirty = ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
732                                 armv4_5->core_mode, 15).valid;
733
734 #if 0
735 /* TODO, Move this */
736         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
737         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
738         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
739
740         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
741         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
742
743         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
744         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
745 #endif
746
747         /* Are we in an exception handler */
748 //      armv4_5->exception_number = 0;
749         if (armv7a->post_debug_entry)
750                 armv7a->post_debug_entry(target);
751
752
753
754         return retval;
755
756 }
757
758 void cortex_a8_post_debug_entry(target_t *target)
759 {
760         /* get pointers to arch-specific information */
761         armv4_5_common_t *armv4_5 = target->arch_info;
762         armv7a_common_t *armv7a = armv4_5->arch_info;
763         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
764
765 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
766         /* examine cp15 control reg */
767         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
768         jtag_execute_queue();
769         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
770
771         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
772         {
773                 uint32_t cache_type_reg;
774                 /* identify caches */
775                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
776                 jtag_execute_queue();
777                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
778                 armv4_5_identify_cache(cache_type_reg,
779                                 &armv7a->armv4_5_mmu.armv4_5_cache);
780         }
781
782         armv7a->armv4_5_mmu.mmu_enabled =
783                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
784         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
785                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
786         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
787                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
788
789
790 }
791
792 int cortex_a8_step(struct target_s *target, int current, uint32_t address,
793                 int handle_breakpoints)
794 {
795         /* get pointers to arch-specific information */
796         armv4_5_common_t *armv4_5 = target->arch_info;
797         armv7a_common_t *armv7a = armv4_5->arch_info;
798         breakpoint_t *breakpoint = NULL;
799         breakpoint_t stepbreakpoint;
800
801         int timeout = 100;
802
803         if (target->state != TARGET_HALTED)
804         {
805                 LOG_WARNING("target not halted");
806                 return ERROR_TARGET_NOT_HALTED;
807         }
808
809         /* current = 1: continue on current pc, otherwise continue at <address> */
810         if (!current)
811         {
812                 buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
813                                         armv4_5->core_mode, ARM_PC).value,
814                                 0, 32, address);
815         }
816         else
817         {
818                 address = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
819                                         armv4_5->core_mode, ARM_PC).value,
820                                 0, 32);
821         }
822
823         /* The front-end may request us not to handle breakpoints.
824          * But since Cortex-A8 uses breakpoint for single step,
825          * we MUST handle breakpoints.
826          */
827         handle_breakpoints = 1;
828         if (handle_breakpoints) {
829                 breakpoint = breakpoint_find(target,
830                                 buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
831                                         armv4_5->core_mode, 15).value,
832                         0, 32));
833                 if (breakpoint)
834                         cortex_a8_unset_breakpoint(target, breakpoint);
835         }
836
837         /* Setup single step breakpoint */
838         stepbreakpoint.address = address;
839         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
840         stepbreakpoint.type = BKPT_HARD;
841         stepbreakpoint.set = 0;
842
843         /* Break on IVA mismatch */
844         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
845
846         target->debug_reason = DBG_REASON_SINGLESTEP;
847
848         cortex_a8_resume(target, 1, address, 0, 0);
849
850         while (target->state != TARGET_HALTED)
851         {
852                 cortex_a8_poll(target);
853                 if (--timeout == 0)
854                 {
855                         LOG_WARNING("timeout waiting for target halt");
856                         break;
857                 }
858         }
859
860         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
861         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
862
863         if (breakpoint)
864                 cortex_a8_set_breakpoint(target, breakpoint, 0);
865
866         if (target->state != TARGET_HALTED)
867                 LOG_DEBUG("target stepped");
868
869         return ERROR_OK;
870 }
871
872 int cortex_a8_restore_context(target_t *target)
873 {
874         int i;
875         uint32_t value;
876
877         /* get pointers to arch-specific information */
878         armv4_5_common_t *armv4_5 = target->arch_info;
879         armv7a_common_t *armv7a = armv4_5->arch_info;
880
881         LOG_DEBUG(" ");
882
883         if (armv7a->pre_restore_context)
884                 armv7a->pre_restore_context(target);
885
886         for (i = 15; i >= 0; i--)
887         {
888                 if (ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
889                                         armv4_5->core_mode, i).dirty)
890                 {
891                         value = buf_get_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
892                                                 armv4_5->core_mode, i).value,
893                                         0, 32);
894                         /* TODO Check return values */
895                         cortex_a8_dap_write_coreregister_u32(target, value, i);
896                 }
897         }
898
899         if (armv7a->post_restore_context)
900                 armv7a->post_restore_context(target);
901
902         return ERROR_OK;
903 }
904
905
906 /*
907  * Cortex-A8 Core register functions
908  */
909
910 int cortex_a8_load_core_reg_u32(struct target_s *target, int num,
911                 armv4_5_mode_t mode, uint32_t * value)
912 {
913         int retval;
914         /* get pointers to arch-specific information */
915         armv4_5_common_t *armv4_5 = target->arch_info;
916
917         if ((num <= ARM_CPSR))
918         {
919                 /* read a normal core register */
920                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
921
922                 if (retval != ERROR_OK)
923                 {
924                         LOG_ERROR("JTAG failure %i", retval);
925                         return ERROR_JTAG_DEVICE_ERROR;
926                 }
927                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
928         }
929         else
930         {
931                 return ERROR_INVALID_ARGUMENTS;
932         }
933
934         /* Register other than r0 - r14 uses r0 for access */
935         if (num > 14)
936                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
937                                 armv4_5->core_mode, 0).dirty =
938                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
939                                 armv4_5->core_mode, 0).valid;
940         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
941                                 armv4_5->core_mode, 15).dirty =
942                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
943                                 armv4_5->core_mode, 15).valid;
944
945         return ERROR_OK;
946 }
947
948 int cortex_a8_store_core_reg_u32(struct target_s *target, int num,
949                 armv4_5_mode_t mode, uint32_t value)
950 {
951         int retval;
952 //      uint32_t reg;
953
954         /* get pointers to arch-specific information */
955         armv4_5_common_t *armv4_5 = target->arch_info;
956
957 #ifdef ARMV7_GDB_HACKS
958         /* If the LR register is being modified, make sure it will put us
959          * in "thumb" mode, or an INVSTATE exception will occur. This is a
960          * hack to deal with the fact that gdb will sometimes "forge"
961          * return addresses, and doesn't set the LSB correctly (i.e., when
962          * printing expressions containing function calls, it sets LR=0.) */
963
964         if (num == 14)
965                 value |= 0x01;
966 #endif
967
968         if ((num <= ARM_CPSR))
969         {
970                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
971                 if (retval != ERROR_OK)
972                 {
973                         LOG_ERROR("JTAG failure %i", retval);
974                         ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
975                                         armv4_5->core_mode, num).dirty =
976                                 ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
977                                         armv4_5->core_mode, num).valid;
978                         return ERROR_JTAG_DEVICE_ERROR;
979                 }
980                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
981         }
982         else
983         {
984                 return ERROR_INVALID_ARGUMENTS;
985         }
986
987         return ERROR_OK;
988 }
989
990
991 int cortex_a8_read_core_reg(struct target_s *target, int num,
992                 enum armv4_5_mode mode)
993 {
994         uint32_t value;
995         int retval;
996         armv4_5_common_t *armv4_5 = target->arch_info;
997         cortex_a8_dap_read_coreregister_u32(target, &value, num);
998
999         if ((retval = jtag_execute_queue()) != ERROR_OK)
1000         {
1001                 return retval;
1002         }
1003
1004         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
1005         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
1006         buf_set_u32(ARMV7A_CORE_REG_MODE(armv4_5->core_cache,
1007                         mode, num).value, 0, 32, value);
1008
1009         return ERROR_OK;
1010 }
1011
1012 int cortex_a8_write_core_reg(struct target_s *target, int num,
1013                 enum armv4_5_mode mode, uint32_t value)
1014 {
1015         int retval;
1016         armv4_5_common_t *armv4_5 = target->arch_info;
1017
1018         cortex_a8_dap_write_coreregister_u32(target, value, num);
1019         if ((retval = jtag_execute_queue()) != ERROR_OK)
1020         {
1021                 return retval;
1022         }
1023
1024         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
1025         ARMV7A_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
1026
1027         return ERROR_OK;
1028 }
1029
1030
1031 /*
1032  * Cortex-A8 Breakpoint and watchpoint fuctions
1033  */
1034
1035 /* Setup hardware Breakpoint Register Pair */
1036 int cortex_a8_set_breakpoint(struct target_s *target,
1037                 breakpoint_t *breakpoint, uint8_t matchmode)
1038 {
1039         int retval;
1040         int brp_i=0;
1041         uint32_t control;
1042         uint8_t byte_addr_select = 0x0F;
1043
1044
1045         /* get pointers to arch-specific information */
1046         armv4_5_common_t *armv4_5 = target->arch_info;
1047         armv7a_common_t *armv7a = armv4_5->arch_info;
1048         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1049         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1050
1051         if (breakpoint->set)
1052         {
1053                 LOG_WARNING("breakpoint already set");
1054                 return ERROR_OK;
1055         }
1056
1057         if (breakpoint->type == BKPT_HARD)
1058         {
1059                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1060                         brp_i++ ;
1061                 if (brp_i >= cortex_a8->brp_num)
1062                 {
1063                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1064                         exit(-1);
1065                 }
1066                 breakpoint->set = brp_i + 1;
1067                 if (breakpoint->length == 2)
1068                 {
1069                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1070                 }
1071                 control = ((matchmode & 0x7) << 20)
1072                                 | (byte_addr_select << 5)
1073                                 | (3 << 1) | 1;
1074                 brp_list[brp_i].used = 1;
1075                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1076                 brp_list[brp_i].control = control;
1077                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1078                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1079                                 brp_list[brp_i].value);
1080                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1081                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1082                                 brp_list[brp_i].control);
1083                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1084                                 brp_list[brp_i].control,
1085                                 brp_list[brp_i].value);
1086         }
1087         else if (breakpoint->type == BKPT_SOFT)
1088         {
1089                 uint8_t code[4];
1090                 if (breakpoint->length == 2)
1091                 {
1092                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1093                 }
1094                 else
1095                 {
1096                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1097                 }
1098                 retval = target->type->read_memory(target,
1099                                 breakpoint->address & 0xFFFFFFFE,
1100                                 breakpoint->length, 1,
1101                                 breakpoint->orig_instr);
1102                 if (retval != ERROR_OK)
1103                         return retval;
1104                 retval = target->type->write_memory(target,
1105                                 breakpoint->address & 0xFFFFFFFE,
1106                                 breakpoint->length, 1, code);
1107                 if (retval != ERROR_OK)
1108                         return retval;
1109                 breakpoint->set = 0x11; /* Any nice value but 0 */
1110         }
1111
1112         return ERROR_OK;
1113 }
1114
1115 int cortex_a8_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1116 {
1117         int retval;
1118         /* get pointers to arch-specific information */
1119         armv4_5_common_t *armv4_5 = target->arch_info;
1120         armv7a_common_t *armv7a = armv4_5->arch_info;
1121         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1122         cortex_a8_brp_t * brp_list = cortex_a8->brp_list;
1123
1124         if (!breakpoint->set)
1125         {
1126                 LOG_WARNING("breakpoint not set");
1127                 return ERROR_OK;
1128         }
1129
1130         if (breakpoint->type == BKPT_HARD)
1131         {
1132                 int brp_i = breakpoint->set - 1;
1133                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1134                 {
1135                         LOG_DEBUG("Invalid BRP number in breakpoint");
1136                         return ERROR_OK;
1137                 }
1138                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1139                                 brp_list[brp_i].control, brp_list[brp_i].value);
1140                 brp_list[brp_i].used = 0;
1141                 brp_list[brp_i].value = 0;
1142                 brp_list[brp_i].control = 0;
1143                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1144                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1145                                 brp_list[brp_i].control);
1146                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1147                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1148                                 brp_list[brp_i].value);
1149         }
1150         else
1151         {
1152                 /* restore original instruction (kept in target endianness) */
1153                 if (breakpoint->length == 4)
1154                 {
1155                         retval = target->type->write_memory(target,
1156                                         breakpoint->address & 0xFFFFFFFE,
1157                                         4, 1, breakpoint->orig_instr);
1158                         if (retval != ERROR_OK)
1159                                 return retval;
1160                 }
1161                 else
1162                 {
1163                         retval = target->type->write_memory(target,
1164                                         breakpoint->address & 0xFFFFFFFE,
1165                                         2, 1, breakpoint->orig_instr);
1166                         if (retval != ERROR_OK)
1167                                 return retval;
1168                 }
1169         }
1170         breakpoint->set = 0;
1171
1172         return ERROR_OK;
1173 }
1174
1175 int cortex_a8_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1176 {
1177         /* get pointers to arch-specific information */
1178         armv4_5_common_t *armv4_5 = target->arch_info;
1179         armv7a_common_t *armv7a = armv4_5->arch_info;
1180         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1181
1182         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1183         {
1184                 LOG_INFO("no hardware breakpoint available");
1185                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1186         }
1187
1188         if (breakpoint->type == BKPT_HARD)
1189                 cortex_a8->brp_num_available--;
1190         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1191
1192         return ERROR_OK;
1193 }
1194
1195 int cortex_a8_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
1196 {
1197         /* get pointers to arch-specific information */
1198         armv4_5_common_t *armv4_5 = target->arch_info;
1199         armv7a_common_t *armv7a = armv4_5->arch_info;
1200         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1201
1202 #if 0
1203 /* It is perfectly possible to remove brakpoints while the taget is running */
1204         if (target->state != TARGET_HALTED)
1205         {
1206                 LOG_WARNING("target not halted");
1207                 return ERROR_TARGET_NOT_HALTED;
1208         }
1209 #endif
1210
1211         if (breakpoint->set)
1212         {
1213                 cortex_a8_unset_breakpoint(target, breakpoint);
1214                 if (breakpoint->type == BKPT_HARD)
1215                         cortex_a8->brp_num_available++ ;
1216         }
1217
1218
1219         return ERROR_OK;
1220 }
1221
1222
1223
1224 /*
1225  * Cortex-A8 Reset fuctions
1226  */
1227
1228 int cortex_a8_assert_reset(target_t *target)
1229 {
1230
1231         LOG_DEBUG(" ");
1232
1233         /* registers are now invalid */
1234         armv4_5_invalidate_core_regs(target);
1235
1236         target->state = TARGET_RESET;
1237
1238         return ERROR_OK;
1239 }
1240
1241 int cortex_a8_deassert_reset(target_t *target)
1242 {
1243
1244         LOG_DEBUG(" ");
1245
1246         if (target->reset_halt)
1247         {
1248                 int retval;
1249                 if ((retval = target_halt(target)) != ERROR_OK)
1250                         return retval;
1251         }
1252
1253         return ERROR_OK;
1254 }
1255
1256 /*
1257  * Cortex-A8 Memory access
1258  *
1259  * This is same Cortex M3 but we must also use the correct
1260  * ap number for every access.
1261  */
1262
1263 int cortex_a8_read_memory(struct target_s *target, uint32_t address,
1264                 uint32_t size, uint32_t count, uint8_t *buffer)
1265 {
1266         /* get pointers to arch-specific information */
1267         armv4_5_common_t *armv4_5 = target->arch_info;
1268         armv7a_common_t *armv7a = armv4_5->arch_info;
1269         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1270
1271         int retval = ERROR_OK;
1272
1273         /* sanitize arguments */
1274         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1275                 return ERROR_INVALID_ARGUMENTS;
1276
1277         /* cortex_a8 handles unaligned memory access */
1278
1279 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1280
1281         switch (size)
1282         {
1283                 case 4:
1284                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1285                         break;
1286                 case 2:
1287                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1288                         break;
1289                 case 1:
1290                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1291                         break;
1292                 default:
1293                         LOG_ERROR("BUG: we shouldn't get here");
1294                         exit(-1);
1295         }
1296
1297         return retval;
1298 }
1299
1300 int cortex_a8_write_memory(struct target_s *target, uint32_t address,
1301                 uint32_t size, uint32_t count, uint8_t *buffer)
1302 {
1303         /* get pointers to arch-specific information */
1304         armv4_5_common_t *armv4_5 = target->arch_info;
1305         armv7a_common_t *armv7a = armv4_5->arch_info;
1306         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1307
1308         int retval;
1309
1310         /* sanitize arguments */
1311         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
1312                 return ERROR_INVALID_ARGUMENTS;
1313
1314 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1315
1316         switch (size)
1317         {
1318                 case 4:
1319                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1320                         break;
1321                 case 2:
1322                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1323                         break;
1324                 case 1:
1325                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1326                         break;
1327                 default:
1328                         LOG_ERROR("BUG: we shouldn't get here");
1329                         exit(-1);
1330         }
1331
1332         if (target->state == TARGET_HALTED)
1333         {
1334                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1335                 /* invalidate I-Cache */
1336                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1337                 {
1338                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1339                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1340                         /* Invalidate Cache single entry with MVA to PoU */
1341                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1342                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1343                 }
1344                 /* invalidate D-Cache */
1345                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1346                 {
1347                         /* Invalidate Cache single entry with MVA to PoC */
1348                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1349                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1350                 }
1351         }
1352
1353         return retval;
1354 }
1355
1356 int cortex_a8_bulk_write_memory(target_t *target, uint32_t address,
1357                 uint32_t count, uint8_t *buffer)
1358 {
1359         return cortex_a8_write_memory(target, address, 4, count, buffer);
1360 }
1361
1362
1363 int cortex_a8_dcc_read(swjdp_common_t *swjdp, uint8_t *value, uint8_t *ctrl)
1364 {
1365 #if 0
1366         u16 dcrdr;
1367
1368         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1369         *ctrl = (uint8_t)dcrdr;
1370         *value = (uint8_t)(dcrdr >> 8);
1371
1372         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1373
1374         /* write ack back to software dcc register
1375          * signify we have read data */
1376         if (dcrdr & (1 << 0))
1377         {
1378                 dcrdr = 0;
1379                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1380         }
1381 #endif
1382         return ERROR_OK;
1383 }
1384
1385
1386 int cortex_a8_handle_target_request(void *priv)
1387 {
1388         target_t *target = priv;
1389         if (!target->type->examined)
1390                 return ERROR_OK;
1391         armv4_5_common_t *armv4_5 = target->arch_info;
1392         armv7a_common_t *armv7a = armv4_5->arch_info;
1393         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1394
1395
1396         if (!target->dbg_msg_enabled)
1397                 return ERROR_OK;
1398
1399         if (target->state == TARGET_RUNNING)
1400         {
1401                 uint8_t data = 0;
1402                 uint8_t ctrl = 0;
1403
1404                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1405
1406                 /* check if we have data */
1407                 if (ctrl & (1 << 0))
1408                 {
1409                         uint32_t request;
1410
1411                         /* we assume target is quick enough */
1412                         request = data;
1413                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1414                         request |= (data << 8);
1415                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1416                         request |= (data << 16);
1417                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1418                         request |= (data << 24);
1419                         target_request(target, request);
1420                 }
1421         }
1422
1423         return ERROR_OK;
1424 }
1425
1426 /*
1427  * Cortex-A8 target information and configuration
1428  */
1429
1430 int cortex_a8_examine(struct target_s *target)
1431 {
1432         /* get pointers to arch-specific information */
1433         armv4_5_common_t *armv4_5 = target->arch_info;
1434         armv7a_common_t *armv7a = armv4_5->arch_info;
1435         cortex_a8_common_t *cortex_a8 = armv7a->arch_info;
1436         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1437
1438
1439         int i;
1440         int retval = ERROR_OK;
1441         uint32_t didr, ctypr, ttypr, cpuid;
1442
1443         LOG_DEBUG("TODO");
1444
1445         /* Here we shall insert a proper ROM Table scan */
1446         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1447
1448         /* We do one extra read to ensure DAP is configured,
1449          * we call ahbap_debugport_init(swjdp) instead
1450          */
1451         ahbap_debugport_init(swjdp);
1452         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1453         if ((retval = mem_ap_read_atomic_u32(swjdp,
1454                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1455         {
1456                 LOG_DEBUG("Examine failed");
1457                 return retval;
1458         }
1459
1460         if ((retval = mem_ap_read_atomic_u32(swjdp,
1461                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1462         {
1463                 LOG_DEBUG("Examine failed");
1464                 return retval;
1465         }
1466
1467         if ((retval = mem_ap_read_atomic_u32(swjdp,
1468                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1469         {
1470                 LOG_DEBUG("Examine failed");
1471                 return retval;
1472         }
1473
1474         if ((retval = mem_ap_read_atomic_u32(swjdp,
1475                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1476         {
1477                 LOG_DEBUG("Examine failed");
1478                 return retval;
1479         }
1480
1481         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1482         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1483         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1484         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1485
1486         /* Setup Breakpoint Register Pairs */
1487         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1488         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1489         cortex_a8->brp_num_available = cortex_a8->brp_num;
1490         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(cortex_a8_brp_t));
1491 //      cortex_a8->brb_enabled = ????;
1492         for (i = 0; i < cortex_a8->brp_num; i++)
1493         {
1494                 cortex_a8->brp_list[i].used = 0;
1495                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1496                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1497                 else
1498                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1499                 cortex_a8->brp_list[i].value = 0;
1500                 cortex_a8->brp_list[i].control = 0;
1501                 cortex_a8->brp_list[i].BRPn = i;
1502         }
1503
1504         /* Setup Watchpoint Register Pairs */
1505         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1506         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1507         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(cortex_a8_wrp_t));
1508         for (i = 0; i < cortex_a8->wrp_num; i++)
1509         {
1510                 cortex_a8->wrp_list[i].used = 0;
1511                 cortex_a8->wrp_list[i].type = 0;
1512                 cortex_a8->wrp_list[i].value = 0;
1513                 cortex_a8->wrp_list[i].control = 0;
1514                 cortex_a8->wrp_list[i].WRPn = i;
1515         }
1516         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1517                         cortex_a8->brp_num , cortex_a8->wrp_num);
1518
1519         /* Configure core debug access */
1520         cortex_a8_init_debug_access(target);
1521
1522         target->type->examined = 1;
1523
1524         return retval;
1525 }
1526
1527 /*
1528  *      Cortex-A8 target creation and initialization
1529  */
1530
1531 void cortex_a8_build_reg_cache(target_t *target)
1532 {
1533         reg_cache_t **cache_p = register_get_last_cache_p(&target->reg_cache);
1534         /* get pointers to arch-specific information */
1535         armv4_5_common_t *armv4_5 = target->arch_info;
1536
1537         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1538         armv4_5->core_cache = (*cache_p);
1539 }
1540
1541
1542 int cortex_a8_init_target(struct command_context_s *cmd_ctx,
1543                 struct target_s *target)
1544 {
1545         cortex_a8_build_reg_cache(target);
1546         return ERROR_OK;
1547 }
1548
1549 int cortex_a8_init_arch_info(target_t *target,
1550                 cortex_a8_common_t *cortex_a8, jtag_tap_t *tap)
1551 {
1552         armv4_5_common_t *armv4_5;
1553         armv7a_common_t *armv7a;
1554
1555         armv7a = &cortex_a8->armv7a_common;
1556         armv4_5 = &armv7a->armv4_5_common;
1557         swjdp_common_t *swjdp = &armv7a->swjdp_info;
1558
1559         /* Setup cortex_a8_common_t */
1560         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1561         cortex_a8->arch_info = NULL;
1562         armv7a->arch_info = cortex_a8;
1563         armv4_5->arch_info = armv7a;
1564
1565         armv4_5_init_arch_info(target, armv4_5);
1566
1567         /* prepare JTAG information for the new target */
1568         cortex_a8->jtag_info.tap = tap;
1569         cortex_a8->jtag_info.scann_size = 4;
1570 LOG_DEBUG(" ");
1571         swjdp->dp_select_value = -1;
1572         swjdp->ap_csw_value = -1;
1573         swjdp->ap_tar_value = -1;
1574         swjdp->jtag_info = &cortex_a8->jtag_info;
1575         swjdp->memaccess_tck = 80;
1576
1577         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1578         swjdp->tar_autoincr_block = (1 << 10);
1579
1580         cortex_a8->fast_reg_read = 0;
1581
1582
1583         /* register arch-specific functions */
1584         armv7a->examine_debug_reason = NULL;
1585
1586         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1587
1588         armv7a->pre_restore_context = NULL;
1589         armv7a->post_restore_context = NULL;
1590         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1591 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1592         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1593         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1594 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1595 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1596         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1597         armv7a->armv4_5_mmu.mmu_enabled = 0;
1598         armv7a->read_cp15 = cortex_a8_read_cp15;
1599         armv7a->write_cp15 = cortex_a8_write_cp15;
1600
1601
1602 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1603
1604         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1605         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1606 //      armv4_5->full_context = arm7_9_full_context;
1607
1608 //      armv4_5->load_core_reg_u32 = cortex_a8_load_core_reg_u32;
1609 //      armv4_5->store_core_reg_u32 = cortex_a8_store_core_reg_u32;
1610 //      armv4_5->read_core_reg = armv4_5_read_core_reg; /* this is default */
1611 //      armv4_5->write_core_reg = armv4_5_write_core_reg;
1612
1613         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1614
1615         return ERROR_OK;
1616 }
1617
1618 int cortex_a8_target_create(struct target_s *target, Jim_Interp *interp)
1619 {
1620         cortex_a8_common_t *cortex_a8 = calloc(1, sizeof(cortex_a8_common_t));
1621
1622         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1623
1624         return ERROR_OK;
1625 }
1626
1627 static int cortex_a8_handle_cache_info_command(struct command_context_s *cmd_ctx,
1628                 char *cmd, char **args, int argc)
1629 {
1630         target_t *target = get_current_target(cmd_ctx);
1631         armv4_5_common_t *armv4_5 = target->arch_info;
1632         armv7a_common_t *armv7a = armv4_5->arch_info;
1633
1634         return armv4_5_handle_cache_info_command(cmd_ctx,
1635                         &armv7a->armv4_5_mmu.armv4_5_cache);
1636 }
1637
1638
1639 static int cortex_a8_handle_dbginit_command(struct command_context_s *cmd_ctx,
1640                 char *cmd, char **args, int argc)
1641 {
1642         target_t *target = get_current_target(cmd_ctx);
1643
1644         cortex_a8_init_debug_access(target);
1645
1646         return ERROR_OK;
1647 }
1648
1649
1650 int cortex_a8_register_commands(struct command_context_s *cmd_ctx)
1651 {
1652         command_t *cortex_a8_cmd;
1653         int retval = ERROR_OK;
1654
1655         armv4_5_register_commands(cmd_ctx);
1656         armv7a_register_commands(cmd_ctx);
1657
1658         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1659                         NULL, COMMAND_ANY,
1660                         "cortex_a8 specific commands");
1661
1662         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1663                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1664                         "display information about target caches");
1665
1666         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1667                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1668                         "Initialize core debug");
1669
1670         return retval;
1671 }