]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
fa26b6ab0d453ec5ca58ab72d992afaaadaaa6ca
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 17)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 /* "MOV r0, r15"; then move r0 to DCCTX */
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else
255         {
256                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
257                  * then move r0 to DCCTX
258                  */
259                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1));
260                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
261         }
262
263         /* Read DTRRTX */
264         do
265         {
266                 retval = mem_ap_read_atomic_u32(swjdp,
267                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
268         }
269         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
270
271         retval = mem_ap_read_atomic_u32(swjdp,
272                         armv7a->debug_base + CPUDBG_DTRTX, value);
273         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
274
275         return retval;
276 }
277
278 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
279                 uint32_t value, int regnum)
280 {
281         int retval = ERROR_OK;
282         uint8_t Rd = regnum&0xFF;
283         uint32_t dscr;
284         struct armv7a_common *armv7a = target_to_armv7a(target);
285         struct swjdp_common *swjdp = &armv7a->swjdp_info;
286
287         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
288
289         /* Check that DCCRX is not full */
290         retval = mem_ap_read_atomic_u32(swjdp,
291                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
292         if (dscr & (1 << DSCR_DTR_RX_FULL))
293         {
294                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
295                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
296                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
297         }
298
299         if (Rd > 17)
300                 return retval;
301
302         /* Write to DCCRX */
303         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
304         retval = mem_ap_write_u32(swjdp,
305                         armv7a->debug_base + CPUDBG_DTRRX, value);
306
307         if (Rd < 15)
308         {
309                 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
310                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
311         }
312         else if (Rd == 15)
313         {
314                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
315                  * then "mov r15, r0"
316                  */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
318                 cortex_a8_exec_opcode(target, 0xE1A0F000);
319         }
320         else
321         {
322                 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
323                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
324                  */
325                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
326                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1));
327
328                 /* "Prefetch flush" after modifying execution status in CPSR */
329                 if (Rd == 16)
330                         cortex_a8_exec_opcode(target,
331                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
332         }
333
334         return retval;
335 }
336
337 /* Write to memory mapped registers directly with no cache or mmu handling */
338 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
339 {
340         int retval;
341         struct armv7a_common *armv7a = target_to_armv7a(target);
342         struct swjdp_common *swjdp = &armv7a->swjdp_info;
343
344         retval = mem_ap_write_atomic_u32(swjdp, address, value);
345
346         return retval;
347 }
348
349 /*
350  * Cortex-A8 Run control
351  */
352
353 static int cortex_a8_poll(struct target *target)
354 {
355         int retval = ERROR_OK;
356         uint32_t dscr;
357         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
358         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
359         struct swjdp_common *swjdp = &armv7a->swjdp_info;
360         enum target_state prev_target_state = target->state;
361         uint8_t saved_apsel = dap_ap_get_select(swjdp);
362
363         dap_ap_select(swjdp, swjdp_debugap);
364         retval = mem_ap_read_atomic_u32(swjdp,
365                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
366         if (retval != ERROR_OK)
367         {
368                 dap_ap_select(swjdp, saved_apsel);
369                 return retval;
370         }
371         cortex_a8->cpudbg_dscr = dscr;
372
373         if ((dscr & 0x3) == 0x3)
374         {
375                 if (prev_target_state != TARGET_HALTED)
376                 {
377                         /* We have a halting debug event */
378                         LOG_DEBUG("Target halted");
379                         target->state = TARGET_HALTED;
380                         if ((prev_target_state == TARGET_RUNNING)
381                                         || (prev_target_state == TARGET_RESET))
382                         {
383                                 retval = cortex_a8_debug_entry(target);
384                                 if (retval != ERROR_OK)
385                                         return retval;
386
387                                 target_call_event_callbacks(target,
388                                                 TARGET_EVENT_HALTED);
389                         }
390                         if (prev_target_state == TARGET_DEBUG_RUNNING)
391                         {
392                                 LOG_DEBUG(" ");
393
394                                 retval = cortex_a8_debug_entry(target);
395                                 if (retval != ERROR_OK)
396                                         return retval;
397
398                                 target_call_event_callbacks(target,
399                                                 TARGET_EVENT_DEBUG_HALTED);
400                         }
401                 }
402         }
403         else if ((dscr & 0x3) == 0x2)
404         {
405                 target->state = TARGET_RUNNING;
406         }
407         else
408         {
409                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
410                 target->state = TARGET_UNKNOWN;
411         }
412
413         dap_ap_select(swjdp, saved_apsel);
414
415         return retval;
416 }
417
418 static int cortex_a8_halt(struct target *target)
419 {
420         int retval = ERROR_OK;
421         uint32_t dscr;
422         struct armv7a_common *armv7a = target_to_armv7a(target);
423         struct swjdp_common *swjdp = &armv7a->swjdp_info;
424         uint8_t saved_apsel = dap_ap_get_select(swjdp);
425         dap_ap_select(swjdp, swjdp_debugap);
426
427         /*
428          * Tell the core to be halted by writing DRCR with 0x1
429          * and then wait for the core to be halted.
430          */
431         retval = mem_ap_write_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
433
434         /*
435          * enter halting debug mode
436          */
437         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
438         retval = mem_ap_write_atomic_u32(swjdp,
439                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
440
441         if (retval != ERROR_OK)
442                 goto out;
443
444         do {
445                 mem_ap_read_atomic_u32(swjdp,
446                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
447         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
448
449         target->debug_reason = DBG_REASON_DBGRQ;
450
451 out:
452         dap_ap_select(swjdp, saved_apsel);
453         return retval;
454 }
455
456 static int cortex_a8_resume(struct target *target, int current,
457                 uint32_t address, int handle_breakpoints, int debug_execution)
458 {
459         struct armv7a_common *armv7a = target_to_armv7a(target);
460         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
461         struct swjdp_common *swjdp = &armv7a->swjdp_info;
462
463 //      struct breakpoint *breakpoint = NULL;
464         uint32_t resume_pc, dscr;
465
466         uint8_t saved_apsel = dap_ap_get_select(swjdp);
467         dap_ap_select(swjdp, swjdp_debugap);
468
469         if (!debug_execution)
470         {
471                 target_free_all_working_areas(target);
472 //              cortex_m3_enable_breakpoints(target);
473 //              cortex_m3_enable_watchpoints(target);
474         }
475
476 #if 0
477         if (debug_execution)
478         {
479                 /* Disable interrupts */
480                 /* We disable interrupts in the PRIMASK register instead of
481                  * masking with C_MASKINTS,
482                  * This is probably the same issue as Cortex-M3 Errata 377493:
483                  * C_MASKINTS in parallel with disabled interrupts can cause
484                  * local faults to not be taken. */
485                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
486                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
487                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
488
489                 /* Make sure we are in Thumb mode */
490                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
491                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
492                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
493                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
494         }
495 #endif
496
497         /* current = 1: continue on current pc, otherwise continue at <address> */
498         resume_pc = buf_get_u32(
499                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
500                                 armv4_5->core_mode, 15).value,
501                         0, 32);
502         if (!current)
503                 resume_pc = address;
504
505         /* Make sure that the Armv7 gdb thumb fixups does not
506          * kill the return address
507          */
508         switch (armv4_5->core_state)
509         {
510         case ARMV4_5_STATE_ARM:
511                 resume_pc &= 0xFFFFFFFC;
512                 break;
513         case ARMV4_5_STATE_THUMB:
514         case ARM_STATE_THUMB_EE:
515                 /* When the return address is loaded into PC
516                  * bit 0 must be 1 to stay in Thumb state
517                  */
518                 resume_pc |= 0x1;
519                 break;
520         case ARMV4_5_STATE_JAZELLE:
521                 LOG_ERROR("How do I resume into Jazelle state??");
522                 return ERROR_FAIL;
523         }
524         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
525         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
526                                 armv4_5->core_mode, 15).value,
527                         0, 32, resume_pc);
528         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
529                         armv4_5->core_mode, 15).dirty = 1;
530         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
531                         armv4_5->core_mode, 15).valid = 1;
532
533         cortex_a8_restore_context(target);
534
535 #if 0
536         /* the front-end may request us not to handle breakpoints */
537         if (handle_breakpoints)
538         {
539                 /* Single step past breakpoint at current address */
540                 if ((breakpoint = breakpoint_find(target, resume_pc)))
541                 {
542                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
543                         cortex_m3_unset_breakpoint(target, breakpoint);
544                         cortex_m3_single_step_core(target);
545                         cortex_m3_set_breakpoint(target, breakpoint);
546                 }
547         }
548
549 #endif
550         /* Restart core and wait for it to be started */
551         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
552
553         do {
554                 mem_ap_read_atomic_u32(swjdp,
555                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
556         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
557
558         target->debug_reason = DBG_REASON_NOTHALTED;
559         target->state = TARGET_RUNNING;
560
561         /* registers are now invalid */
562         register_cache_invalidate(armv4_5->core_cache);
563
564         if (!debug_execution)
565         {
566                 target->state = TARGET_RUNNING;
567                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
568                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
569         }
570         else
571         {
572                 target->state = TARGET_DEBUG_RUNNING;
573                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
574                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
575         }
576
577         dap_ap_select(swjdp, saved_apsel);
578
579         return ERROR_OK;
580 }
581
582 static int cortex_a8_debug_entry(struct target *target)
583 {
584         int i;
585         uint32_t regfile[16], pc, cpsr, dscr;
586         int retval = ERROR_OK;
587         struct working_area *regfile_working_area = NULL;
588         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
589         struct armv7a_common *armv7a = target_to_armv7a(target);
590         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
591         struct swjdp_common *swjdp = &armv7a->swjdp_info;
592         struct reg *reg;
593
594         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
595
596         /* Enable the ITR execution once we are in debug mode */
597         mem_ap_read_atomic_u32(swjdp,
598                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
599         dscr |= (1 << DSCR_EXT_INT_EN);
600         retval = mem_ap_write_atomic_u32(swjdp,
601                         armv7a->debug_base + CPUDBG_DSCR, dscr);
602
603         /* Examine debug reason */
604         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
605         {
606                 case 0:
607                 case 4:
608                         target->debug_reason = DBG_REASON_DBGRQ;
609                         break;
610                 case 1:
611                 case 3:
612                         target->debug_reason = DBG_REASON_BREAKPOINT;
613                         break;
614                 case 10:
615                         target->debug_reason = DBG_REASON_WATCHPOINT;
616                         break;
617                 default:
618                         target->debug_reason = DBG_REASON_UNDEFINED;
619                         break;
620         }
621
622         /* Examine target state and mode */
623         if (cortex_a8->fast_reg_read)
624                 target_alloc_working_area(target, 64, &regfile_working_area);
625
626         /* First load register acessible through core debug port*/
627         if (!regfile_working_area)
628         {
629                 /* FIXME we don't actually need all these registers;
630                  * reading them slows us down.  Just R0, PC, CPSR...
631                  */
632                 for (i = 0; i <= 15; i++)
633                         cortex_a8_dap_read_coreregister_u32(target,
634                                         &regfile[i], i);
635         }
636         else
637         {
638                 dap_ap_select(swjdp, swjdp_memoryap);
639                 cortex_a8_read_regs_through_mem(target,
640                                 regfile_working_area->address, regfile);
641                 dap_ap_select(swjdp, swjdp_memoryap);
642                 target_free_working_area(target, regfile_working_area);
643         }
644
645         /* read Current PSR */
646         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
647         pc = regfile[15];
648         dap_ap_select(swjdp, swjdp_debugap);
649         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
650
651         arm_set_cpsr(armv4_5, cpsr);
652
653         /* update cache */
654         for (i = 0; i <= ARM_PC; i++)
655         {
656                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
657                                         armv4_5->core_mode, i);
658
659                 buf_set_u32(reg->value, 0, 32, regfile[i]);
660                 reg->valid = 1;
661                 reg->dirty = 0;
662         }
663
664         /* Fixup PC Resume Address */
665         if (cpsr & (1 << 5))
666         {
667                 // T bit set for Thumb or ThumbEE state
668                 regfile[ARM_PC] -= 4;
669         }
670         else
671         {
672                 // ARM state
673                 regfile[ARM_PC] -= 8;
674         }
675         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
676                                 armv4_5->core_mode, ARM_PC).value,
677                         0, 32, regfile[ARM_PC]);
678
679         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
680                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
681                                 armv4_5->core_mode, 0).valid;
682         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
683                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
684                                 armv4_5->core_mode, 15).valid;
685
686 #if 0
687 /* TODO, Move this */
688         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
689         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
690         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
691
692         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
693         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
694
695         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
696         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
697 #endif
698
699         /* Are we in an exception handler */
700 //      armv4_5->exception_number = 0;
701         if (armv7a->post_debug_entry)
702                 armv7a->post_debug_entry(target);
703
704
705
706         return retval;
707
708 }
709
710 static void cortex_a8_post_debug_entry(struct target *target)
711 {
712         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
713         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
714
715 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
716         /* examine cp15 control reg */
717         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
718         jtag_execute_queue();
719         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
720
721         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
722         {
723                 uint32_t cache_type_reg;
724                 /* identify caches */
725                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
726                 jtag_execute_queue();
727                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
728                 armv4_5_identify_cache(cache_type_reg,
729                                 &armv7a->armv4_5_mmu.armv4_5_cache);
730         }
731
732         armv7a->armv4_5_mmu.mmu_enabled =
733                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
734         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
735                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
736         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
737                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
738
739
740 }
741
742 static int cortex_a8_step(struct target *target, int current, uint32_t address,
743                 int handle_breakpoints)
744 {
745         struct armv7a_common *armv7a = target_to_armv7a(target);
746         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
747         struct breakpoint *breakpoint = NULL;
748         struct breakpoint stepbreakpoint;
749
750         int timeout = 100;
751
752         if (target->state != TARGET_HALTED)
753         {
754                 LOG_WARNING("target not halted");
755                 return ERROR_TARGET_NOT_HALTED;
756         }
757
758         /* current = 1: continue on current pc, otherwise continue at <address> */
759         if (!current)
760         {
761                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
762                                         armv4_5->core_mode, ARM_PC).value,
763                                 0, 32, address);
764         }
765         else
766         {
767                 address = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
768                                         armv4_5->core_mode, ARM_PC).value,
769                                 0, 32);
770         }
771
772         /* The front-end may request us not to handle breakpoints.
773          * But since Cortex-A8 uses breakpoint for single step,
774          * we MUST handle breakpoints.
775          */
776         handle_breakpoints = 1;
777         if (handle_breakpoints) {
778                 breakpoint = breakpoint_find(target,
779                                 buf_get_u32(ARMV4_5_CORE_REG_MODE(
780                                         armv4_5->core_cache,
781                                         armv4_5->core_mode, 15).value,
782                         0, 32));
783                 if (breakpoint)
784                         cortex_a8_unset_breakpoint(target, breakpoint);
785         }
786
787         /* Setup single step breakpoint */
788         stepbreakpoint.address = address;
789         stepbreakpoint.length = (armv4_5->core_state == ARMV4_5_STATE_THUMB)
790                         ? 2 : 4;
791         stepbreakpoint.type = BKPT_HARD;
792         stepbreakpoint.set = 0;
793
794         /* Break on IVA mismatch */
795         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
796
797         target->debug_reason = DBG_REASON_SINGLESTEP;
798
799         cortex_a8_resume(target, 1, address, 0, 0);
800
801         while (target->state != TARGET_HALTED)
802         {
803                 cortex_a8_poll(target);
804                 if (--timeout == 0)
805                 {
806                         LOG_WARNING("timeout waiting for target halt");
807                         break;
808                 }
809         }
810
811         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
812         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
813
814         if (breakpoint)
815                 cortex_a8_set_breakpoint(target, breakpoint, 0);
816
817         if (target->state != TARGET_HALTED)
818                 LOG_DEBUG("target stepped");
819
820         return ERROR_OK;
821 }
822
823 static int cortex_a8_restore_context(struct target *target)
824 {
825         uint32_t value;
826         struct armv7a_common *armv7a = target_to_armv7a(target);
827         struct reg_cache *cache = armv7a->armv4_5_common.core_cache;
828         unsigned max = cache->num_regs;
829         struct reg *r;
830         bool flushed, flush_cpsr = false;
831
832         LOG_DEBUG(" ");
833
834         if (armv7a->pre_restore_context)
835                 armv7a->pre_restore_context(target);
836
837         /* Flush all dirty registers from the cache, one mode at a time so
838          * that we write CPSR as little as possible.  Save CPSR and R0 for
839          * last; they're used to change modes and write other registers.
840          *
841          * REVISIT be smarter:  save eventual mode for last loop, don't
842          * need to write CPSR an extra time.
843          */
844         do {
845                 enum armv4_5_mode mode = ARMV4_5_MODE_ANY;
846                 unsigned i;
847
848                 flushed = false;
849
850                 /* write dirty non-{R0,CPSR} registers sharing the same mode */
851                 for (i = max - 1, r = cache->reg_list + 1; i > 0; i--, r++) {
852                         struct arm_reg *reg;
853
854                         if (!r->dirty || r == armv7a->armv4_5_common.cpsr)
855                                 continue;
856                         reg = r->arch_info;
857
858                         /* TODO Check return values */
859
860                         /* Pick a mode and update CPSR; else ignore this
861                          * register if it's for a different mode than what
862                          * we're handling on this pass.
863                          *
864                          * REVISIT don't distinguish SYS and USR modes.
865                          *
866                          * FIXME if we restore from FIQ mode, R8..R12 will
867                          * get wrongly flushed onto FIQ shadows...
868                          */
869                         if (mode == ARMV4_5_MODE_ANY) {
870                                 mode = reg->mode;
871                                 if (mode != ARMV4_5_MODE_ANY) {
872                                         cortex_a8_dap_write_coreregister_u32(
873                                                         target, mode, 16);
874                                         flush_cpsr = true;
875                                 }
876                         } else if (mode != reg->mode)
877                                 continue;
878
879                         /* Write this register */
880                         value = buf_get_u32(r->value, 0, 32);
881                         cortex_a8_dap_write_coreregister_u32(target, value,
882                                         (reg->num == 16) ? 17 : reg->num);
883                         r->dirty = false;
884                         flushed = true;
885                 }
886
887         } while (flushed);
888
889         /* now flush CPSR if needed ... */
890         r = armv7a->armv4_5_common.cpsr;
891         if (flush_cpsr || r->dirty) {
892                 value = buf_get_u32(r->value, 0, 32);
893                 cortex_a8_dap_write_coreregister_u32(target, value, 16);
894                 r->dirty = false;
895         }
896
897         /* ... and R0 always (it was dirtied when we saved context) */
898         r = cache->reg_list + 0;
899         value = buf_get_u32(r->value, 0, 32);
900         cortex_a8_dap_write_coreregister_u32(target, value, 0);
901         r->dirty = false;
902
903         if (armv7a->post_restore_context)
904                 armv7a->post_restore_context(target);
905
906         return ERROR_OK;
907 }
908
909
910 #if 0
911 /*
912  * Cortex-A8 Core register functions
913  */
914 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
915                 armv4_5_mode_t mode, uint32_t * value)
916 {
917         int retval;
918         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
919
920         if ((num <= ARM_CPSR))
921         {
922                 /* read a normal core register */
923                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
924
925                 if (retval != ERROR_OK)
926                 {
927                         LOG_ERROR("JTAG failure %i", retval);
928                         return ERROR_JTAG_DEVICE_ERROR;
929                 }
930                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
931         }
932         else
933         {
934                 return ERROR_INVALID_ARGUMENTS;
935         }
936
937         /* Register other than r0 - r14 uses r0 for access */
938         if (num > 14)
939                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
940                                 armv4_5->core_mode, 0).dirty =
941                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
942                                 armv4_5->core_mode, 0).valid;
943         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
944                                 armv4_5->core_mode, 15).dirty =
945                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
946                                 armv4_5->core_mode, 15).valid;
947
948         return ERROR_OK;
949 }
950
951 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
952                 armv4_5_mode_t mode, uint32_t value)
953 {
954         int retval;
955 //      uint32_t reg;
956         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
957
958 #ifdef ARMV7_GDB_HACKS
959         /* If the LR register is being modified, make sure it will put us
960          * in "thumb" mode, or an INVSTATE exception will occur. This is a
961          * hack to deal with the fact that gdb will sometimes "forge"
962          * return addresses, and doesn't set the LSB correctly (i.e., when
963          * printing expressions containing function calls, it sets LR=0.) */
964
965         if (num == 14)
966                 value |= 0x01;
967 #endif
968
969         if ((num <= ARM_CPSR))
970         {
971                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
972                 if (retval != ERROR_OK)
973                 {
974                         LOG_ERROR("JTAG failure %i", retval);
975                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
976                                         armv4_5->core_mode, num).dirty =
977                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
978                                         armv4_5->core_mode, num).valid;
979                         return ERROR_JTAG_DEVICE_ERROR;
980                 }
981                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
982         }
983         else
984         {
985                 return ERROR_INVALID_ARGUMENTS;
986         }
987
988         return ERROR_OK;
989 }
990 #endif
991
992
993 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
994                 int num, enum armv4_5_mode mode, uint32_t value);
995
996 static int cortex_a8_read_core_reg(struct target *target, struct reg *r,
997                 int num, enum armv4_5_mode mode)
998 {
999         uint32_t value;
1000         int retval;
1001         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1002         struct reg *cpsr_r = NULL;
1003         uint32_t cpsr = 0;
1004         unsigned cookie = num;
1005
1006         /* avoid some needless mode changes
1007          * FIXME move some of these to shared ARM code...
1008          */
1009         if (mode != armv4_5->core_mode) {
1010                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1011                                 && (mode == ARMV4_5_MODE_USR))
1012                         mode = ARMV4_5_MODE_ANY;
1013                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1014                         mode = ARMV4_5_MODE_ANY;
1015
1016                 if (mode != ARMV4_5_MODE_ANY) {
1017                         cpsr_r = armv4_5->cpsr;
1018                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1019                         cortex_a8_write_core_reg(target, cpsr_r,
1020                                         16, ARMV4_5_MODE_ANY, mode);
1021                 }
1022         }
1023
1024         if (num == 16) {
1025                 switch (mode) {
1026                 case ARMV4_5_MODE_USR:
1027                 case ARMV4_5_MODE_SYS:
1028                 case ARMV4_5_MODE_ANY:
1029                         /* CPSR */
1030                         break;
1031                 default:
1032                         /* SPSR */
1033                         cookie++;
1034                         break;
1035                 }
1036         }
1037
1038         cortex_a8_dap_read_coreregister_u32(target, &value, cookie);
1039         retval = jtag_execute_queue();
1040         if (retval == ERROR_OK) {
1041                 r->valid = 1;
1042                 r->dirty = 0;
1043                 buf_set_u32(r->value, 0, 32, value);
1044         }
1045
1046         if (cpsr_r)
1047                 cortex_a8_write_core_reg(target, cpsr_r,
1048                                 16, ARMV4_5_MODE_ANY, cpsr);
1049         return retval;
1050 }
1051
1052 static int cortex_a8_write_core_reg(struct target *target, struct reg *r,
1053                 int num, enum armv4_5_mode mode, uint32_t value)
1054 {
1055         int retval;
1056         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1057         struct reg *cpsr_r = NULL;
1058         uint32_t cpsr = 0;
1059         unsigned cookie = num;
1060
1061         /* avoid some needless mode changes
1062          * FIXME move some of these to shared ARM code...
1063          */
1064         if (mode != armv4_5->core_mode) {
1065                 if ((armv4_5->core_mode == ARMV4_5_MODE_SYS)
1066                                 && (mode == ARMV4_5_MODE_USR))
1067                         mode = ARMV4_5_MODE_ANY;
1068                 else if ((mode != ARMV4_5_MODE_FIQ) && (num <= 12))
1069                         mode = ARMV4_5_MODE_ANY;
1070
1071                 if (mode != ARMV4_5_MODE_ANY) {
1072                         cpsr_r = armv4_5->cpsr;
1073                         cpsr = buf_get_u32(cpsr_r->value, 0, 32);
1074                         cortex_a8_write_core_reg(target, cpsr_r,
1075                                         16, ARMV4_5_MODE_ANY, mode);
1076                 }
1077         }
1078
1079
1080         if (num == 16) {
1081                 switch (mode) {
1082                 case ARMV4_5_MODE_USR:
1083                 case ARMV4_5_MODE_SYS:
1084                 case ARMV4_5_MODE_ANY:
1085                         /* CPSR */
1086                         break;
1087                 default:
1088                         /* SPSR */
1089                         cookie++;
1090                         break;
1091                 }
1092         }
1093
1094         cortex_a8_dap_write_coreregister_u32(target, value, cookie);
1095         if ((retval = jtag_execute_queue()) == ERROR_OK) {
1096                 buf_set_u32(r->value, 0, 32, value);
1097                 r->valid = 1;
1098                 r->dirty = 0;
1099         }
1100
1101         if (cpsr_r)
1102                 cortex_a8_write_core_reg(target, cpsr_r,
1103                                 16, ARMV4_5_MODE_ANY, cpsr);
1104         return retval;
1105 }
1106
1107
1108 /*
1109  * Cortex-A8 Breakpoint and watchpoint fuctions
1110  */
1111
1112 /* Setup hardware Breakpoint Register Pair */
1113 static int cortex_a8_set_breakpoint(struct target *target,
1114                 struct breakpoint *breakpoint, uint8_t matchmode)
1115 {
1116         int retval;
1117         int brp_i=0;
1118         uint32_t control;
1119         uint8_t byte_addr_select = 0x0F;
1120         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1121         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1122         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1123
1124         if (breakpoint->set)
1125         {
1126                 LOG_WARNING("breakpoint already set");
1127                 return ERROR_OK;
1128         }
1129
1130         if (breakpoint->type == BKPT_HARD)
1131         {
1132                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1133                         brp_i++ ;
1134                 if (brp_i >= cortex_a8->brp_num)
1135                 {
1136                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1137                         return ERROR_FAIL;
1138                 }
1139                 breakpoint->set = brp_i + 1;
1140                 if (breakpoint->length == 2)
1141                 {
1142                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1143                 }
1144                 control = ((matchmode & 0x7) << 20)
1145                                 | (byte_addr_select << 5)
1146                                 | (3 << 1) | 1;
1147                 brp_list[brp_i].used = 1;
1148                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1149                 brp_list[brp_i].control = control;
1150                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1151                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1152                                 brp_list[brp_i].value);
1153                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1154                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1155                                 brp_list[brp_i].control);
1156                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1157                                 brp_list[brp_i].control,
1158                                 brp_list[brp_i].value);
1159         }
1160         else if (breakpoint->type == BKPT_SOFT)
1161         {
1162                 uint8_t code[4];
1163                 if (breakpoint->length == 2)
1164                 {
1165                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1166                 }
1167                 else
1168                 {
1169                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1170                 }
1171                 retval = target->type->read_memory(target,
1172                                 breakpoint->address & 0xFFFFFFFE,
1173                                 breakpoint->length, 1,
1174                                 breakpoint->orig_instr);
1175                 if (retval != ERROR_OK)
1176                         return retval;
1177                 retval = target->type->write_memory(target,
1178                                 breakpoint->address & 0xFFFFFFFE,
1179                                 breakpoint->length, 1, code);
1180                 if (retval != ERROR_OK)
1181                         return retval;
1182                 breakpoint->set = 0x11; /* Any nice value but 0 */
1183         }
1184
1185         return ERROR_OK;
1186 }
1187
1188 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1189 {
1190         int retval;
1191         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1192         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1193         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1194
1195         if (!breakpoint->set)
1196         {
1197                 LOG_WARNING("breakpoint not set");
1198                 return ERROR_OK;
1199         }
1200
1201         if (breakpoint->type == BKPT_HARD)
1202         {
1203                 int brp_i = breakpoint->set - 1;
1204                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1205                 {
1206                         LOG_DEBUG("Invalid BRP number in breakpoint");
1207                         return ERROR_OK;
1208                 }
1209                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1210                                 brp_list[brp_i].control, brp_list[brp_i].value);
1211                 brp_list[brp_i].used = 0;
1212                 brp_list[brp_i].value = 0;
1213                 brp_list[brp_i].control = 0;
1214                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1215                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1216                                 brp_list[brp_i].control);
1217                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1218                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1219                                 brp_list[brp_i].value);
1220         }
1221         else
1222         {
1223                 /* restore original instruction (kept in target endianness) */
1224                 if (breakpoint->length == 4)
1225                 {
1226                         retval = target->type->write_memory(target,
1227                                         breakpoint->address & 0xFFFFFFFE,
1228                                         4, 1, breakpoint->orig_instr);
1229                         if (retval != ERROR_OK)
1230                                 return retval;
1231                 }
1232                 else
1233                 {
1234                         retval = target->type->write_memory(target,
1235                                         breakpoint->address & 0xFFFFFFFE,
1236                                         2, 1, breakpoint->orig_instr);
1237                         if (retval != ERROR_OK)
1238                                 return retval;
1239                 }
1240         }
1241         breakpoint->set = 0;
1242
1243         return ERROR_OK;
1244 }
1245
1246 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1247 {
1248         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1249
1250         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1251         {
1252                 LOG_INFO("no hardware breakpoint available");
1253                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1254         }
1255
1256         if (breakpoint->type == BKPT_HARD)
1257                 cortex_a8->brp_num_available--;
1258         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1259
1260         return ERROR_OK;
1261 }
1262
1263 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1264 {
1265         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1266
1267 #if 0
1268 /* It is perfectly possible to remove brakpoints while the taget is running */
1269         if (target->state != TARGET_HALTED)
1270         {
1271                 LOG_WARNING("target not halted");
1272                 return ERROR_TARGET_NOT_HALTED;
1273         }
1274 #endif
1275
1276         if (breakpoint->set)
1277         {
1278                 cortex_a8_unset_breakpoint(target, breakpoint);
1279                 if (breakpoint->type == BKPT_HARD)
1280                         cortex_a8->brp_num_available++ ;
1281         }
1282
1283
1284         return ERROR_OK;
1285 }
1286
1287
1288
1289 /*
1290  * Cortex-A8 Reset fuctions
1291  */
1292
1293 static int cortex_a8_assert_reset(struct target *target)
1294 {
1295         struct armv7a_common *armv7a = target_to_armv7a(target);
1296
1297         LOG_DEBUG(" ");
1298
1299         /* registers are now invalid */
1300         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1301
1302         target->state = TARGET_RESET;
1303
1304         return ERROR_OK;
1305 }
1306
1307 static int cortex_a8_deassert_reset(struct target *target)
1308 {
1309
1310         LOG_DEBUG(" ");
1311
1312         if (target->reset_halt)
1313         {
1314                 int retval;
1315                 if ((retval = target_halt(target)) != ERROR_OK)
1316                         return retval;
1317         }
1318
1319         return ERROR_OK;
1320 }
1321
1322 /*
1323  * Cortex-A8 Memory access
1324  *
1325  * This is same Cortex M3 but we must also use the correct
1326  * ap number for every access.
1327  */
1328
1329 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1330                 uint32_t size, uint32_t count, uint8_t *buffer)
1331 {
1332         struct armv7a_common *armv7a = target_to_armv7a(target);
1333         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1334         int retval = ERROR_INVALID_ARGUMENTS;
1335
1336         /* cortex_a8 handles unaligned memory access */
1337
1338 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1339
1340         if (count && buffer) {
1341                 switch (size) {
1342                 case 4:
1343                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1344                         break;
1345                 case 2:
1346                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1347                         break;
1348                 case 1:
1349                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1350                         break;
1351                 }
1352         }
1353
1354         return retval;
1355 }
1356
1357 int cortex_a8_write_memory(struct target *target, uint32_t address,
1358                 uint32_t size, uint32_t count, uint8_t *buffer)
1359 {
1360         struct armv7a_common *armv7a = target_to_armv7a(target);
1361         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1362         int retval = ERROR_INVALID_ARGUMENTS;
1363
1364 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1365
1366         if (count && buffer) {
1367                 switch (size) {
1368                 case 4:
1369                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1370                         break;
1371                 case 2:
1372                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1373                         break;
1374                 case 1:
1375                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1376                         break;
1377                 }
1378         }
1379
1380         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1381         {
1382                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1383                 /* invalidate I-Cache */
1384                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1385                 {
1386                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1387                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1388                         /* Invalidate Cache single entry with MVA to PoU */
1389                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1390                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1391                 }
1392                 /* invalidate D-Cache */
1393                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1394                 {
1395                         /* Invalidate Cache single entry with MVA to PoC */
1396                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1397                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1398                 }
1399         }
1400
1401         return retval;
1402 }
1403
1404 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1405                 uint32_t count, uint8_t *buffer)
1406 {
1407         return cortex_a8_write_memory(target, address, 4, count, buffer);
1408 }
1409
1410
1411 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1412 {
1413 #if 0
1414         u16 dcrdr;
1415
1416         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1417         *ctrl = (uint8_t)dcrdr;
1418         *value = (uint8_t)(dcrdr >> 8);
1419
1420         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1421
1422         /* write ack back to software dcc register
1423          * signify we have read data */
1424         if (dcrdr & (1 << 0))
1425         {
1426                 dcrdr = 0;
1427                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1428         }
1429 #endif
1430         return ERROR_OK;
1431 }
1432
1433
1434 static int cortex_a8_handle_target_request(void *priv)
1435 {
1436         struct target *target = priv;
1437         struct armv7a_common *armv7a = target_to_armv7a(target);
1438         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1439
1440         if (!target_was_examined(target))
1441                 return ERROR_OK;
1442         if (!target->dbg_msg_enabled)
1443                 return ERROR_OK;
1444
1445         if (target->state == TARGET_RUNNING)
1446         {
1447                 uint8_t data = 0;
1448                 uint8_t ctrl = 0;
1449
1450                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1451
1452                 /* check if we have data */
1453                 if (ctrl & (1 << 0))
1454                 {
1455                         uint32_t request;
1456
1457                         /* we assume target is quick enough */
1458                         request = data;
1459                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1460                         request |= (data << 8);
1461                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1462                         request |= (data << 16);
1463                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1464                         request |= (data << 24);
1465                         target_request(target, request);
1466                 }
1467         }
1468
1469         return ERROR_OK;
1470 }
1471
1472 /*
1473  * Cortex-A8 target information and configuration
1474  */
1475
1476 static int cortex_a8_examine_first(struct target *target)
1477 {
1478         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1479         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1480         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1481         int i;
1482         int retval = ERROR_OK;
1483         uint32_t didr, ctypr, ttypr, cpuid;
1484
1485         LOG_DEBUG("TODO");
1486
1487         /* Here we shall insert a proper ROM Table scan */
1488         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1489
1490         /* We do one extra read to ensure DAP is configured,
1491          * we call ahbap_debugport_init(swjdp) instead
1492          */
1493         ahbap_debugport_init(swjdp);
1494         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1495         if ((retval = mem_ap_read_atomic_u32(swjdp,
1496                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1497         {
1498                 LOG_DEBUG("Examine failed");
1499                 return retval;
1500         }
1501
1502         if ((retval = mem_ap_read_atomic_u32(swjdp,
1503                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1504         {
1505                 LOG_DEBUG("Examine failed");
1506                 return retval;
1507         }
1508
1509         if ((retval = mem_ap_read_atomic_u32(swjdp,
1510                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1511         {
1512                 LOG_DEBUG("Examine failed");
1513                 return retval;
1514         }
1515
1516         if ((retval = mem_ap_read_atomic_u32(swjdp,
1517                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1518         {
1519                 LOG_DEBUG("Examine failed");
1520                 return retval;
1521         }
1522
1523         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1524         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1525         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1526         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1527
1528         /* Setup Breakpoint Register Pairs */
1529         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1530         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1531         cortex_a8->brp_num_available = cortex_a8->brp_num;
1532         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1533 //      cortex_a8->brb_enabled = ????;
1534         for (i = 0; i < cortex_a8->brp_num; i++)
1535         {
1536                 cortex_a8->brp_list[i].used = 0;
1537                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1538                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1539                 else
1540                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1541                 cortex_a8->brp_list[i].value = 0;
1542                 cortex_a8->brp_list[i].control = 0;
1543                 cortex_a8->brp_list[i].BRPn = i;
1544         }
1545
1546         /* Setup Watchpoint Register Pairs */
1547         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1548         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1549         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1550         for (i = 0; i < cortex_a8->wrp_num; i++)
1551         {
1552                 cortex_a8->wrp_list[i].used = 0;
1553                 cortex_a8->wrp_list[i].type = 0;
1554                 cortex_a8->wrp_list[i].value = 0;
1555                 cortex_a8->wrp_list[i].control = 0;
1556                 cortex_a8->wrp_list[i].WRPn = i;
1557         }
1558         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1559                         cortex_a8->brp_num , cortex_a8->wrp_num);
1560
1561         target_set_examined(target);
1562         return ERROR_OK;
1563 }
1564
1565 static int cortex_a8_examine(struct target *target)
1566 {
1567         int retval = ERROR_OK;
1568
1569         /* don't re-probe hardware after each reset */
1570         if (!target_was_examined(target))
1571                 retval = cortex_a8_examine_first(target);
1572
1573         /* Configure core debug access */
1574         if (retval == ERROR_OK)
1575                 retval = cortex_a8_init_debug_access(target);
1576
1577         return retval;
1578 }
1579
1580 /*
1581  *      Cortex-A8 target creation and initialization
1582  */
1583
1584 static void cortex_a8_build_reg_cache(struct target *target)
1585 {
1586         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1587         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1588
1589         armv4_5->core_type = ARM_MODE_MON;
1590
1591         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1592 }
1593
1594
1595 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1596                 struct target *target)
1597 {
1598         cortex_a8_build_reg_cache(target);
1599         return ERROR_OK;
1600 }
1601
1602 int cortex_a8_init_arch_info(struct target *target,
1603                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1604 {
1605         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1606         struct arm *armv4_5 = &armv7a->armv4_5_common;
1607         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1608
1609         /* Setup struct cortex_a8_common */
1610         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1611         armv4_5->arch_info = armv7a;
1612
1613         /* prepare JTAG information for the new target */
1614         cortex_a8->jtag_info.tap = tap;
1615         cortex_a8->jtag_info.scann_size = 4;
1616 LOG_DEBUG(" ");
1617         swjdp->dp_select_value = -1;
1618         swjdp->ap_csw_value = -1;
1619         swjdp->ap_tar_value = -1;
1620         swjdp->jtag_info = &cortex_a8->jtag_info;
1621         swjdp->memaccess_tck = 80;
1622
1623         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1624         swjdp->tar_autoincr_block = (1 << 10);
1625
1626         cortex_a8->fast_reg_read = 0;
1627
1628
1629         /* register arch-specific functions */
1630         armv7a->examine_debug_reason = NULL;
1631
1632         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1633
1634         armv7a->pre_restore_context = NULL;
1635         armv7a->post_restore_context = NULL;
1636         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1637 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1638         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1639         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1640 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1641 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1642         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1643         armv7a->armv4_5_mmu.mmu_enabled = 0;
1644         armv7a->read_cp15 = cortex_a8_read_cp15;
1645         armv7a->write_cp15 = cortex_a8_write_cp15;
1646
1647
1648 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1649
1650         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1651         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1652
1653         /* REVISIT v7a setup should be in a v7a-specific routine */
1654         armv4_5_init_arch_info(target, armv4_5);
1655         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1656
1657         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1658
1659         return ERROR_OK;
1660 }
1661
1662 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1663 {
1664         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1665
1666         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1667
1668         return ERROR_OK;
1669 }
1670
1671 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1672 {
1673         struct target *target = get_current_target(CMD_CTX);
1674         struct armv7a_common *armv7a = target_to_armv7a(target);
1675
1676         return armv4_5_handle_cache_info_command(CMD_CTX,
1677                         &armv7a->armv4_5_mmu.armv4_5_cache);
1678 }
1679
1680
1681 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1682 {
1683         struct target *target = get_current_target(CMD_CTX);
1684
1685         cortex_a8_init_debug_access(target);
1686
1687         return ERROR_OK;
1688 }
1689
1690
1691 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1692 {
1693         struct command *cortex_a8_cmd;
1694         int retval = ERROR_OK;
1695
1696         armv4_5_register_commands(cmd_ctx);
1697         armv7a_register_commands(cmd_ctx);
1698
1699         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1700                         NULL, COMMAND_ANY,
1701                         "cortex_a8 specific commands");
1702
1703         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1704                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1705                         "display information about target caches");
1706
1707         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1708                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1709                         "Initialize core debug");
1710
1711         return retval;
1712 }
1713
1714 struct target_type cortexa8_target = {
1715         .name = "cortex_a8",
1716
1717         .poll = cortex_a8_poll,
1718         .arch_state = armv7a_arch_state,
1719
1720         .target_request_data = NULL,
1721
1722         .halt = cortex_a8_halt,
1723         .resume = cortex_a8_resume,
1724         .step = cortex_a8_step,
1725
1726         .assert_reset = cortex_a8_assert_reset,
1727         .deassert_reset = cortex_a8_deassert_reset,
1728         .soft_reset_halt = NULL,
1729
1730         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1731
1732         .read_memory = cortex_a8_read_memory,
1733         .write_memory = cortex_a8_write_memory,
1734         .bulk_write_memory = cortex_a8_bulk_write_memory,
1735
1736         .checksum_memory = arm_checksum_memory,
1737         .blank_check_memory = arm_blank_check_memory,
1738
1739         .run_algorithm = armv4_5_run_algorithm,
1740
1741         .add_breakpoint = cortex_a8_add_breakpoint,
1742         .remove_breakpoint = cortex_a8_remove_breakpoint,
1743         .add_watchpoint = NULL,
1744         .remove_watchpoint = NULL,
1745
1746         .register_commands = cortex_a8_register_commands,
1747         .target_create = cortex_a8_target_create,
1748         .init_target = cortex_a8_init_target,
1749         .examine = cortex_a8_examine,
1750         .mrc = cortex_a8_mrc,
1751         .mcr = cortex_a8_mcr,
1752 };