]> git.sur5r.net Git - openocd/blob - src/target/cortex_a8.c
fc788446f194874fc1288c90a4bb9ffb28117d69
[openocd] / src / target / cortex_a8.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  *                                                                         *
29  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
30  *                                                                         *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41
42 static int cortex_a8_poll(struct target *target);
43 static int cortex_a8_debug_entry(struct target *target);
44 static int cortex_a8_restore_context(struct target *target);
45 static int cortex_a8_set_breakpoint(struct target *target,
46                 struct breakpoint *breakpoint, uint8_t matchmode);
47 static int cortex_a8_unset_breakpoint(struct target *target,
48                 struct breakpoint *breakpoint);
49 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
50                 uint32_t *value, int regnum);
51 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
52                 uint32_t value, int regnum);
53 /*
54  * FIXME do topology discovery using the ROM; don't
55  * assume this is an OMAP3.
56  */
57 #define swjdp_memoryap 0
58 #define swjdp_debugap 1
59 #define OMAP3530_DEBUG_BASE 0x54011000
60
61 /*
62  * Cortex-A8 Basic debug access, very low level assumes state is saved
63  */
64 static int cortex_a8_init_debug_access(struct target *target)
65 {
66         struct armv7a_common *armv7a = target_to_armv7a(target);
67         struct swjdp_common *swjdp = &armv7a->swjdp_info;
68
69         int retval;
70         uint32_t dummy;
71
72         LOG_DEBUG(" ");
73
74         /* Unlocking the debug registers for modification */
75         /* The debugport might be uninitialised so try twice */
76         retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
77         if (retval != ERROR_OK)
78                 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
79         /* Clear Sticky Power Down status Bit in PRSR to enable access to
80            the registers in the Core Power Domain */
81         retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
82         /* Enabling of instruction execution in debug mode is done in debug_entry code */
83
84         /* Resync breakpoint registers */
85
86         /* Since this is likley called from init or reset, update targtet state information*/
87         cortex_a8_poll(target);
88
89         return retval;
90 }
91
92 int cortex_a8_exec_opcode(struct target *target, uint32_t opcode)
93 {
94         uint32_t dscr;
95         int retval;
96         struct armv7a_common *armv7a = target_to_armv7a(target);
97         struct swjdp_common *swjdp = &armv7a->swjdp_info;
98
99         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
100         do
101         {
102                 retval = mem_ap_read_atomic_u32(swjdp,
103                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
104                 if (retval != ERROR_OK)
105                 {
106                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
107                         return retval;
108                 }
109         }
110         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
111
112         mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
113
114         do
115         {
116                 retval = mem_ap_read_atomic_u32(swjdp,
117                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
118                 if (retval != ERROR_OK)
119                 {
120                         LOG_ERROR("Could not read DSCR register");
121                         return retval;
122                 }
123         }
124         while ((dscr & (1 << DSCR_INSTR_COMP)) == 0); /* Wait for InstrCompl bit to be set */
125
126         return retval;
127 }
128
129 /**************************************************************************
130 Read core register with very few exec_opcode, fast but needs work_area.
131 This can cause problems with MMU active.
132 **************************************************************************/
133 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
134                 uint32_t * regfile)
135 {
136         int retval = ERROR_OK;
137         struct armv7a_common *armv7a = target_to_armv7a(target);
138         struct swjdp_common *swjdp = &armv7a->swjdp_info;
139
140         cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
141         cortex_a8_dap_write_coreregister_u32(target, address, 0);
142         cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0));
143         dap_ap_select(swjdp, swjdp_memoryap);
144         mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
145         dap_ap_select(swjdp, swjdp_debugap);
146
147         return retval;
148 }
149
150 static int cortex_a8_read_cp(struct target *target, uint32_t *value, uint8_t CP,
151                 uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
152 {
153         int retval;
154         struct armv7a_common *armv7a = target_to_armv7a(target);
155         struct swjdp_common *swjdp = &armv7a->swjdp_info;
156
157         cortex_a8_exec_opcode(target, ARMV4_5_MRC(CP, op1, 0, CRn, CRm, op2));
158         /* Move R0 to DTRTX */
159         cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
160
161         /* Read DCCTX */
162         retval = mem_ap_read_atomic_u32(swjdp,
163                         armv7a->debug_base + CPUDBG_DTRTX, value);
164
165         return retval;
166 }
167
168 static int cortex_a8_write_cp(struct target *target, uint32_t value,
169         uint8_t CP, uint8_t op1, uint8_t CRn, uint8_t CRm, uint8_t op2)
170 {
171         int retval;
172         uint32_t dscr;
173         struct armv7a_common *armv7a = target_to_armv7a(target);
174         struct swjdp_common *swjdp = &armv7a->swjdp_info;
175
176         LOG_DEBUG("CP%i, CRn %i, value 0x%08" PRIx32, CP, CRn, value);
177
178         /* Check that DCCRX is not full */
179         retval = mem_ap_read_atomic_u32(swjdp,
180                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
181         if (dscr & (1 << DSCR_DTR_RX_FULL))
182         {
183                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
184                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
185                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
186         }
187
188         retval = mem_ap_write_u32(swjdp,
189                         armv7a->debug_base + CPUDBG_DTRRX, value);
190         /* Move DTRRX to r0 */
191         cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
192
193         cortex_a8_exec_opcode(target, ARMV4_5_MCR(CP, op1, 0, CRn, CRm, op2));
194         return retval;
195 }
196
197 static int cortex_a8_read_cp15(struct target *target, uint32_t op1, uint32_t op2,
198                 uint32_t CRn, uint32_t CRm, uint32_t *value)
199 {
200         return cortex_a8_read_cp(target, value, 15, op1, CRn, CRm, op2);
201 }
202
203 static int cortex_a8_write_cp15(struct target *target, uint32_t op1, uint32_t op2,
204                 uint32_t CRn, uint32_t CRm, uint32_t value)
205 {
206         return cortex_a8_write_cp(target, value, 15, op1, CRn, CRm, op2);
207 }
208
209 static int cortex_a8_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
210 {
211         if (cpnum!=15)
212         {
213                 LOG_ERROR("Only cp15 is supported");
214                 return ERROR_FAIL;
215         }
216         return cortex_a8_read_cp15(target, op1, op2, CRn, CRm, value);
217 }
218
219 static int cortex_a8_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
220 {
221         if (cpnum!=15)
222         {
223                 LOG_ERROR("Only cp15 is supported");
224                 return ERROR_FAIL;
225         }
226         return cortex_a8_write_cp15(target, op1, op2, CRn, CRm, value);
227 }
228
229
230
231 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
232                 uint32_t *value, int regnum)
233 {
234         int retval = ERROR_OK;
235         uint8_t reg = regnum&0xFF;
236         uint32_t dscr;
237         struct armv7a_common *armv7a = target_to_armv7a(target);
238         struct swjdp_common *swjdp = &armv7a->swjdp_info;
239
240         if (reg > 16)
241                 return retval;
242
243         if (reg < 15)
244         {
245                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
246                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, reg, 0, 5, 0));
247         }
248         else if (reg == 15)
249         {
250                 /* "MOV r0, r15"; then move r0 to DCCTX */
251                 cortex_a8_exec_opcode(target, 0xE1A0000F);
252                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
253         }
254         else if (reg == 16)
255         {
256                 /* "MRS r0, CPSR"; then move r0 to DCCTX */
257                 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, 0));
258                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
259         }
260
261         /* Read DTRRTX */
262         do
263         {
264                 retval = mem_ap_read_atomic_u32(swjdp,
265                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
266         }
267         while ((dscr & (1 << DSCR_DTR_TX_FULL)) == 0); /* Wait for DTRRXfull */
268
269         retval = mem_ap_read_atomic_u32(swjdp,
270                         armv7a->debug_base + CPUDBG_DTRTX, value);
271
272         return retval;
273 }
274
275 static int cortex_a8_dap_write_coreregister_u32(struct target *target, uint32_t value, int regnum)
276 {
277         int retval = ERROR_OK;
278         uint8_t Rd = regnum&0xFF;
279         uint32_t dscr;
280         struct armv7a_common *armv7a = target_to_armv7a(target);
281         struct swjdp_common *swjdp = &armv7a->swjdp_info;
282
283         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
284
285         /* Check that DCCRX is not full */
286         retval = mem_ap_read_atomic_u32(swjdp,
287                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
288         if (dscr & (1 << DSCR_DTR_RX_FULL))
289         {
290                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
291                 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode  0xEE000E15 */
292                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
293         }
294
295         if (Rd > 16)
296                 return retval;
297
298         /* Write to DCCRX */
299         retval = mem_ap_write_u32(swjdp,
300                         armv7a->debug_base + CPUDBG_DTRRX, value);
301
302         if (Rd < 15)
303         {
304                 /* DCCRX to Rd, MCR p14, 0, Rd, c0, c5, 0,  0xEE000E15 */
305                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0));
306         }
307         else if (Rd == 15)
308         {
309                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
310                 cortex_a8_exec_opcode(target, 0xE1A0F000);
311         }
312         else if (Rd == 16)
313         {
314                 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
315                 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, 0));
316                 /* Execute a PrefetchFlush instruction through the ITR. */
317                 cortex_a8_exec_opcode(target, ARMV4_5_MCR(15, 0, 0, 7, 5, 4));
318         }
319
320         return retval;
321 }
322
323 /* Write to memory mapped registers directly with no cache or mmu handling */
324 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
325 {
326         int retval;
327         struct armv7a_common *armv7a = target_to_armv7a(target);
328         struct swjdp_common *swjdp = &armv7a->swjdp_info;
329
330         retval = mem_ap_write_atomic_u32(swjdp, address, value);
331
332         return retval;
333 }
334
335 /*
336  * Cortex-A8 Run control
337  */
338
339 static int cortex_a8_poll(struct target *target)
340 {
341         int retval = ERROR_OK;
342         uint32_t dscr;
343         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
344         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
345         struct swjdp_common *swjdp = &armv7a->swjdp_info;
346         enum target_state prev_target_state = target->state;
347         uint8_t saved_apsel = dap_ap_get_select(swjdp);
348
349         dap_ap_select(swjdp, swjdp_debugap);
350         retval = mem_ap_read_atomic_u32(swjdp,
351                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
352         if (retval != ERROR_OK)
353         {
354                 dap_ap_select(swjdp, saved_apsel);
355                 return retval;
356         }
357         cortex_a8->cpudbg_dscr = dscr;
358
359         if ((dscr & 0x3) == 0x3)
360         {
361                 if (prev_target_state != TARGET_HALTED)
362                 {
363                         /* We have a halting debug event */
364                         LOG_DEBUG("Target halted");
365                         target->state = TARGET_HALTED;
366                         if ((prev_target_state == TARGET_RUNNING)
367                                         || (prev_target_state == TARGET_RESET))
368                         {
369                                 retval = cortex_a8_debug_entry(target);
370                                 if (retval != ERROR_OK)
371                                         return retval;
372
373                                 target_call_event_callbacks(target,
374                                                 TARGET_EVENT_HALTED);
375                         }
376                         if (prev_target_state == TARGET_DEBUG_RUNNING)
377                         {
378                                 LOG_DEBUG(" ");
379
380                                 retval = cortex_a8_debug_entry(target);
381                                 if (retval != ERROR_OK)
382                                         return retval;
383
384                                 target_call_event_callbacks(target,
385                                                 TARGET_EVENT_DEBUG_HALTED);
386                         }
387                 }
388         }
389         else if ((dscr & 0x3) == 0x2)
390         {
391                 target->state = TARGET_RUNNING;
392         }
393         else
394         {
395                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
396                 target->state = TARGET_UNKNOWN;
397         }
398
399         dap_ap_select(swjdp, saved_apsel);
400
401         return retval;
402 }
403
404 static int cortex_a8_halt(struct target *target)
405 {
406         int retval = ERROR_OK;
407         uint32_t dscr;
408         struct armv7a_common *armv7a = target_to_armv7a(target);
409         struct swjdp_common *swjdp = &armv7a->swjdp_info;
410         uint8_t saved_apsel = dap_ap_get_select(swjdp);
411         dap_ap_select(swjdp, swjdp_debugap);
412
413         /*
414          * Tell the core to be halted by writing DRCR with 0x1
415          * and then wait for the core to be halted.
416          */
417         retval = mem_ap_write_atomic_u32(swjdp,
418                         armv7a->debug_base + CPUDBG_DRCR, 0x1);
419
420         /*
421          * enter halting debug mode
422          */
423         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
424         retval = mem_ap_write_atomic_u32(swjdp,
425                 armv7a->debug_base + CPUDBG_DSCR, dscr | (1 << DSCR_HALT_DBG_MODE));
426
427         if (retval != ERROR_OK)
428                 goto out;
429
430         do {
431                 mem_ap_read_atomic_u32(swjdp,
432                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
433         } while ((dscr & (1 << DSCR_CORE_HALTED)) == 0);
434
435         target->debug_reason = DBG_REASON_DBGRQ;
436
437 out:
438         dap_ap_select(swjdp, saved_apsel);
439         return retval;
440 }
441
442 static int cortex_a8_resume(struct target *target, int current,
443                 uint32_t address, int handle_breakpoints, int debug_execution)
444 {
445         struct armv7a_common *armv7a = target_to_armv7a(target);
446         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
447         struct swjdp_common *swjdp = &armv7a->swjdp_info;
448
449 //      struct breakpoint *breakpoint = NULL;
450         uint32_t resume_pc, dscr;
451
452         uint8_t saved_apsel = dap_ap_get_select(swjdp);
453         dap_ap_select(swjdp, swjdp_debugap);
454
455         if (!debug_execution)
456         {
457                 target_free_all_working_areas(target);
458 //              cortex_m3_enable_breakpoints(target);
459 //              cortex_m3_enable_watchpoints(target);
460         }
461
462 #if 0
463         if (debug_execution)
464         {
465                 /* Disable interrupts */
466                 /* We disable interrupts in the PRIMASK register instead of
467                  * masking with C_MASKINTS,
468                  * This is probably the same issue as Cortex-M3 Errata 377493:
469                  * C_MASKINTS in parallel with disabled interrupts can cause
470                  * local faults to not be taken. */
471                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
472                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
473                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
474
475                 /* Make sure we are in Thumb mode */
476                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
477                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
478                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
479                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
480         }
481 #endif
482
483         /* current = 1: continue on current pc, otherwise continue at <address> */
484         resume_pc = buf_get_u32(
485                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
486                                 armv4_5->core_mode, 15).value,
487                         0, 32);
488         if (!current)
489                 resume_pc = address;
490
491         /* Make sure that the Armv7 gdb thumb fixups does not
492          * kill the return address
493          */
494         if (armv7a->core_state == ARMV7A_STATE_ARM)
495         {
496                 resume_pc &= 0xFFFFFFFC;
497         }
498         /* When the return address is loaded into PC
499          * bit 0 must be 1 to stay in Thumb state
500          */
501         if (armv7a->core_state == ARMV7A_STATE_THUMB)
502         {
503                 resume_pc |= 0x1;
504         }
505         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
506         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
507                                 armv4_5->core_mode, 15).value,
508                         0, 32, resume_pc);
509         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
510                         armv4_5->core_mode, 15).dirty = 1;
511         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
512                         armv4_5->core_mode, 15).valid = 1;
513
514         cortex_a8_restore_context(target);
515 //      arm7_9_restore_context(target); TODO Context is currently NOT Properly restored
516 #if 0
517         /* the front-end may request us not to handle breakpoints */
518         if (handle_breakpoints)
519         {
520                 /* Single step past breakpoint at current address */
521                 if ((breakpoint = breakpoint_find(target, resume_pc)))
522                 {
523                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
524                         cortex_m3_unset_breakpoint(target, breakpoint);
525                         cortex_m3_single_step_core(target);
526                         cortex_m3_set_breakpoint(target, breakpoint);
527                 }
528         }
529
530 #endif
531         /* Restart core and wait for it to be started */
532         mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
533
534         do {
535                 mem_ap_read_atomic_u32(swjdp,
536                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
537         } while ((dscr & (1 << DSCR_CORE_RESTARTED)) == 0);
538
539         target->debug_reason = DBG_REASON_NOTHALTED;
540         target->state = TARGET_RUNNING;
541
542         /* registers are now invalid */
543         armv4_5_invalidate_core_regs(target);
544
545         if (!debug_execution)
546         {
547                 target->state = TARGET_RUNNING;
548                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
549                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
550         }
551         else
552         {
553                 target->state = TARGET_DEBUG_RUNNING;
554                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
555                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
556         }
557
558         dap_ap_select(swjdp, saved_apsel);
559
560         return ERROR_OK;
561 }
562
563 static int cortex_a8_debug_entry(struct target *target)
564 {
565         int i;
566         uint32_t regfile[16], pc, cpsr, dscr;
567         int retval = ERROR_OK;
568         struct working_area *regfile_working_area = NULL;
569         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
570         struct armv7a_common *armv7a = target_to_armv7a(target);
571         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
572         struct swjdp_common *swjdp = &armv7a->swjdp_info;
573         struct reg *reg;
574
575         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
576
577         /* Enable the ITR execution once we are in debug mode */
578         mem_ap_read_atomic_u32(swjdp,
579                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
580         dscr |= (1 << DSCR_EXT_INT_EN);
581         retval = mem_ap_write_atomic_u32(swjdp,
582                         armv7a->debug_base + CPUDBG_DSCR, dscr);
583
584         /* Examine debug reason */
585         switch ((cortex_a8->cpudbg_dscr >> 2)&0xF)
586         {
587                 case 0:
588                 case 4:
589                         target->debug_reason = DBG_REASON_DBGRQ;
590                         break;
591                 case 1:
592                 case 3:
593                         target->debug_reason = DBG_REASON_BREAKPOINT;
594                         break;
595                 case 10:
596                         target->debug_reason = DBG_REASON_WATCHPOINT;
597                         break;
598                 default:
599                         target->debug_reason = DBG_REASON_UNDEFINED;
600                         break;
601         }
602
603         /* Examine target state and mode */
604         if (cortex_a8->fast_reg_read)
605                 target_alloc_working_area(target, 64, &regfile_working_area);
606
607         /* First load register acessible through core debug port*/
608         if (!regfile_working_area)
609         {
610                 /* FIXME we don't actually need all these registers;
611                  * reading them slows us down.  Just R0, PC, CPSR...
612                  */
613                 for (i = 0; i <= 15; i++)
614                         cortex_a8_dap_read_coreregister_u32(target,
615                                         &regfile[i], i);
616         }
617         else
618         {
619                 dap_ap_select(swjdp, swjdp_memoryap);
620                 cortex_a8_read_regs_through_mem(target,
621                                 regfile_working_area->address, regfile);
622                 dap_ap_select(swjdp, swjdp_memoryap);
623                 target_free_working_area(target, regfile_working_area);
624         }
625
626         /* read Current PSR */
627         cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
628         pc = regfile[15];
629         dap_ap_select(swjdp, swjdp_debugap);
630         LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
631
632         armv4_5->core_mode = cpsr & 0x1F;
633         armv7a->core_state = (cpsr & 0x20)
634                         ? ARMV7A_STATE_THUMB
635                         : ARMV7A_STATE_ARM;
636
637         /* update cache */
638         reg = armv4_5->core_cache->reg_list + ARMV4_5_CPSR;
639         buf_set_u32(reg->value, 0, 32, cpsr);
640         reg->valid = 1;
641         reg->dirty = 0;
642
643         for (i = 0; i <= ARM_PC; i++)
644         {
645                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
646                                         armv4_5->core_mode, i);
647
648                 buf_set_u32(reg->value, 0, 32, regfile[i]);
649                 reg->valid = 1;
650                 reg->dirty = 0;
651         }
652
653         /* Fixup PC Resume Address */
654         if (armv7a->core_state == ARMV7A_STATE_THUMB)
655         {
656                 // T bit set for Thumb or ThumbEE state
657                 regfile[ARM_PC] -= 4;
658         }
659         else
660         {
661                 // ARM state
662                 regfile[ARM_PC] -= 8;
663         }
664         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
665                                 armv4_5->core_mode, ARM_PC).value,
666                         0, 32, regfile[ARM_PC]);
667
668         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0)
669                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
670                                 armv4_5->core_mode, 0).valid;
671         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15)
672                 .dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
673                                 armv4_5->core_mode, 15).valid;
674
675 #if 0
676 /* TODO, Move this */
677         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
678         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
679         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
680
681         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
682         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
683
684         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
685         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
686 #endif
687
688         /* Are we in an exception handler */
689 //      armv4_5->exception_number = 0;
690         if (armv7a->post_debug_entry)
691                 armv7a->post_debug_entry(target);
692
693
694
695         return retval;
696
697 }
698
699 static void cortex_a8_post_debug_entry(struct target *target)
700 {
701         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
702         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
703
704 //      cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
705         /* examine cp15 control reg */
706         armv7a->read_cp15(target, 0, 0, 1, 0, &cortex_a8->cp15_control_reg);
707         jtag_execute_queue();
708         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
709
710         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
711         {
712                 uint32_t cache_type_reg;
713                 /* identify caches */
714                 armv7a->read_cp15(target, 0, 1, 0, 0, &cache_type_reg);
715                 jtag_execute_queue();
716                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
717                 armv4_5_identify_cache(cache_type_reg,
718                                 &armv7a->armv4_5_mmu.armv4_5_cache);
719         }
720
721         armv7a->armv4_5_mmu.mmu_enabled =
722                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
723         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
724                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
725         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
726                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
727
728
729 }
730
731 static int cortex_a8_step(struct target *target, int current, uint32_t address,
732                 int handle_breakpoints)
733 {
734         struct armv7a_common *armv7a = target_to_armv7a(target);
735         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
736         struct breakpoint *breakpoint = NULL;
737         struct breakpoint stepbreakpoint;
738
739         int timeout = 100;
740
741         if (target->state != TARGET_HALTED)
742         {
743                 LOG_WARNING("target not halted");
744                 return ERROR_TARGET_NOT_HALTED;
745         }
746
747         /* current = 1: continue on current pc, otherwise continue at <address> */
748         if (!current)
749         {
750                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
751                                         armv4_5->core_mode, ARM_PC).value,
752                                 0, 32, address);
753         }
754         else
755         {
756                 address = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
757                                         armv4_5->core_mode, ARM_PC).value,
758                                 0, 32);
759         }
760
761         /* The front-end may request us not to handle breakpoints.
762          * But since Cortex-A8 uses breakpoint for single step,
763          * we MUST handle breakpoints.
764          */
765         handle_breakpoints = 1;
766         if (handle_breakpoints) {
767                 breakpoint = breakpoint_find(target,
768                                 buf_get_u32(ARMV4_5_CORE_REG_MODE(
769                                         armv4_5->core_cache,
770                                         armv4_5->core_mode, 15).value,
771                         0, 32));
772                 if (breakpoint)
773                         cortex_a8_unset_breakpoint(target, breakpoint);
774         }
775
776         /* Setup single step breakpoint */
777         stepbreakpoint.address = address;
778         stepbreakpoint.length = (armv7a->core_state == ARMV7A_STATE_THUMB) ? 2 : 4;
779         stepbreakpoint.type = BKPT_HARD;
780         stepbreakpoint.set = 0;
781
782         /* Break on IVA mismatch */
783         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
784
785         target->debug_reason = DBG_REASON_SINGLESTEP;
786
787         cortex_a8_resume(target, 1, address, 0, 0);
788
789         while (target->state != TARGET_HALTED)
790         {
791                 cortex_a8_poll(target);
792                 if (--timeout == 0)
793                 {
794                         LOG_WARNING("timeout waiting for target halt");
795                         break;
796                 }
797         }
798
799         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
800         if (timeout > 0) target->debug_reason = DBG_REASON_BREAKPOINT;
801
802         if (breakpoint)
803                 cortex_a8_set_breakpoint(target, breakpoint, 0);
804
805         if (target->state != TARGET_HALTED)
806                 LOG_DEBUG("target stepped");
807
808         return ERROR_OK;
809 }
810
811 static int cortex_a8_restore_context(struct target *target)
812 {
813         int i;
814         uint32_t value;
815         struct armv7a_common *armv7a = target_to_armv7a(target);
816         struct armv4_5_common_s *armv4_5 = &armv7a->armv4_5_common;
817
818         LOG_DEBUG(" ");
819
820         if (armv7a->pre_restore_context)
821                 armv7a->pre_restore_context(target);
822
823         for (i = 15; i >= 0; i--)
824         {
825                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
826                                         armv4_5->core_mode, i).dirty)
827                 {
828                         value = buf_get_u32(ARMV4_5_CORE_REG_MODE(
829                                                 armv4_5->core_cache,
830                                                 armv4_5->core_mode, i).value,
831                                         0, 32);
832                         /* TODO Check return values */
833                         cortex_a8_dap_write_coreregister_u32(target, value, i);
834                 }
835         }
836
837         if (armv7a->post_restore_context)
838                 armv7a->post_restore_context(target);
839
840         return ERROR_OK;
841 }
842
843
844 #if 0
845 /*
846  * Cortex-A8 Core register functions
847  */
848 static int cortex_a8_load_core_reg_u32(struct target *target, int num,
849                 armv4_5_mode_t mode, uint32_t * value)
850 {
851         int retval;
852         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
853
854         if ((num <= ARM_CPSR))
855         {
856                 /* read a normal core register */
857                 retval = cortex_a8_dap_read_coreregister_u32(target, value, num);
858
859                 if (retval != ERROR_OK)
860                 {
861                         LOG_ERROR("JTAG failure %i", retval);
862                         return ERROR_JTAG_DEVICE_ERROR;
863                 }
864                 LOG_DEBUG("load from core reg %i value 0x%" PRIx32, num, *value);
865         }
866         else
867         {
868                 return ERROR_INVALID_ARGUMENTS;
869         }
870
871         /* Register other than r0 - r14 uses r0 for access */
872         if (num > 14)
873                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
874                                 armv4_5->core_mode, 0).dirty =
875                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
876                                 armv4_5->core_mode, 0).valid;
877         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
878                                 armv4_5->core_mode, 15).dirty =
879                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
880                                 armv4_5->core_mode, 15).valid;
881
882         return ERROR_OK;
883 }
884
885 static int cortex_a8_store_core_reg_u32(struct target *target, int num,
886                 armv4_5_mode_t mode, uint32_t value)
887 {
888         int retval;
889 //      uint32_t reg;
890         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
891
892 #ifdef ARMV7_GDB_HACKS
893         /* If the LR register is being modified, make sure it will put us
894          * in "thumb" mode, or an INVSTATE exception will occur. This is a
895          * hack to deal with the fact that gdb will sometimes "forge"
896          * return addresses, and doesn't set the LSB correctly (i.e., when
897          * printing expressions containing function calls, it sets LR=0.) */
898
899         if (num == 14)
900                 value |= 0x01;
901 #endif
902
903         if ((num <= ARM_CPSR))
904         {
905                 retval = cortex_a8_dap_write_coreregister_u32(target, value, num);
906                 if (retval != ERROR_OK)
907                 {
908                         LOG_ERROR("JTAG failure %i", retval);
909                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
910                                         armv4_5->core_mode, num).dirty =
911                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
912                                         armv4_5->core_mode, num).valid;
913                         return ERROR_JTAG_DEVICE_ERROR;
914                 }
915                 LOG_DEBUG("write core reg %i value 0x%" PRIx32, num, value);
916         }
917         else
918         {
919                 return ERROR_INVALID_ARGUMENTS;
920         }
921
922         return ERROR_OK;
923 }
924 #endif
925
926
927 static int cortex_a8_read_core_reg(struct target *target, int num,
928                 enum armv4_5_mode mode)
929 {
930         uint32_t value;
931         int retval;
932         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
933
934         /* FIXME cortex may not be in "mode" ... */
935
936         cortex_a8_dap_read_coreregister_u32(target, &value, num);
937
938         if ((retval = jtag_execute_queue()) != ERROR_OK)
939         {
940                 return retval;
941         }
942
943         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
944         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
945         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
946                         mode, num).value, 0, 32, value);
947
948         return ERROR_OK;
949 }
950
951 static int cortex_a8_write_core_reg(struct target *target, int num,
952                 enum armv4_5_mode mode, uint32_t value)
953 {
954         int retval;
955         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
956
957         /* FIXME cortex may not be in "mode" ... */
958
959         cortex_a8_dap_write_coreregister_u32(target, value, num);
960         if ((retval = jtag_execute_queue()) != ERROR_OK)
961         {
962                 return retval;
963         }
964
965         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
966         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
967
968         return ERROR_OK;
969 }
970
971
972 /*
973  * Cortex-A8 Breakpoint and watchpoint fuctions
974  */
975
976 /* Setup hardware Breakpoint Register Pair */
977 static int cortex_a8_set_breakpoint(struct target *target,
978                 struct breakpoint *breakpoint, uint8_t matchmode)
979 {
980         int retval;
981         int brp_i=0;
982         uint32_t control;
983         uint8_t byte_addr_select = 0x0F;
984         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
985         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
986         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
987
988         if (breakpoint->set)
989         {
990                 LOG_WARNING("breakpoint already set");
991                 return ERROR_OK;
992         }
993
994         if (breakpoint->type == BKPT_HARD)
995         {
996                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
997                         brp_i++ ;
998                 if (brp_i >= cortex_a8->brp_num)
999                 {
1000                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1001                         return ERROR_FAIL;
1002                 }
1003                 breakpoint->set = brp_i + 1;
1004                 if (breakpoint->length == 2)
1005                 {
1006                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1007                 }
1008                 control = ((matchmode & 0x7) << 20)
1009                                 | (byte_addr_select << 5)
1010                                 | (3 << 1) | 1;
1011                 brp_list[brp_i].used = 1;
1012                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1013                 brp_list[brp_i].control = control;
1014                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1015                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1016                                 brp_list[brp_i].value);
1017                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1018                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1019                                 brp_list[brp_i].control);
1020                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1021                                 brp_list[brp_i].control,
1022                                 brp_list[brp_i].value);
1023         }
1024         else if (breakpoint->type == BKPT_SOFT)
1025         {
1026                 uint8_t code[4];
1027                 if (breakpoint->length == 2)
1028                 {
1029                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1030                 }
1031                 else
1032                 {
1033                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1034                 }
1035                 retval = target->type->read_memory(target,
1036                                 breakpoint->address & 0xFFFFFFFE,
1037                                 breakpoint->length, 1,
1038                                 breakpoint->orig_instr);
1039                 if (retval != ERROR_OK)
1040                         return retval;
1041                 retval = target->type->write_memory(target,
1042                                 breakpoint->address & 0xFFFFFFFE,
1043                                 breakpoint->length, 1, code);
1044                 if (retval != ERROR_OK)
1045                         return retval;
1046                 breakpoint->set = 0x11; /* Any nice value but 0 */
1047         }
1048
1049         return ERROR_OK;
1050 }
1051
1052 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1053 {
1054         int retval;
1055         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1056         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1057         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1058
1059         if (!breakpoint->set)
1060         {
1061                 LOG_WARNING("breakpoint not set");
1062                 return ERROR_OK;
1063         }
1064
1065         if (breakpoint->type == BKPT_HARD)
1066         {
1067                 int brp_i = breakpoint->set - 1;
1068                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1069                 {
1070                         LOG_DEBUG("Invalid BRP number in breakpoint");
1071                         return ERROR_OK;
1072                 }
1073                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1074                                 brp_list[brp_i].control, brp_list[brp_i].value);
1075                 brp_list[brp_i].used = 0;
1076                 brp_list[brp_i].value = 0;
1077                 brp_list[brp_i].control = 0;
1078                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1079                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1080                                 brp_list[brp_i].control);
1081                 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1082                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1083                                 brp_list[brp_i].value);
1084         }
1085         else
1086         {
1087                 /* restore original instruction (kept in target endianness) */
1088                 if (breakpoint->length == 4)
1089                 {
1090                         retval = target->type->write_memory(target,
1091                                         breakpoint->address & 0xFFFFFFFE,
1092                                         4, 1, breakpoint->orig_instr);
1093                         if (retval != ERROR_OK)
1094                                 return retval;
1095                 }
1096                 else
1097                 {
1098                         retval = target->type->write_memory(target,
1099                                         breakpoint->address & 0xFFFFFFFE,
1100                                         2, 1, breakpoint->orig_instr);
1101                         if (retval != ERROR_OK)
1102                                 return retval;
1103                 }
1104         }
1105         breakpoint->set = 0;
1106
1107         return ERROR_OK;
1108 }
1109
1110 int cortex_a8_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1111 {
1112         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1113
1114         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1115         {
1116                 LOG_INFO("no hardware breakpoint available");
1117                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1118         }
1119
1120         if (breakpoint->type == BKPT_HARD)
1121                 cortex_a8->brp_num_available--;
1122         cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1123
1124         return ERROR_OK;
1125 }
1126
1127 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1128 {
1129         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1130
1131 #if 0
1132 /* It is perfectly possible to remove brakpoints while the taget is running */
1133         if (target->state != TARGET_HALTED)
1134         {
1135                 LOG_WARNING("target not halted");
1136                 return ERROR_TARGET_NOT_HALTED;
1137         }
1138 #endif
1139
1140         if (breakpoint->set)
1141         {
1142                 cortex_a8_unset_breakpoint(target, breakpoint);
1143                 if (breakpoint->type == BKPT_HARD)
1144                         cortex_a8->brp_num_available++ ;
1145         }
1146
1147
1148         return ERROR_OK;
1149 }
1150
1151
1152
1153 /*
1154  * Cortex-A8 Reset fuctions
1155  */
1156
1157 static int cortex_a8_assert_reset(struct target *target)
1158 {
1159
1160         LOG_DEBUG(" ");
1161
1162         /* registers are now invalid */
1163         armv4_5_invalidate_core_regs(target);
1164
1165         target->state = TARGET_RESET;
1166
1167         return ERROR_OK;
1168 }
1169
1170 static int cortex_a8_deassert_reset(struct target *target)
1171 {
1172
1173         LOG_DEBUG(" ");
1174
1175         if (target->reset_halt)
1176         {
1177                 int retval;
1178                 if ((retval = target_halt(target)) != ERROR_OK)
1179                         return retval;
1180         }
1181
1182         return ERROR_OK;
1183 }
1184
1185 /*
1186  * Cortex-A8 Memory access
1187  *
1188  * This is same Cortex M3 but we must also use the correct
1189  * ap number for every access.
1190  */
1191
1192 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1193                 uint32_t size, uint32_t count, uint8_t *buffer)
1194 {
1195         struct armv7a_common *armv7a = target_to_armv7a(target);
1196         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1197         int retval = ERROR_INVALID_ARGUMENTS;
1198
1199         /* cortex_a8 handles unaligned memory access */
1200
1201 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1202
1203         if (count && buffer) {
1204                 switch (size) {
1205                 case 4:
1206                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1207                         break;
1208                 case 2:
1209                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1210                         break;
1211                 case 1:
1212                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1213                         break;
1214                 }
1215         }
1216
1217         return retval;
1218 }
1219
1220 int cortex_a8_write_memory(struct target *target, uint32_t address,
1221                 uint32_t size, uint32_t count, uint8_t *buffer)
1222 {
1223         struct armv7a_common *armv7a = target_to_armv7a(target);
1224         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1225         int retval = ERROR_INVALID_ARGUMENTS;
1226
1227 // ???  dap_ap_select(swjdp, swjdp_memoryap);
1228
1229         if (count && buffer) {
1230                 switch (size) {
1231                 case 4:
1232                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1233                         break;
1234                 case 2:
1235                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1236                         break;
1237                 case 1:
1238                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1239                         break;
1240                 }
1241         }
1242
1243         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1244         {
1245                 /* The Cache handling will NOT work with MMU active, the wrong addresses will be invalidated */
1246                 /* invalidate I-Cache */
1247                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1248                 {
1249                         /* Invalidate ICache single entry with MVA, repeat this for all cache
1250                            lines in the address range, Cortex-A8 has fixed 64 byte line length */
1251                         /* Invalidate Cache single entry with MVA to PoU */
1252                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1253                                 armv7a->write_cp15(target, 0, 1, 7, 5, cacheline); /* I-Cache to PoU */
1254                 }
1255                 /* invalidate D-Cache */
1256                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1257                 {
1258                         /* Invalidate Cache single entry with MVA to PoC */
1259                         for (uint32_t cacheline=address; cacheline<address+size*count; cacheline+=64)
1260                                 armv7a->write_cp15(target, 0, 1, 7, 6, cacheline); /* U/D cache to PoC */
1261                 }
1262         }
1263
1264         return retval;
1265 }
1266
1267 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1268                 uint32_t count, uint8_t *buffer)
1269 {
1270         return cortex_a8_write_memory(target, address, 4, count, buffer);
1271 }
1272
1273
1274 static int cortex_a8_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1275 {
1276 #if 0
1277         u16 dcrdr;
1278
1279         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1280         *ctrl = (uint8_t)dcrdr;
1281         *value = (uint8_t)(dcrdr >> 8);
1282
1283         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1284
1285         /* write ack back to software dcc register
1286          * signify we have read data */
1287         if (dcrdr & (1 << 0))
1288         {
1289                 dcrdr = 0;
1290                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1291         }
1292 #endif
1293         return ERROR_OK;
1294 }
1295
1296
1297 static int cortex_a8_handle_target_request(void *priv)
1298 {
1299         struct target *target = priv;
1300         struct armv7a_common *armv7a = target_to_armv7a(target);
1301         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1302
1303         if (!target_was_examined(target))
1304                 return ERROR_OK;
1305         if (!target->dbg_msg_enabled)
1306                 return ERROR_OK;
1307
1308         if (target->state == TARGET_RUNNING)
1309         {
1310                 uint8_t data = 0;
1311                 uint8_t ctrl = 0;
1312
1313                 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1314
1315                 /* check if we have data */
1316                 if (ctrl & (1 << 0))
1317                 {
1318                         uint32_t request;
1319
1320                         /* we assume target is quick enough */
1321                         request = data;
1322                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1323                         request |= (data << 8);
1324                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1325                         request |= (data << 16);
1326                         cortex_a8_dcc_read(swjdp, &data, &ctrl);
1327                         request |= (data << 24);
1328                         target_request(target, request);
1329                 }
1330         }
1331
1332         return ERROR_OK;
1333 }
1334
1335 /*
1336  * Cortex-A8 target information and configuration
1337  */
1338
1339 static int cortex_a8_examine(struct target *target)
1340 {
1341         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1342         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1343         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1344         int i;
1345         int retval = ERROR_OK;
1346         uint32_t didr, ctypr, ttypr, cpuid;
1347
1348         LOG_DEBUG("TODO");
1349
1350         /* Here we shall insert a proper ROM Table scan */
1351         armv7a->debug_base = OMAP3530_DEBUG_BASE;
1352
1353         /* We do one extra read to ensure DAP is configured,
1354          * we call ahbap_debugport_init(swjdp) instead
1355          */
1356         ahbap_debugport_init(swjdp);
1357         mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1358         if ((retval = mem_ap_read_atomic_u32(swjdp,
1359                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1360         {
1361                 LOG_DEBUG("Examine failed");
1362                 return retval;
1363         }
1364
1365         if ((retval = mem_ap_read_atomic_u32(swjdp,
1366                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1367         {
1368                 LOG_DEBUG("Examine failed");
1369                 return retval;
1370         }
1371
1372         if ((retval = mem_ap_read_atomic_u32(swjdp,
1373                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1374         {
1375                 LOG_DEBUG("Examine failed");
1376                 return retval;
1377         }
1378
1379         if ((retval = mem_ap_read_atomic_u32(swjdp,
1380                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1381         {
1382                 LOG_DEBUG("Examine failed");
1383                 return retval;
1384         }
1385
1386         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1387         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1388         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1389         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1390
1391         /* Setup Breakpoint Register Pairs */
1392         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1393         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1394         cortex_a8->brp_num_available = cortex_a8->brp_num;
1395         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1396 //      cortex_a8->brb_enabled = ????;
1397         for (i = 0; i < cortex_a8->brp_num; i++)
1398         {
1399                 cortex_a8->brp_list[i].used = 0;
1400                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1401                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1402                 else
1403                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1404                 cortex_a8->brp_list[i].value = 0;
1405                 cortex_a8->brp_list[i].control = 0;
1406                 cortex_a8->brp_list[i].BRPn = i;
1407         }
1408
1409         /* Setup Watchpoint Register Pairs */
1410         cortex_a8->wrp_num = ((didr >> 28) & 0x0F) + 1;
1411         cortex_a8->wrp_num_available = cortex_a8->wrp_num;
1412         cortex_a8->wrp_list = calloc(cortex_a8->wrp_num, sizeof(struct cortex_a8_wrp));
1413         for (i = 0; i < cortex_a8->wrp_num; i++)
1414         {
1415                 cortex_a8->wrp_list[i].used = 0;
1416                 cortex_a8->wrp_list[i].type = 0;
1417                 cortex_a8->wrp_list[i].value = 0;
1418                 cortex_a8->wrp_list[i].control = 0;
1419                 cortex_a8->wrp_list[i].WRPn = i;
1420         }
1421         LOG_DEBUG("Configured %i hw breakpoint pairs and %i hw watchpoint pairs",
1422                         cortex_a8->brp_num , cortex_a8->wrp_num);
1423
1424         /* Configure core debug access */
1425         cortex_a8_init_debug_access(target);
1426
1427         target_set_examined(target);
1428
1429         return retval;
1430 }
1431
1432 /*
1433  *      Cortex-A8 target creation and initialization
1434  */
1435
1436 static void cortex_a8_build_reg_cache(struct target *target)
1437 {
1438         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1439         struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target);
1440
1441         armv4_5->core_type = ARM_MODE_MON;
1442
1443         (*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
1444         armv4_5->core_cache = (*cache_p);
1445 }
1446
1447
1448 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1449                 struct target *target)
1450 {
1451         cortex_a8_build_reg_cache(target);
1452         return ERROR_OK;
1453 }
1454
1455 int cortex_a8_init_arch_info(struct target *target,
1456                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1457 {
1458         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1459         struct arm *armv4_5 = &armv7a->armv4_5_common;
1460         struct swjdp_common *swjdp = &armv7a->swjdp_info;
1461
1462         /* Setup struct cortex_a8_common */
1463         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1464         armv4_5->arch_info = armv7a;
1465
1466         /* prepare JTAG information for the new target */
1467         cortex_a8->jtag_info.tap = tap;
1468         cortex_a8->jtag_info.scann_size = 4;
1469 LOG_DEBUG(" ");
1470         swjdp->dp_select_value = -1;
1471         swjdp->ap_csw_value = -1;
1472         swjdp->ap_tar_value = -1;
1473         swjdp->jtag_info = &cortex_a8->jtag_info;
1474         swjdp->memaccess_tck = 80;
1475
1476         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1477         swjdp->tar_autoincr_block = (1 << 10);
1478
1479         cortex_a8->fast_reg_read = 0;
1480
1481
1482         /* register arch-specific functions */
1483         armv7a->examine_debug_reason = NULL;
1484
1485         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1486
1487         armv7a->pre_restore_context = NULL;
1488         armv7a->post_restore_context = NULL;
1489         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1490 //      armv7a->armv4_5_mmu.get_ttb = armv7a_get_ttb;
1491         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_memory;
1492         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_memory;
1493 //      armv7a->armv4_5_mmu.disable_mmu_caches = armv7a_disable_mmu_caches;
1494 //      armv7a->armv4_5_mmu.enable_mmu_caches = armv7a_enable_mmu_caches;
1495         armv7a->armv4_5_mmu.has_tiny_pages = 1;
1496         armv7a->armv4_5_mmu.mmu_enabled = 0;
1497         armv7a->read_cp15 = cortex_a8_read_cp15;
1498         armv7a->write_cp15 = cortex_a8_write_cp15;
1499
1500
1501 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
1502
1503         armv4_5->read_core_reg = cortex_a8_read_core_reg;
1504         armv4_5->write_core_reg = cortex_a8_write_core_reg;
1505
1506         /* REVISIT v7a setup should be in a v7a-specific routine */
1507         armv4_5_init_arch_info(target, armv4_5);
1508         armv7a->common_magic = ARMV7_COMMON_MAGIC;
1509
1510         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1511
1512         return ERROR_OK;
1513 }
1514
1515 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1516 {
1517         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1518
1519         cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1520
1521         return ERROR_OK;
1522 }
1523
1524 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1525 {
1526         struct target *target = get_current_target(CMD_CTX);
1527         struct armv7a_common *armv7a = target_to_armv7a(target);
1528
1529         return armv4_5_handle_cache_info_command(CMD_CTX,
1530                         &armv7a->armv4_5_mmu.armv4_5_cache);
1531 }
1532
1533
1534 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1535 {
1536         struct target *target = get_current_target(CMD_CTX);
1537
1538         cortex_a8_init_debug_access(target);
1539
1540         return ERROR_OK;
1541 }
1542
1543
1544 static int cortex_a8_register_commands(struct command_context *cmd_ctx)
1545 {
1546         struct command *cortex_a8_cmd;
1547         int retval = ERROR_OK;
1548
1549         armv4_5_register_commands(cmd_ctx);
1550         armv7a_register_commands(cmd_ctx);
1551
1552         cortex_a8_cmd = register_command(cmd_ctx, NULL, "cortex_a8",
1553                         NULL, COMMAND_ANY,
1554                         "cortex_a8 specific commands");
1555
1556         register_command(cmd_ctx, cortex_a8_cmd, "cache_info",
1557                         cortex_a8_handle_cache_info_command, COMMAND_EXEC,
1558                         "display information about target caches");
1559
1560         register_command(cmd_ctx, cortex_a8_cmd, "dbginit",
1561                         cortex_a8_handle_dbginit_command, COMMAND_EXEC,
1562                         "Initialize core debug");
1563
1564         return retval;
1565 }
1566
1567 struct target_type cortexa8_target = {
1568         .name = "cortex_a8",
1569
1570         .poll = cortex_a8_poll,
1571         .arch_state = armv7a_arch_state,
1572
1573         .target_request_data = NULL,
1574
1575         .halt = cortex_a8_halt,
1576         .resume = cortex_a8_resume,
1577         .step = cortex_a8_step,
1578
1579         .assert_reset = cortex_a8_assert_reset,
1580         .deassert_reset = cortex_a8_deassert_reset,
1581         .soft_reset_halt = NULL,
1582
1583         .get_gdb_reg_list = armv4_5_get_gdb_reg_list,
1584
1585         .read_memory = cortex_a8_read_memory,
1586         .write_memory = cortex_a8_write_memory,
1587         .bulk_write_memory = cortex_a8_bulk_write_memory,
1588
1589         .checksum_memory = arm_checksum_memory,
1590         .blank_check_memory = arm_blank_check_memory,
1591
1592         .run_algorithm = armv4_5_run_algorithm,
1593
1594         .add_breakpoint = cortex_a8_add_breakpoint,
1595         .remove_breakpoint = cortex_a8_remove_breakpoint,
1596         .add_watchpoint = NULL,
1597         .remove_watchpoint = NULL,
1598
1599         .register_commands = cortex_a8_register_commands,
1600         .target_create = cortex_a8_target_create,
1601         .init_target = cortex_a8_init_target,
1602         .examine = cortex_a8_examine,
1603         .mrc = cortex_a8_mrc,
1604         .mcr = cortex_a8_mcr,
1605 };