]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
f549fb394dffa6a1ad3468e1f042f01a570187a3
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 /* FIXME we waste a *LOT* of round-trips with needless DSCR reads, which
93  * slows down operations considerably.  One good way to start reducing
94  * them would pass current values into and out of this routine.  That
95  * should also help synch DCC read/write.
96  */
97 static int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
98 {
99         uint32_t dscr;
100         int retval;
101         struct armv7a_common *armv7a = target_to_armv7a(target);
102         struct swjdp_common *swjdp = &armv7a->swjdp_info;
103
104         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
105         do
106         {
107                 retval = mem_ap_read_atomic_u32(swjdp,
108                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
109                 if (retval != ERROR_OK)
110                 {
111                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
112                         return retval;
113                 }
114         }
115         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
116
117         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
118
119         do
120         {
121                 retval = mem_ap_read_atomic_u32(swjdp,
122                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
123                 if (retval != ERROR_OK)
124                 {
125                         LOG_ERROR("Could not read DSCR register");
126                         return retval;
127                 }
128         }
129         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
130
131         return retval;
132 }
133
134 /**************************************************************************
135 Read core register with very few exec_opcode, fast but needs work_area.
136 This can cause problems with MMU active.
137 **************************************************************************/
138 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
139                 uint32_t * regfile)
140 {
141         int retval = ERROR_OK;
142         struct armv7a_common *armv7a = target_to_armv7a(target);
143         struct swjdp_common *swjdp = &armv7a->swjdp_info;
144
145         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
146         cortex_a8_dap_write_coreregister_u32(target, address, 0);
147         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
148         dap_ap_select(swjdp, swjdp_memoryap);
149         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
150         dap_ap_select(swjdp, swjdp_debugap);
151
152         return retval;
153 }
154
155 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
156                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
157 {
158         int retval;
159         struct armv7a_common *armv7a = target_to_armv7a(target);
160         struct swjdp_common *swjdp = &armv7a->swjdp_info;
161
162         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
163         /* Move R0 to DTRTX */
164         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
165
166         /* Read DCCTX */
167         retval = mem_ap_read_atomic_u32(swjdp,
168                         armv7a->debug_base + CPUDBG_DTRTX, value);
169
170         return retval;
171 }
172
173 static int cortex_a8_write_cp(struct target *target, uint32_t value,
174         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
175 {
176         int retval;
177         uint32_t dscr;
178         struct armv7a_common *armv7a = target_to_armv7a(target);
179         struct swjdp_common *swjdp = &armv7a->swjdp_info;
180
181         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
182
183         /* Check that DCCRX is not full */
184         retval = mem_ap_read_atomic_u32(swjdp,
185                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
186         if (dscr & (1 << DSCR_DTR_RX_FULL))
187         {
188                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
189                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
190                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
191         }
192
193         retval = mem_ap_write_u32(swjdp,
194                         armv7a->debug_base + CPUDBG_DTRRX, value);
195         /* Move DTRRX to r0 */
196         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
197
198         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
199         return retval;
200 }
201
202 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
203                 uint32_t CRn, uint32_t CRm, uint32_t *value)
204 {
205         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
206 }
207
208 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
209                 uint32_t CRn, uint32_t CRm, uint32_t value)
210 {
211         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
212 }
213
214 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
215 {
216         if (cpnum!=15)
217         {
218                 LOG_ERROR("Only cp15 is supported");
219                 return ERROR_FAIL;
220         }
221         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
222 }
223
224 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
225 {
226         if (cpnum!=15)
227         {
228                 LOG_ERROR("Only cp15 is supported");
229                 return ERROR_FAIL;
230         }
231         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
232 }
233
234
235
236 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
237                 uint32_t *value, int regnum)
238 {
239         int retval = ERROR_OK;
240         uint8_t reg = regnum&0xFF;
241         uint32_t dscr;
242         struct armv7a_common *armv7a = target_to_armv7a(target);
243         struct swjdp_common *swjdp = &armv7a->swjdp_info;
244
245         if (reg > 17)
246                 return retval;
247
248         if (reg < 15)
249         {
250                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
251                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
252         }
253         else if (reg == 15)
254         {
255                 /* "MOV r0, r15"; then move r0 to DCCTX */
256                 cortex_a8_exec_opcode(target, 0xE1A0000F);
257                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
258         }
259         else
260         {
261                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
262                  * then move r0 to DCCTX
263                  */
264                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1));
265                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
266         }
267
268         /* Read DTRRTX */
269         do
270         {
271                 retval = mem_ap_read_atomic_u32(swjdp,
272                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
273         }
274         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
275
276         retval = mem_ap_read_atomic_u32(swjdp,
277                         armv7a->debug_base + CPUDBG_DTRTX, value);
278         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
279
280         return retval;
281 }
282
283 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
284                 uint32_t value, int regnum)
285 {
286         int retval = ERROR_OK;
287         uint8_t Rd = regnum&0xFF;
288         uint32_t dscr;
289         struct armv7a_common *armv7a = target_to_armv7a(target);
290         struct swjdp_common *swjdp = &armv7a->swjdp_info;
291
292         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
293
294         /* Check that DCCRX is not full */
295         retval = mem_ap_read_atomic_u32(swjdp,
296                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
297         if (dscr & (1 << DSCR_DTR_RX_FULL))
298         {
299                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
300                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
301                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
302         }
303
304         if (Rd > 17)
305                 return retval;
306
307         /* Write to DCCRX */
308         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
309         retval = mem_ap_write_u32(swjdp,
310                         armv7a->debug_base + CPUDBG_DTRRX, value);
311
312         if (Rd < 15)
313         {
314                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
315                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
316         }
317         else if (Rd == 15)
318         {
319                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
320                  * then "mov r15, r0"
321                  */
322                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
323                 cortex_a8_exec_opcode(target, 0xE1A0F000);
324         }
325         else
326         {
327                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
328                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
329                  */
330                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
331                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1));
332
333                 /* "Prefetch flush" after modifying execution status in CPSR */
334                 if (Rd == 16)
335                         cortex_a8_exec_opcode(target,
336                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
337         }
338
339         return retval;
340 }
341
342 /* Write to memory mapped registers directly with no cache or mmu handling */
343 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
344 {
345         int retval;
346         struct armv7a_common *armv7a = target_to_armv7a(target);
347         struct swjdp_common *swjdp = &armv7a->swjdp_info;
348
349         retval = mem_ap_write_atomic_u32(swjdp, address, value);
350
351         return retval;
352 }
353
354 /*
355  * Cortex-A8 Run control
356  */
357
358 static int cortex_a8_poll(struct target *target)
359 {
360         int retval = ERROR_OK;
361         uint32_t dscr;
362         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
363         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
364         struct swjdp_common *swjdp = &armv7a->swjdp_info;
365         enum target_state prev_target_state = target->state;
366         uint8_t saved_apsel = dap_ap_get_select(swjdp);
367
368         dap_ap_select(swjdp, swjdp_debugap);
369         retval = mem_ap_read_atomic_u32(swjdp,
370                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
371         if (retval != ERROR_OK)
372         {
373                 dap_ap_select(swjdp, saved_apsel);
374                 return retval;
375         }
376         cortex_a8->cpudbg_dscr = dscr;
377
378         if ((dscr & 0x3) == 0x3)
379         {
380                 if (prev_target_state != TARGET_HALTED)
381                 {
382                         /* We have a halting debug event */
383                         LOG_DEBUG("Target halted");
384                         target->state = TARGET_HALTED;
385                         if ((prev_target_state == TARGET_RUNNING)
386                                         || (prev_target_state == TARGET_RESET))
387                         {
388                                 retval = cortex_a8_debug_entry(target);
389                                 if (retval != ERROR_OK)
390                                         return retval;
391
392                                 target_call_event_callbacks(target,
393                                                 TARGET_EVENT_HALTED);
394                         }
395                         if (prev_target_state == TARGET_DEBUG_RUNNING)
396                         {
397                                 LOG_DEBUG(" ");
398
399                                 retval = cortex_a8_debug_entry(target);
400                                 if (retval != ERROR_OK)
401                                         return retval;
402
403                                 target_call_event_callbacks(target,
404                                                 TARGET_EVENT_DEBUG_HALTED);
405                         }
406                 }
407         }
408         else if ((dscr & 0x3) == 0x2)
409         {
410                 target->state = TARGET_RUNNING;
411         }
412         else
413         {
414                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
415                 target->state = TARGET_UNKNOWN;
416         }
417
418         dap_ap_select(swjdp, saved_apsel);
419
420         return retval;
421 }
422
423 static int cortex_a8_halt(struct target *target)
424 {
425         int retval = ERROR_OK;
426         uint32_t dscr;
427         struct armv7a_common *armv7a = target_to_armv7a(target);
428         struct swjdp_common *swjdp = &armv7a->swjdp_info;
429         uint8_t saved_apsel = dap_ap_get_select(swjdp);
430         dap_ap_select(swjdp, swjdp_debugap);
431
432         /*
433          * Tell the core to be halted by writing DRCR with 0x1
434          * and then wait for the core to be halted.
435          */
436         retval = mem_ap_write_atomic_u32(swjdp,
437                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
438
439         /*
440          * enter halting debug mode
441          */
442         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
443         retval = mem_ap_write_atomic_u32(swjdp,
444                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
445
446         if (retval != ERROR_OK)
447                 goto out;
448
449         do {
450                 mem_ap_read_atomic_u32(swjdp,
451                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
452         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
453
454         target->debug_reason = DBG_REASON_DBGRQ;
455
456 out:
457         dap_ap_select(swjdp, saved_apsel);
458         return retval;
459 }
460
461 static int cortex_a8_resume(struct target *target, int current,
462                 uint32_t address, int handle_breakpoints, int debug_execution)
463 {
464         struct armv7a_common *armv7a = target_to_armv7a(target);
465         struct arm *armv4_5 = &armv7a->armv4_5_common;
466         struct swjdp_common *swjdp = &armv7a->swjdp_info;
467
468 //      struct breakpoint *breakpoint = NULL;
469         uint32_t resume_pc, dscr;
470
471         uint8_t saved_apsel = dap_ap_get_select(swjdp);
472         dap_ap_select(swjdp, swjdp_debugap);
473
474         if (!debug_execution)
475         {
476                 target_free_all_working_areas(target);
477 //              cortex_m3_enable_breakpoints(target);
478 //              cortex_m3_enable_watchpoints(target);
479         }
480
481 #if 0
482         if (debug_execution)
483         {
484                 /* Disable interrupts */
485                 /* We disable interrupts in the PRIMASK register instead of
486                  * masking with C_MASKINTS,
487                  * This is probably the same issue as Cortex-M3 Errata 377493:
488                  * C_MASKINTS in parallel with disabled interrupts can cause
489                  * local faults to not be taken. */
490                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
491                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
492                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
493
494                 /* Make sure we are in Thumb mode */
495                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
496                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
497                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
498                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
499         }
500 #endif
501
502         /* current = 1: continue on current pc, otherwise continue at <address> */
503         resume_pc = buf_get_u32(
504                         armv4_5->core_cache->reg_list[15].value,
505                         0, 32);
506         if (!current)
507                 resume_pc = address;
508
509         /* Make sure that the Armv7 gdb thumb fixups does not
510          * kill the return address
511          */
512         switch (armv4_5->core_state)
513         {
514         case ARMV4_5_STATE_ARM:
515                 resume_pc &= 0xFFFFFFFC;
516                 break;
517         case ARMV4_5_STATE_THUMB:
518         case ARM_STATE_THUMB_EE:
519                 /* When the return address is loaded into PC
520                  * bit 0 must be 1 to stay in Thumb state
521                  */
522                 resume_pc |= 0x1;
523                 break;
524         case ARMV4_5_STATE_JAZELLE:
525                 LOG_ERROR("How do I resume into Jazelle state??");
526                 return ERROR_FAIL;
527         }
528         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
529         buf_set_u32(armv4_5->core_cache->reg_list[15].value,
530                         0, 32, resume_pc);
531         armv4_5->core_cache->reg_list[15].dirty = 1;
532         armv4_5->core_cache->reg_list[15].valid = 1;
533
534         cortex_a8_restore_context(target);
535
536 #if 0
537         /* the front-end may request us not to handle breakpoints */
538         if (handle_breakpoints)
539         {
540                 /* Single step past breakpoint at current address */
541                 if ((breakpoint = breakpoint_find(target, resume_pc)))
542                 {
543                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
544                         cortex_m3_unset_breakpoint(target, breakpoint);
545                         cortex_m3_single_step_core(target);
546                         cortex_m3_set_breakpoint(target, breakpoint);
547                 }
548         }
549
550 #endif
551         /* Restart core and wait for it to be started */
552         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
553
554         do {
555                 mem_ap_read_atomic_u32(swjdp,
556                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
557         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
558
559         target->debug_reason = DBG_REASON_NOTHALTED;
560         target->state = TARGET_RUNNING;
561
562         /* registers are now invalid */
563         register_cache_invalidate(armv4_5->core_cache);
564
565         if (!debug_execution)
566         {
567                 target->state = TARGET_RUNNING;
568                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
569                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
570         }
571         else
572         {
573                 target->state = TARGET_DEBUG_RUNNING;
574                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
575                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
576         }
577
578         dap_ap_select(swjdp, saved_apsel);
579
580         return ERROR_OK;
581 }
582
583 static int cortex_a8_debug_entry(struct target *target)
584 {
585         int i;
586         uint32_t regfile[16], pc, cpsr, dscr;
587         int retval = ERROR_OK;
588         struct working_area *regfile_working_area = NULL;
589         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
590         struct armv7a_common *armv7a = target_to_armv7a(target);
591         struct arm *armv4_5 = &armv7a->armv4_5_common;
592         struct swjdp_common *swjdp = &armv7a->swjdp_info;
593         struct reg *reg;
594
595         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
596
597         /* Enable the ITR execution once we are in debug mode */
598         mem_ap_read_atomic_u32(swjdp,
599                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
600
601         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
602          * imprecise data aborts get discarded by issuing a Data
603          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
604          */
605
606         dscr |= (1 << DSCR_EXT_INT_EN);
607         retval = mem_ap_write_atomic_u32(swjdp,
608                         armv7a->debug_base + CPUDBG_DSCR, dscr);
609
610         /* Examine debug reason */
611         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
612         {
613                 case 0:         /* DRCR[0] write */
614                 case 4:         /* EDBGRQ */
615                         target->debug_reason = DBG_REASON_DBGRQ;
616                         break;
617                 case 1:         /* HW breakpoint */
618                 case 3:         /* SW BKPT */
619                 case 5:         /* vector catch */
620                         target->debug_reason = DBG_REASON_BREAKPOINT;
621                         break;
622                 case 10:        /* precise watchpoint */
623                         target->debug_reason = DBG_REASON_WATCHPOINT;
624                         /* REVISIT could collect WFAR later, to see just
625                          * which instruction triggered the watchpoint.
626                          */
627                         break;
628                 default:
629                         target->debug_reason = DBG_REASON_UNDEFINED;
630                         break;
631         }
632
633         /* REVISIT fast_reg_read is never set ... */
634
635         /* Examine target state and mode */
636         if (cortex_a8->fast_reg_read)
637                 target_alloc_working_area(target, 64, &regfile_working_area);
638
639         /* First load register acessible through core debug port*/
640         if (!regfile_working_area)
641         {
642                 /* FIXME we don't actually need all these registers;
643                  * reading them slows us down.  Just R0, PC, CPSR...
644                  */
645                 for (i = 0; i <= 15; i++)
646                         cortex_a8_dap_read_coreregister_u32(target,
647                                         &regfile[i], i);
648         }
649         else
650         {
651                 dap_ap_select(swjdp, swjdp_memoryap);
652                 cortex_a8_read_regs_through_mem(target,
653                                 regfile_working_area->address, regfile);
654                 dap_ap_select(swjdp, swjdp_memoryap);
655                 target_free_working_area(target, regfile_working_area);
656         }
657
658         /* read Current PSR */
659         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
660         pc = regfile[15];
661         dap_ap_select(swjdp, swjdp_debugap);
662         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
663
664         arm_set_cpsr(armv4_5, cpsr);
665
666         /* update cache */
667         for (i = 0; i <= ARM_PC; i++)
668         {
669                 reg = arm_reg_current(armv4_5, i);
670
671                 buf_set_u32(reg->value, 0, 32, regfile[i]);
672                 reg->valid = 1;
673                 reg->dirty = 0;
674         }
675
676         /* Fixup PC Resume Address */
677         if (cpsr & (1 << 5))
678         {
679                 // T bit set for Thumb or ThumbEE state
680                 regfile[ARM_PC] -= 4;
681         }
682         else
683         {
684                 // ARM state
685                 regfile[ARM_PC] -= 8;
686         }
687
688         reg = armv4_5->core_cache->reg_list + 15;
689         buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
690         reg->dirty = reg->valid;
691         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
692                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
693                                 armv4_5->core_mode, 15).valid;
694
695 #if 0
696 /* TODO, Move this */
697         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
698         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
699         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
700
701         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
702         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
703
704         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
705         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
706 #endif
707
708         /* Are we in an exception handler */
709 //      armv4_5->exception_number = 0;
710         if (armv7a->post_debug_entry)
711                 armv7a->post_debug_entry(target);
712
713
714
715         return retval;
716
717 }
718
719 static void cortex_a8_post_debug_entry(struct target *target)
720 {
721         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
722         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
723
724 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
725         /* examine cp15 control reg */
726         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
727         jtag_execute_queue();
728         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
729
730         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
731         {
732                 uint32_t cache_type_reg;
733                 /* identify caches */
734                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
735                 jtag_execute_queue();
736                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
737                 armv4_5_identify_cache(cache_type_reg,
738                                 &armv7a->armv4_5_mmu.armv4_5_cache);
739         }
740
741         armv7a->armv4_5_mmu.mmu_enabled =
742                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
743         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
744                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
745         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
746                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
747
748
749 }
750
751 static int cortex_a8_step(struct target *target, int current, uint32_t address,
752                 int handle_breakpoints)
753 {
754         struct armv7a_common *armv7a = target_to_armv7a(target);
755         struct arm *armv4_5 = &armv7a->armv4_5_common;
756         struct breakpoint *breakpoint = NULL;
757         struct breakpoint stepbreakpoint;
758         struct reg *r;
759
760         int timeout = 100;
761
762         if (target->state != TARGET_HALTED)
763         {
764                 LOG_WARNING("target not halted");
765                 return ERROR_TARGET_NOT_HALTED;
766         }
767
768         /* current = 1: continue on current pc, otherwise continue at <address> */
769         r = armv4_5->core_cache->reg_list + 15;
770         if (!current)
771         {
772                 buf_set_u32(r->value, 0, 32, address);
773         }
774         else
775         {
776                 address = buf_get_u32(r->value, 0, 32);
777         }
778
779         /* The front-end may request us not to handle breakpoints.
780          * But since Cortex-A8 uses breakpoint for single step,
781          * we MUST handle breakpoints.
782          */
783         handle_breakpoints = 1;
784         if (handle_breakpoints) {
785                 breakpoint = breakpoint_find(target, address);
786                 if (breakpoint)
787                         cortex_a8_unset_breakpoint(target, breakpoint);
788         }
789
790         /* Setup single step breakpoint */
791         stepbreakpoint.address = address;
792         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
793                         ? 2 : 4;
794         stepbreakpoint.type = BKPT_HARD;
795         stepbreakpoint.set = 0;
796
797         /* Break on IVA mismatch */
798         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
799
800         target->debug_reason = DBG_REASON_SINGLESTEP;
801
802         cortex_a8_resume(target, 1, address, 0, 0);
803
804         while (target->state != TARGET_HALTED)
805         {
806                 cortex_a8_poll(target);
807                 if (--timeout == 0)
808                 {
809                         LOG_WARNING("timeout waiting for target halt");
810                         break;
811                 }
812         }
813
814         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
815         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
816
817         if (breakpoint)
818                 cortex_a8_set_breakpoint(target, breakpoint, 0);
819
820         if (target->state != TARGET_HALTED)
821                 LOG_DEBUG("target stepped");
822
823         return ERROR_OK;
824 }
825
826 static int cortex_a8_restore_context(struct target *target)
827 {
828         uint32_t value;
829         struct armv7a_common *armv7a = target_to_armv7a(target);
830         struct reg_cache *cache = armv7a->armv4_5_common.core_cache;
831         unsigned max = cache->num_regs;
832         struct reg *r;
833         bool flushed, flush_cpsr = false;
834
835         LOG_DEBUG(" ");
836
837         if (armv7a->pre_restore_context)
838                 armv7a->pre_restore_context(target);
839
840         /* Flush all dirty registers from the cache, one mode at a time so
841          * that we write CPSR as little as possible.  Save CPSR and R0 for
842          * last; they're used to change modes and write other registers.
843          *
844          * REVISIT be smarter:  save eventual mode for last loop, don't
845          * need to write CPSR an extra time.
846          */
847         do {
848                 enum armv4_5_mode mode = ARMV4_5_MODE_ANY;
849                 unsigned i;
850
851                 flushed = false;
852
853                 /* write dirty non-{R0,CPSR} registers sharing the same mode */
854                 for (i = max - 1, r = cache->reg_list + 1; i > 0; i--, r++) {
855                         struct arm_reg *reg;
856
857                         if (!r->dirty || r == armv7a->armv4_5_common.cpsr)
858                                 continue;
859                         reg = r->arch_info;
860
861                         /* TODO Check return values */
862
863                         /* Pick a mode and update CPSR; else ignore this
864                          * register if it's for a different mode than what
865                          * we're handling on this pass.
866                          *
867                          * REVISIT don't distinguish SYS and USR modes.
868                          *
869                          * FIXME if we restore from FIQ mode, R8..R12 will
870                          * get wrongly flushed onto FIQ shadows...
871                          */
872                         if (mode == ARMV4_5_MODE_ANY) {
873                                 mode = reg->mode;
874                                 if (mode != ARMV4_5_MODE_ANY) {
875                                         cortex_a8_dap_write_coreregister_u32(
876                                                         target, mode, 16);
877                                         flush_cpsr = true;
878                                 }
879                         } else if (mode != reg->mode)
880                                 continue;
881
882                         /* Write this register */
883                         value = buf_get_u32(r->value, 0, 32);
884                         cortex_a8_dap_write_coreregister_u32(target, value,
885                                         (reg->num == 16) ? 17 : reg->num);
886                         r->dirty = false;
887                         flushed = true;
888                 }
889
890         } while (flushed);
891
892         /* now flush CPSR if needed ... */
893         r = armv7a->armv4_5_common.cpsr;
894         if (flush_cpsr || r->dirty) {
895                 value = buf_get_u32(r->value, 0, 32);
896                 cortex_a8_dap_write_coreregister_u32(target, value, 16);
897                 r->dirty = false;
898         }
899
900         /* ... and R0 always (it was dirtied when we saved context) */
901         r = cache->reg_list + 0;
902         value = buf_get_u32(r->value, 0, 32);
903         cortex_a8_dap_write_coreregister_u32(target, value, 0);
904         r->dirty = false;
905
906         if (armv7a->post_restore_context)
907                 armv7a->post_restore_context(target);
908
909         return ERROR_OK;
910 }
911
912
913 #if 0
914 /*
915  * Cortex-A8 Core register functions
916  */
917 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
918                 armv4_5_mode_t mode, uint32_t * value)
919 {
920         int retval;
921         struct arm *armv4_5 = target_to_armv4_5(target);
922
923         if ((num <= ARM_CPSR))
924         {
925                 /* read a normal core register */
926                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
927
928                 if (retval != ERROR_OK)
929                 {
930                         LOG_ERROR("JTAG failure %i", retval);
931                         return ERROR_JTAG_DEVICE_ERROR;
932                 }
933                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
934         }
935         else
936         {
937                 return ERROR_INVALID_ARGUMENTS;
938         }
939
940         /* Register other than r0 - r14 uses r0 for access */
941         if (num > 14)
942                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
943                                 armv4_5->core_mode, 0).dirty =
944                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
945                                 armv4_5->core_mode, 0).valid;
946         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
947                                 armv4_5->core_mode, 15).dirty =
948                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
949                                 armv4_5->core_mode, 15).valid;
950
951         return ERROR_OK;
952 }
953
954 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
955                 armv4_5_mode_t mode, uint32_t value)
956 {
957         int retval;
958 //      uint32_t reg;
959         struct arm *armv4_5 = target_to_armv4_5(target);
960
961 #ifdef ARMV7_GDB_HACKS
962         /* If the LR register is being modified, make sure it will put us
963          * in "thumb" mode, or an INVSTATE exception will occur. This is a
964          * hack to deal with the fact that gdb will sometimes "forge"
965          * return addresses, and doesn't set the LSB correctly (i.e., when
966          * printing expressions containing function calls, it sets LR=0.) */
967
968         if (num == 14)
969                 value |= 0x01;
970 #endif
971
972         if ((num <= ARM_CPSR))
973         {
974                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
975                 if (retval != ERROR_OK)
976                 {
977                         LOG_ERROR("JTAG failure %i", retval);
978                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
979                                         armv4_5->core_mode, num).dirty =
980                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
981                                         armv4_5->core_mode, num).valid;
982                         return ERROR_JTAG_DEVICE_ERROR;
983                 }
984                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
985         }
986         else
987         {
988                 return ERROR_INVALID_ARGUMENTS;
989         }
990
991         return ERROR_OK;
992 }
993 #endif
994
995
996 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
997                 int num, enum armv4_5_mode mode, uint32_t value);
998
999 static int cortex_a8_read_core_reg(struct target *target, struct reg *r,
1000                 int num, enum armv4_5_mode mode)
1001 {
1002         uint32_t value;
1003         int retval;
1004         struct arm *armv4_5 = target_to_armv4_5(target);
1005         struct reg *cpsr_r = NULL;
1006         uint32_t cpsr = 0;
1007         unsigned cookie = num;
1008
1009         /* avoid some needless mode changes
1010          * FIXME move some of these to shared ARM code...
1011          */
1012         if (mode != armv4_5->core_mode) {
1013                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1014                                 && (mode == ARMV4_5_MODE_USR))
1015                         mode = ARMV4_5_MODE_ANY;
1016                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1017                         mode = ARMV4_5_MODE_ANY;
1018
1019                 if (mode != ARMV4_5_MODE_ANY) {
1020                         cpsr_r = armv4_5->cpsr;
1021                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1022                         cortex_a8_write_core_reg(target, cpsr_r,
1023                                         16, ARMV4_5_MODE_ANY, mode);
1024                 }
1025         }
1026
1027         if (num == 16) {
1028                 switch (mode) {
1029                 case ARMV4_5_MODE_USR:
1030                 case ARMV4_5_MODE_SYS:
1031                 case ARMV4_5_MODE_ANY:
1032                         /* CPSR */
1033                         break;
1034                 default:
1035                         /* SPSR */
1036                         cookie++;
1037                         break;
1038                 }
1039         }
1040
1041         cortex_a8_dap_read_coreregister_u32(target, &value, cookie);
1042         retval = jtag_execute_queue();
1043         if (retval == ERROR_OK) {
1044                 r->valid = 1;
1045                 r->dirty = 0;
1046                 buf_set_u32(r->value, 0, 32, value);
1047         }
1048
1049         if (cpsr_r)
1050                 cortex_a8_write_core_reg(target, cpsr_r,
1051                                 16, ARMV4_5_MODE_ANY, cpsr);
1052         return retval;
1053 }
1054
1055 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
1056                 int num, enum armv4_5_mode mode, uint32_t value)
1057 {
1058         int retval;
1059         struct arm *armv4_5 = target_to_armv4_5(target);
1060         struct reg *cpsr_r = NULL;
1061         uint32_t cpsr = 0;
1062         unsigned cookie = num;
1063
1064         /* avoid some needless mode changes
1065          * FIXME move some of these to shared ARM code...
1066          */
1067         if (mode != armv4_5->core_mode) {
1068                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1069                                 && (mode == ARMV4_5_MODE_USR))
1070                         mode = ARMV4_5_MODE_ANY;
1071                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1072                         mode = ARMV4_5_MODE_ANY;
1073
1074                 if (mode != ARMV4_5_MODE_ANY) {
1075                         cpsr_r = armv4_5->cpsr;
1076                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1077                         cortex_a8_write_core_reg(target, cpsr_r,
1078                                         16, ARMV4_5_MODE_ANY, mode);
1079                 }
1080         }
1081
1082
1083         if (num == 16) {
1084                 switch (mode) {
1085                 case ARMV4_5_MODE_USR:
1086                 case ARMV4_5_MODE_SYS:
1087                 case ARMV4_5_MODE_ANY:
1088                         /* CPSR */
1089                         break;
1090                 default:
1091                         /* SPSR */
1092                         cookie++;
1093                         break;
1094                 }
1095         }
1096
1097         cortex_a8_dap_write_coreregister_u32(target, value, cookie);
1098         if ((retval = jtag_execute_queue()) == ERROR_OK) {
1099                 buf_set_u32(r->value, 0, 32, value);
1100                 r->valid = 1;
1101                 r->dirty = 0;
1102         }
1103
1104         if (cpsr_r)
1105                 cortex_a8_write_core_reg(target, cpsr_r,
1106                                 16, ARMV4_5_MODE_ANY, cpsr);
1107         return retval;
1108 }
1109
1110
1111 /*
1112  * Cortex-A8 Breakpoint and watchpoint fuctions
1113  */
1114
1115 /* Setup hardware Breakpoint Register Pair */
1116 static int cortex_a8_set_breakpoint(struct target *target,
1117                 struct breakpoint *breakpoint, uint8_t matchmode)
1118 {
1119         int retval;
1120         int brp_i=0;
1121         uint32_t control;
1122         uint8_t byte_addr_select = 0x0F;
1123         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1124         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1125         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1126
1127         if (breakpoint->set)
1128         {
1129                 LOG_WARNING("breakpoint already set");
1130                 return ERROR_OK;
1131         }
1132
1133         if (breakpoint->type == BKPT_HARD)
1134         {
1135                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1136                         brp_i++ ;
1137                 if (brp_i >= cortex_a8->brp_num)
1138                 {
1139                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1140                         return ERROR_FAIL;
1141                 }
1142                 breakpoint->set = brp_i + 1;
1143                 if (breakpoint->length == 2)
1144                 {
1145                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1146                 }
1147                 control = ((matchmode & 0x7) << 20)
1148                                 | (byte_addr_select << 5)
1149                                 | (3 << 1) | 1;
1150                 brp_list[brp_i].used = 1;
1151                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1152                 brp_list[brp_i].control = control;
1153                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1154                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1155                                 brp_list[brp_i].value);
1156                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1157                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1158                                 brp_list[brp_i].control);
1159                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1160                                 brp_list[brp_i].control,
1161                                 brp_list[brp_i].value);
1162         }
1163         else if (breakpoint->type == BKPT_SOFT)
1164         {
1165                 uint8_t code[4];
1166                 if (breakpoint->length == 2)
1167                 {
1168                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1169                 }
1170                 else
1171                 {
1172                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1173                 }
1174                 retval = target->type->read_memory(target,
1175                                 breakpoint->address & 0xFFFFFFFE,
1176                                 breakpoint->length, 1,
1177                                 breakpoint->orig_instr);
1178                 if (retval != ERROR_OK)
1179                         return retval;
1180                 retval = target->type->write_memory(target,
1181                                 breakpoint->address & 0xFFFFFFFE,
1182                                 breakpoint->length, 1, code);
1183                 if (retval != ERROR_OK)
1184                         return retval;
1185                 breakpoint->set = 0x11; /* Any nice value but 0 */
1186         }
1187
1188         return ERROR_OK;
1189 }
1190
1191 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1192 {
1193         int retval;
1194         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1195         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1196         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1197
1198         if (!breakpoint->set)
1199         {
1200                 LOG_WARNING("breakpoint not set");
1201                 return ERROR_OK;
1202         }
1203
1204         if (breakpoint->type == BKPT_HARD)
1205         {
1206                 int brp_i = breakpoint->set - 1;
1207                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1208                 {
1209                         LOG_DEBUG("Invalid BRP number in breakpoint");
1210                         return ERROR_OK;
1211                 }
1212                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1213                                 brp_list[brp_i].control, brp_list[brp_i].value);
1214                 brp_list[brp_i].used = 0;
1215                 brp_list[brp_i].value = 0;
1216                 brp_list[brp_i].control = 0;
1217                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1218                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1219                                 brp_list[brp_i].control);
1220                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1221                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1222                                 brp_list[brp_i].value);
1223         }
1224         else
1225         {
1226                 /* restore original instruction (kept in target endianness) */
1227                 if (breakpoint->length == 4)
1228                 {
1229                         retval = target->type->write_memory(target,
1230                                         breakpoint->address & 0xFFFFFFFE,
1231                                         4, 1, breakpoint->orig_instr);
1232                         if (retval != ERROR_OK)
1233                                 return retval;
1234                 }
1235                 else
1236                 {
1237                         retval = target->type->write_memory(target,
1238                                         breakpoint->address & 0xFFFFFFFE,
1239                                         2, 1, breakpoint->orig_instr);
1240                         if (retval != ERROR_OK)
1241                                 return retval;
1242                 }
1243         }
1244         breakpoint->set = 0;
1245
1246         return ERROR_OK;
1247 }
1248
1249 static int cortex_a8_add_breakpoint(struct target *target,
1250                 struct breakpoint *breakpoint)
1251 {
1252         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1253
1254         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1255         {
1256                 LOG_INFO("no hardware breakpoint available");
1257                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1258         }
1259
1260         if (breakpoint->type == BKPT_HARD)
1261                 cortex_a8->brp_num_available--;
1262         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1263
1264         return ERROR_OK;
1265 }
1266
1267 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1268 {
1269         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1270
1271 #if 0
1272 /* It is perfectly possible to remove brakpoints while the taget is running */
1273         if (target->state != TARGET_HALTED)
1274         {
1275                 LOG_WARNING("target not halted");
1276                 return ERROR_TARGET_NOT_HALTED;
1277         }
1278 #endif
1279
1280         if (breakpoint->set)
1281         {
1282                 cortex_a8_unset_breakpoint(target, breakpoint);
1283                 if (breakpoint->type == BKPT_HARD)
1284                         cortex_a8->brp_num_available++ ;
1285         }
1286
1287
1288         return ERROR_OK;
1289 }
1290
1291
1292
1293 /*
1294  * Cortex-A8 Reset fuctions
1295  */
1296
1297 static int cortex_a8_assert_reset(struct target *target)
1298 {
1299         struct armv7a_common *armv7a = target_to_armv7a(target);
1300
1301         LOG_DEBUG(" ");
1302
1303         /* registers are now invalid */
1304         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1305
1306         target->state = TARGET_RESET;
1307
1308         return ERROR_OK;
1309 }
1310
1311 static int cortex_a8_deassert_reset(struct target *target)
1312 {
1313
1314         LOG_DEBUG(" ");
1315
1316         if (target->reset_halt)
1317         {
1318                 int retval;
1319                 if ((retval = target_halt(target)) != ERROR_OK)
1320                         return retval;
1321         }
1322
1323         return ERROR_OK;
1324 }
1325
1326 /*
1327  * Cortex-A8 Memory access
1328  *
1329  * This is same Cortex M3 but we must also use the correct
1330  * ap number for every access.
1331  */
1332
1333 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1334                 uint32_t size, uint32_t count, uint8_t *buffer)
1335 {
1336         struct armv7a_common *armv7a = target_to_armv7a(target);
1337         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1338         int retval = ERROR_INVALID_ARGUMENTS;
1339
1340         /* cortex_a8 handles unaligned memory access */
1341
1342 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1343
1344         if (count && buffer) {
1345                 switch (size) {
1346                 case 4:
1347                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1348                         break;
1349                 case 2:
1350                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1351                         break;
1352                 case 1:
1353                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1354                         break;
1355                 }
1356         }
1357
1358         return retval;
1359 }
1360
1361 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1362                 uint32_t size, uint32_t count, uint8_t *buffer)
1363 {
1364         struct armv7a_common *armv7a = target_to_armv7a(target);
1365         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1366         int retval = ERROR_INVALID_ARGUMENTS;
1367
1368 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1369
1370         if (count && buffer) {
1371                 switch (size) {
1372                 case 4:
1373                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1374                         break;
1375                 case 2:
1376                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1377                         break;
1378                 case 1:
1379                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1380                         break;
1381                 }
1382         }
1383
1384         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1385         {
1386                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1387                 /* invalidate I-Cache */
1388                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1389                 {
1390                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1391                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1392                         /* Invalidate Cache single entry with MVA to PoU */
1393                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1394                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1395                 }
1396                 /* invalidate D-Cache */
1397                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1398                 {
1399                         /* Invalidate Cache single entry with MVA to PoC */
1400                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1401                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1402                 }
1403         }
1404
1405         return retval;
1406 }
1407
1408 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1409                 uint32_t count, uint8_t *buffer)
1410 {
1411         return cortex_a8_write_memory(target, address, 4, count, buffer);
1412 }
1413
1414
1415 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1416 {
1417 #if 0
1418         u16 dcrdr;
1419
1420         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1421         *ctrl = (uint8_t)dcrdr;
1422         *value = (uint8_t)(dcrdr >> 8);
1423
1424         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1425
1426         /* write ack back to software dcc register
1427          * signify we have read data */
1428         if (dcrdr & (1 << 0))
1429         {
1430                 dcrdr = 0;
1431                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1432         }
1433 #endif
1434         return ERROR_OK;
1435 }
1436
1437
1438 static int cortex_a8_handle_target_request(void *priv)
1439 {
1440         struct target *target = priv;
1441         struct armv7a_common *armv7a = target_to_armv7a(target);
1442         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1443
1444         if (!target_was_examined(target))
1445                 return ERROR_OK;
1446         if (!target->dbg_msg_enabled)
1447                 return ERROR_OK;
1448
1449         if (target->state == TARGET_RUNNING)
1450         {
1451                 uint8_t data = 0;
1452                 uint8_t ctrl = 0;
1453
1454                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1455
1456                 /* check if we have data */
1457                 if (ctrl & (1 << 0))
1458                 {
1459                         uint32_t request;
1460
1461                         /* we assume target is quick enough */
1462                         request = data;
1463                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1464                         request |= (data << 8);
1465                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1466                         request |= (data << 16);
1467                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1468                         request |= (data << 24);
1469                         target_request(target, request);
1470                 }
1471         }
1472
1473         return ERROR_OK;
1474 }
1475
1476 /*
1477  * Cortex-A8 target information and configuration
1478  */
1479
1480 static int cortex_a8_examine_first(struct target *target)
1481 {
1482         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1483         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1484         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1485         int i;
1486         int retval = ERROR_OK;
1487         uint32_t didr, ctypr, ttypr, cpuid;
1488
1489         LOG_DEBUG("TODO");
1490
1491         /* Here we shall insert a proper ROM Table scan */
1492         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1493
1494         /* We do one extra read to ensure DAP is configured,
1495          * we call ahbap_debugport_init(swjdp) instead
1496          */
1497         ahbap_debugport_init(swjdp);
1498         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1499         if ((retval = mem_ap_read_atomic_u32(swjdp,
1500                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1501         {
1502                 LOG_DEBUG("Examine failed");
1503                 return retval;
1504         }
1505
1506         if ((retval = mem_ap_read_atomic_u32(swjdp,
1507                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1508         {
1509                 LOG_DEBUG("Examine failed");
1510                 return retval;
1511         }
1512
1513         if ((retval = mem_ap_read_atomic_u32(swjdp,
1514                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1515         {
1516                 LOG_DEBUG("Examine failed");
1517                 return retval;
1518         }
1519
1520         if ((retval = mem_ap_read_atomic_u32(swjdp,
1521                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1522         {
1523                 LOG_DEBUG("Examine failed");
1524                 return retval;
1525         }
1526
1527         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1528         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1529         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1530         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1531
1532         /* Setup Breakpoint Register Pairs */
1533         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1534         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1535         cortex_a8->brp_num_available = cortex_a8->brp_num;
1536         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1537 //      cortex_a8->brb_enabled = ????;
1538         for (i = 0; i < cortex_a8->brp_num; i++)
1539         {
1540                 cortex_a8->brp_list[i].used = 0;
1541                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1542                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1543                 else
1544                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1545                 cortex_a8->brp_list[i].value = 0;
1546                 cortex_a8->brp_list[i].control = 0;
1547                 cortex_a8->brp_list[i].BRPn = i;
1548         }
1549
1550         /* Setup Watchpoint Register Pairs */
1551         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1552         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1553         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1554         for (i = 0; i < cortex_a8->wrp_num; i++)
1555         {
1556                 cortex_a8->wrp_list[i].used = 0;
1557                 cortex_a8->wrp_list[i].type = 0;
1558                 cortex_a8->wrp_list[i].value = 0;
1559                 cortex_a8->wrp_list[i].control = 0;
1560                 cortex_a8->wrp_list[i].WRPn = i;
1561         }
1562         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1563                         cortex_a8->brp_num , cortex_a8->wrp_num);
1564
1565         target_set_examined(target);
1566         return ERROR_OK;
1567 }
1568
1569 static int cortex_a8_examine(struct target *target)
1570 {
1571         int retval = ERROR_OK;
1572
1573         /* don't re-probe hardware after each reset */
1574         if (!target_was_examined(target))
1575                 retval = cortex_a8_examine_first(target);
1576
1577         /* Configure core debug access */
1578         if (retval == ERROR_OK)
1579                 retval = cortex_a8_init_debug_access(target);
1580
1581         return retval;
1582 }
1583
1584 /*
1585  *      Cortex-A8 target creation and initialization
1586  */
1587
1588 static void cortex_a8_build_reg_cache(struct target *target)
1589 {
1590         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1591         struct arm *armv4_5 = target_to_armv4_5(target);
1592
1593         armv4_5->core_type = ARM_MODE_MON;
1594
1595         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1596 }
1597
1598
1599 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1600                 struct target *target)
1601 {
1602         cortex_a8_build_reg_cache(target);
1603         return ERROR_OK;
1604 }
1605
1606 static int cortex_a8_init_arch_info(struct target *target,
1607                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1608 {
1609         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1610         struct arm *armv4_5 = &armv7a->armv4_5_common;
1611         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1612
1613         /* Setup struct cortex_a8_common */
1614         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1615         armv4_5->arch_info = armv7a;
1616
1617         /* prepare JTAG information for the new target */
1618         cortex_a8->jtag_info.tap = tap;
1619         cortex_a8->jtag_info.scann_size = 4;
1620
1621         swjdp->dp_select_value = -1;
1622         swjdp->ap_csw_value = -1;
1623         swjdp->ap_tar_value = -1;
1624         swjdp->jtag_info = &cortex_a8->jtag_info;
1625         swjdp->memaccess_tck = 80;
1626
1627         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1628         swjdp->tar_autoincr_block = (1 << 10);
1629
1630         cortex_a8->fast_reg_read = 0;
1631
1632
1633         /* register arch-specific functions */
1634         armv7a->examine_debug_reason = NULL;
1635
1636         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1637
1638         armv7a->pre_restore_context = NULL;
1639         armv7a->post_restore_context = NULL;
1640         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1641 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1642         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1643         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1644 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1645 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1646         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1647         armv7a->armv4_5_mmu.mmu_enabled = 0;
1648         armv7a->read_cp15 = cortex_a8_read_cp15;
1649         armv7a->write_cp15 = cortex_a8_write_cp15;
1650
1651
1652 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1653
1654         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1655         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1656
1657         /* REVISIT v7a setup should be in a v7a-specific routine */
1658         armv4_5_init_arch_info(target, armv4_5);
1659         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1660
1661         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1662
1663         return ERROR_OK;
1664 }
1665
1666 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1667 {
1668         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1669
1670         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1671
1672         return ERROR_OK;
1673 }
1674
1675 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1676 {
1677         struct target *target = get_current_target(CMD_CTX);
1678         struct armv7a_common *armv7a = target_to_armv7a(target);
1679
1680         return armv4_5_handle_cache_info_command(CMD_CTX,
1681                         &armv7a->armv4_5_mmu.armv4_5_cache);
1682 }
1683
1684
1685 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1686 {
1687         struct target *target = get_current_target(CMD_CTX);
1688
1689         cortex_a8_init_debug_access(target);
1690
1691         return ERROR_OK;
1692 }
1693
1694
1695 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1696 {
1697         struct command *cortex_a8_cmd;
1698         int retval = ERROR_OK;
1699
1700         armv4_5_register_commands(cmd_ctx);
1701         armv7a_register_commands(cmd_ctx);
1702
1703         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1704                         NULL, COMMAND_ANY,
1705                         "cortex_a8 specific commands");
1706
1707         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1708                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1709                         "display information about target caches");
1710
1711         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1712                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1713                         "Initialize core debug");
1714
1715         return retval;
1716 }
1717
1718 struct target_type cortexa8_target = {
1719         .name = "cortex_a8",
1720
1721         .poll = cortex_a8_poll,
1722         .arch_state = armv7a_arch_state,
1723
1724         .target_request_data = NULL,
1725
1726         .halt = cortex_a8_halt,
1727         .resume = cortex_a8_resume,
1728         .step = cortex_a8_step,
1729
1730         .assert_reset = cortex_a8_assert_reset,
1731         .deassert_reset = cortex_a8_deassert_reset,
1732         .soft_reset_halt = NULL,
1733
1734         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1735
1736         .read_memory = cortex_a8_read_memory,
1737         .write_memory = cortex_a8_write_memory,
1738         .bulk_write_memory = cortex_a8_bulk_write_memory,
1739
1740         .checksum_memory = arm_checksum_memory,
1741         .blank_check_memory = arm_blank_check_memory,
1742
1743         .run_algorithm = armv4_5_run_algorithm,
1744
1745         .add_breakpoint = cortex_a8_add_breakpoint,
1746         .remove_breakpoint = cortex_a8_remove_breakpoint,
1747         .add_watchpoint = NULL,
1748         .remove_watchpoint = NULL,
1749
1750         .register_commands = cortex_a8_register_commands,
1751         .target_create = cortex_a8_target_create,
1752         .init_target = cortex_a8_init_target,
1753         .examine = cortex_a8_examine,
1754         .mrc = cortex_a8_mrc,
1755         .mcr = cortex_a8_mcr,
1756 };