]> git.sur5r.net Git - openocd/blob - src/target/cortex_m.c
578f6eebb7c9739339724a5c761494e794c510d8
[openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
44
45 /* NOTE:  most of this should work fine for the Cortex-M1 and
46  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47  * Some differences:  M0/M1 doesn't have FBP remapping or the
48  * DWT tracing/profiling support.  (So the cycle counter will
49  * not be usable; the other stuff isn't currently used here.)
50  *
51  * Although there are some workarounds for errata seen only in r0p0
52  * silicon, such old parts are hard to find and thus not much tested
53  * any longer.
54  */
55
56 /**
57  * Returns the type of a break point required by address location
58  */
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
60
61 /* forward declarations */
62 static int cortex_m_store_core_reg_u32(struct target *target,
63                 uint32_t num, uint32_t value);
64
65 static int cortexm_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
66         uint32_t *value, int regnum)
67 {
68         int retval;
69         uint32_t dcrdr;
70
71         /* because the DCB_DCRDR is used for the emulated dcc channel
72          * we have to save/restore the DCB_DCRDR when used */
73
74         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
75         if (retval != ERROR_OK)
76                 return retval;
77
78         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
79         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
80         if (retval != ERROR_OK)
81                 return retval;
82         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
83         if (retval != ERROR_OK)
84                 return retval;
85
86         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
87         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
88         if (retval != ERROR_OK)
89                 return retval;
90         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
91         if (retval != ERROR_OK)
92                 return retval;
93
94         retval = dap_run(swjdp);
95         if (retval != ERROR_OK)
96                 return retval;
97
98         /* restore DCB_DCRDR - this needs to be in a seperate
99          * transaction otherwise the emulated DCC channel breaks */
100         if (retval == ERROR_OK)
101                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
102
103         return retval;
104 }
105
106 static int cortexm_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
107         uint32_t value, int regnum)
108 {
109         int retval;
110         uint32_t dcrdr;
111
112         /* because the DCB_DCRDR is used for the emulated dcc channel
113          * we have to save/restore the DCB_DCRDR when used */
114
115         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
116         if (retval != ERROR_OK)
117                 return retval;
118
119         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
120         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
121         if (retval != ERROR_OK)
122                 return retval;
123         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
124         if (retval != ERROR_OK)
125                 return retval;
126
127         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
128         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
129         if (retval != ERROR_OK)
130                 return retval;
131         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
132         if (retval != ERROR_OK)
133                 return retval;
134
135         retval = dap_run(swjdp);
136         if (retval != ERROR_OK)
137                 return retval;
138
139         /* restore DCB_DCRDR - this needs to be in a seperate
140          * transaction otherwise the emulated DCC channel breaks */
141         if (retval == ERROR_OK)
142                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
143
144         return retval;
145 }
146
147 static int cortex_m_write_debug_halt_mask(struct target *target,
148         uint32_t mask_on, uint32_t mask_off)
149 {
150         struct cortex_m_common *cortex_m = target_to_cm(target);
151         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
152
153         /* mask off status bits */
154         cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
155         /* create new register mask */
156         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
157
158         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m->dcb_dhcsr);
159 }
160
161 static int cortex_m_clear_halt(struct target *target)
162 {
163         struct cortex_m_common *cortex_m = target_to_cm(target);
164         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
165         int retval;
166
167         /* clear step if any */
168         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
169
170         /* Read Debug Fault Status Register */
171         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m->nvic_dfsr);
172         if (retval != ERROR_OK)
173                 return retval;
174
175         /* Clear Debug Fault Status */
176         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m->nvic_dfsr);
177         if (retval != ERROR_OK)
178                 return retval;
179         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
180
181         return ERROR_OK;
182 }
183
184 static int cortex_m_single_step_core(struct target *target)
185 {
186         struct cortex_m_common *cortex_m = target_to_cm(target);
187         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
188         uint32_t dhcsr_save;
189         int retval;
190
191         /* backup dhcsr reg */
192         dhcsr_save = cortex_m->dcb_dhcsr;
193
194         /* Mask interrupts before clearing halt, if done already.  This avoids
195          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
196          * HALT can put the core into an unknown state.
197          */
198         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
199                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
200                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
201                 if (retval != ERROR_OK)
202                         return retval;
203         }
204         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
205                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
206         if (retval != ERROR_OK)
207                 return retval;
208         LOG_DEBUG(" ");
209
210         /* restore dhcsr reg */
211         cortex_m->dcb_dhcsr = dhcsr_save;
212         cortex_m_clear_halt(target);
213
214         return ERROR_OK;
215 }
216
217 static int cortex_m_enable_fpb(struct target *target)
218 {
219         int retval = target_write_u32(target, FP_CTRL, 3);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /* check the fpb is actually enabled */
224         uint32_t fpctrl;
225         retval = target_read_u32(target, FP_CTRL, &fpctrl);
226         if (retval != ERROR_OK)
227                 return retval;
228
229         if (fpctrl & 1)
230                 return ERROR_OK;
231
232         return ERROR_FAIL;
233 }
234
235 static int cortex_m_endreset_event(struct target *target)
236 {
237         int i;
238         int retval;
239         uint32_t dcb_demcr;
240         struct cortex_m_common *cortex_m = target_to_cm(target);
241         struct armv7m_common *armv7m = &cortex_m->armv7m;
242         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
243         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
244         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
245
246         /* REVISIT The four debug monitor bits are currently ignored... */
247         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
248         if (retval != ERROR_OK)
249                 return retval;
250         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
251
252         /* this register is used for emulated dcc channel */
253         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
254         if (retval != ERROR_OK)
255                 return retval;
256
257         /* Enable debug requests */
258         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
259         if (retval != ERROR_OK)
260                 return retval;
261         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
262                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
263                 if (retval != ERROR_OK)
264                         return retval;
265         }
266
267         /* clear any interrupt masking */
268         cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
269
270         /* Enable features controlled by ITM and DWT blocks, and catch only
271          * the vectors we were told to pay attention to.
272          *
273          * Target firmware is responsible for all fault handling policy
274          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
275          * or manual updates to the NVIC SHCSR and CCR registers.
276          */
277         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
278         if (retval != ERROR_OK)
279                 return retval;
280
281         /* Paranoia: evidently some (early?) chips don't preserve all the
282          * debug state (including FBP, DWT, etc) across reset...
283          */
284
285         /* Enable FPB */
286         retval = cortex_m_enable_fpb(target);
287         if (retval != ERROR_OK) {
288                 LOG_ERROR("Failed to enable the FPB");
289                 return retval;
290         }
291
292         cortex_m->fpb_enabled = 1;
293
294         /* Restore FPB registers */
295         for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
296                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
297                 if (retval != ERROR_OK)
298                         return retval;
299         }
300
301         /* Restore DWT registers */
302         for (i = 0; i < cortex_m->dwt_num_comp; i++) {
303                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
304                                 dwt_list[i].comp);
305                 if (retval != ERROR_OK)
306                         return retval;
307                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
308                                 dwt_list[i].mask);
309                 if (retval != ERROR_OK)
310                         return retval;
311                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
312                                 dwt_list[i].function);
313                 if (retval != ERROR_OK)
314                         return retval;
315         }
316         retval = dap_run(swjdp);
317         if (retval != ERROR_OK)
318                 return retval;
319
320         register_cache_invalidate(armv7m->arm.core_cache);
321
322         /* make sure we have latest dhcsr flags */
323         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
324
325         return retval;
326 }
327
328 static int cortex_m_examine_debug_reason(struct target *target)
329 {
330         struct cortex_m_common *cortex_m = target_to_cm(target);
331
332         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
333          * only check the debug reason if we don't know it already */
334
335         if ((target->debug_reason != DBG_REASON_DBGRQ)
336                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
337                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
338                         target->debug_reason = DBG_REASON_BREAKPOINT;
339                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
340                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
341                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
342                         target->debug_reason = DBG_REASON_WATCHPOINT;
343                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
344                         target->debug_reason = DBG_REASON_BREAKPOINT;
345                 else    /* EXTERNAL, HALTED */
346                         target->debug_reason = DBG_REASON_UNDEFINED;
347         }
348
349         return ERROR_OK;
350 }
351
352 static int cortex_m_examine_exception_reason(struct target *target)
353 {
354         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
355         struct armv7m_common *armv7m = target_to_armv7m(target);
356         struct adiv5_dap *swjdp = armv7m->arm.dap;
357         int retval;
358
359         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
360         if (retval != ERROR_OK)
361                 return retval;
362         switch (armv7m->exception_number) {
363                 case 2: /* NMI */
364                         break;
365                 case 3: /* Hard Fault */
366                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
367                         if (retval != ERROR_OK)
368                                 return retval;
369                         if (except_sr & 0x40000000) {
370                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
371                                 if (retval != ERROR_OK)
372                                         return retval;
373                         }
374                         break;
375                 case 4: /* Memory Management */
376                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
377                         if (retval != ERROR_OK)
378                                 return retval;
379                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
380                         if (retval != ERROR_OK)
381                                 return retval;
382                         break;
383                 case 5: /* Bus Fault */
384                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
385                         if (retval != ERROR_OK)
386                                 return retval;
387                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
388                         if (retval != ERROR_OK)
389                                 return retval;
390                         break;
391                 case 6: /* Usage Fault */
392                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
393                         if (retval != ERROR_OK)
394                                 return retval;
395                         break;
396                 case 11:        /* SVCall */
397                         break;
398                 case 12:        /* Debug Monitor */
399                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
400                         if (retval != ERROR_OK)
401                                 return retval;
402                         break;
403                 case 14:        /* PendSV */
404                         break;
405                 case 15:        /* SysTick */
406                         break;
407                 default:
408                         except_sr = 0;
409                         break;
410         }
411         retval = dap_run(swjdp);
412         if (retval == ERROR_OK)
413                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
414                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
415                         armv7m_exception_string(armv7m->exception_number),
416                         shcsr, except_sr, cfsr, except_ar);
417         return retval;
418 }
419
420 static int cortex_m_debug_entry(struct target *target)
421 {
422         int i;
423         uint32_t xPSR;
424         int retval;
425         struct cortex_m_common *cortex_m = target_to_cm(target);
426         struct armv7m_common *armv7m = &cortex_m->armv7m;
427         struct arm *arm = &armv7m->arm;
428         struct adiv5_dap *swjdp = armv7m->arm.dap;
429         struct reg *r;
430
431         LOG_DEBUG(" ");
432
433         cortex_m_clear_halt(target);
434         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
435         if (retval != ERROR_OK)
436                 return retval;
437
438         retval = armv7m->examine_debug_reason(target);
439         if (retval != ERROR_OK)
440                 return retval;
441
442         /* Examine target state and mode
443          * First load register accessible through core debug port */
444         int num_regs = arm->core_cache->num_regs;
445
446         for (i = 0; i < num_regs; i++) {
447                 r = &armv7m->arm.core_cache->reg_list[i];
448                 if (!r->valid)
449                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
450         }
451
452         r = arm->cpsr;
453         xPSR = buf_get_u32(r->value, 0, 32);
454
455         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
456         if (xPSR & 0xf00) {
457                 r->dirty = r->valid;
458                 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
459         }
460
461         /* Are we in an exception handler */
462         if (xPSR & 0x1FF) {
463                 armv7m->exception_number = (xPSR & 0x1FF);
464
465                 arm->core_mode = ARM_MODE_HANDLER;
466                 arm->map = armv7m_msp_reg_map;
467         } else {
468                 unsigned control = buf_get_u32(arm->core_cache
469                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
470
471                 /* is this thread privileged? */
472                 arm->core_mode = control & 1
473                         ? ARM_MODE_USER_THREAD
474                         : ARM_MODE_THREAD;
475
476                 /* which stack is it using? */
477                 if (control & 2)
478                         arm->map = armv7m_psp_reg_map;
479                 else
480                         arm->map = armv7m_msp_reg_map;
481
482                 armv7m->exception_number = 0;
483         }
484
485         if (armv7m->exception_number)
486                 cortex_m_examine_exception_reason(target);
487
488         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
489                 arm_mode_name(arm->core_mode),
490                 *(uint32_t *)(arm->pc->value),
491                 target_state_name(target));
492
493         if (armv7m->post_debug_entry) {
494                 retval = armv7m->post_debug_entry(target);
495                 if (retval != ERROR_OK)
496                         return retval;
497         }
498
499         return ERROR_OK;
500 }
501
502 static int cortex_m_poll(struct target *target)
503 {
504         int detected_failure = ERROR_OK;
505         int retval = ERROR_OK;
506         enum target_state prev_target_state = target->state;
507         struct cortex_m_common *cortex_m = target_to_cm(target);
508         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
509
510         /* Read from Debug Halting Control and Status Register */
511         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
512         if (retval != ERROR_OK) {
513                 target->state = TARGET_UNKNOWN;
514                 return retval;
515         }
516
517         /* Recover from lockup.  See ARMv7-M architecture spec,
518          * section B1.5.15 "Unrecoverable exception cases".
519          */
520         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
521                 LOG_ERROR("%s -- clearing lockup after double fault",
522                         target_name(target));
523                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
524                 target->debug_reason = DBG_REASON_DBGRQ;
525
526                 /* We have to execute the rest (the "finally" equivalent, but
527                  * still throw this exception again).
528                  */
529                 detected_failure = ERROR_FAIL;
530
531                 /* refresh status bits */
532                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
533                 if (retval != ERROR_OK)
534                         return retval;
535         }
536
537         if (cortex_m->dcb_dhcsr & S_RESET_ST) {
538                 /* check if still in reset */
539                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
540                 if (retval != ERROR_OK)
541                         return retval;
542
543                 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
544                         target->state = TARGET_RESET;
545                         return ERROR_OK;
546                 }
547         }
548
549         if (target->state == TARGET_RESET) {
550                 /* Cannot switch context while running so endreset is
551                  * called with target->state == TARGET_RESET
552                  */
553                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
554                         cortex_m->dcb_dhcsr);
555                 cortex_m_endreset_event(target);
556                 target->state = TARGET_RUNNING;
557                 prev_target_state = TARGET_RUNNING;
558         }
559
560         if (cortex_m->dcb_dhcsr & S_HALT) {
561                 target->state = TARGET_HALTED;
562
563                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
564                         retval = cortex_m_debug_entry(target);
565                         if (retval != ERROR_OK)
566                                 return retval;
567
568                         if (arm_semihosting(target, &retval) != 0)
569                                 return retval;
570
571                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
572                 }
573                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
574                         LOG_DEBUG(" ");
575                         retval = cortex_m_debug_entry(target);
576                         if (retval != ERROR_OK)
577                                 return retval;
578
579                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
580                 }
581         }
582
583         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
584          * How best to model low power modes?
585          */
586
587         if (target->state == TARGET_UNKNOWN) {
588                 /* check if processor is retiring instructions */
589                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
590                         target->state = TARGET_RUNNING;
591                         retval = ERROR_OK;
592                 }
593         }
594
595         /* Did we detect a failure condition that we cleared? */
596         if (detected_failure != ERROR_OK)
597                 retval = detected_failure;
598         return retval;
599 }
600
601 static int cortex_m_halt(struct target *target)
602 {
603         LOG_DEBUG("target->state: %s",
604                 target_state_name(target));
605
606         if (target->state == TARGET_HALTED) {
607                 LOG_DEBUG("target was already halted");
608                 return ERROR_OK;
609         }
610
611         if (target->state == TARGET_UNKNOWN)
612                 LOG_WARNING("target was in unknown state when halt was requested");
613
614         if (target->state == TARGET_RESET) {
615                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
616                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
617                         return ERROR_TARGET_FAILURE;
618                 } else {
619                         /* we came here in a reset_halt or reset_init sequence
620                          * debug entry was already prepared in cortex_m3_assert_reset()
621                          */
622                         target->debug_reason = DBG_REASON_DBGRQ;
623
624                         return ERROR_OK;
625                 }
626         }
627
628         /* Write to Debug Halting Control and Status Register */
629         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
630
631         target->debug_reason = DBG_REASON_DBGRQ;
632
633         return ERROR_OK;
634 }
635
636 static int cortex_m_soft_reset_halt(struct target *target)
637 {
638         struct cortex_m_common *cortex_m = target_to_cm(target);
639         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
640         uint32_t dcb_dhcsr = 0;
641         int retval, timeout = 0;
642
643         /* soft_reset_halt is deprecated on cortex_m as the same functionality
644          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
645          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
646          * core, not the peripherals */
647         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
648
649         /* Enter debug state on reset; restore DEMCR in endreset_event() */
650         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
651                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
652         if (retval != ERROR_OK)
653                 return retval;
654
655         /* Request a core-only reset */
656         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
657                         AIRCR_VECTKEY | AIRCR_VECTRESET);
658         if (retval != ERROR_OK)
659                 return retval;
660         target->state = TARGET_RESET;
661
662         /* registers are now invalid */
663         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
664
665         while (timeout < 100) {
666                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
667                 if (retval == ERROR_OK) {
668                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
669                                         &cortex_m->nvic_dfsr);
670                         if (retval != ERROR_OK)
671                                 return retval;
672                         if ((dcb_dhcsr & S_HALT)
673                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
674                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
675                                         "DFSR 0x%08x",
676                                         (unsigned) dcb_dhcsr,
677                                         (unsigned) cortex_m->nvic_dfsr);
678                                 cortex_m_poll(target);
679                                 /* FIXME restore user's vector catch config */
680                                 return ERROR_OK;
681                         } else
682                                 LOG_DEBUG("waiting for system reset-halt, "
683                                         "DHCSR 0x%08x, %d ms",
684                                         (unsigned) dcb_dhcsr, timeout);
685                 }
686                 timeout++;
687                 alive_sleep(1);
688         }
689
690         return ERROR_OK;
691 }
692
693 void cortex_m_enable_breakpoints(struct target *target)
694 {
695         struct breakpoint *breakpoint = target->breakpoints;
696
697         /* set any pending breakpoints */
698         while (breakpoint) {
699                 if (!breakpoint->set)
700                         cortex_m_set_breakpoint(target, breakpoint);
701                 breakpoint = breakpoint->next;
702         }
703 }
704
705 static int cortex_m_resume(struct target *target, int current,
706         uint32_t address, int handle_breakpoints, int debug_execution)
707 {
708         struct armv7m_common *armv7m = target_to_armv7m(target);
709         struct breakpoint *breakpoint = NULL;
710         uint32_t resume_pc;
711         struct reg *r;
712
713         if (target->state != TARGET_HALTED) {
714                 LOG_WARNING("target not halted");
715                 return ERROR_TARGET_NOT_HALTED;
716         }
717
718         if (!debug_execution) {
719                 target_free_all_working_areas(target);
720                 cortex_m_enable_breakpoints(target);
721                 cortex_m_enable_watchpoints(target);
722         }
723
724         if (debug_execution) {
725                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
726
727                 /* Disable interrupts */
728                 /* We disable interrupts in the PRIMASK register instead of
729                  * masking with C_MASKINTS.  This is probably the same issue
730                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
731                  * in parallel with disabled interrupts can cause local faults
732                  * to not be taken.
733                  *
734                  * REVISIT this clearly breaks non-debug execution, since the
735                  * PRIMASK register state isn't saved/restored...  workaround
736                  * by never resuming app code after debug execution.
737                  */
738                 buf_set_u32(r->value, 0, 1, 1);
739                 r->dirty = true;
740                 r->valid = true;
741
742                 /* Make sure we are in Thumb mode */
743                 r = armv7m->arm.cpsr;
744                 buf_set_u32(r->value, 24, 1, 1);
745                 r->dirty = true;
746                 r->valid = true;
747         }
748
749         /* current = 1: continue on current pc, otherwise continue at <address> */
750         r = armv7m->arm.pc;
751         if (!current) {
752                 buf_set_u32(r->value, 0, 32, address);
753                 r->dirty = true;
754                 r->valid = true;
755         }
756
757         /* if we halted last time due to a bkpt instruction
758          * then we have to manually step over it, otherwise
759          * the core will break again */
760
761         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
762                 && !debug_execution)
763                 armv7m_maybe_skip_bkpt_inst(target, NULL);
764
765         resume_pc = buf_get_u32(r->value, 0, 32);
766
767         armv7m_restore_context(target);
768
769         /* the front-end may request us not to handle breakpoints */
770         if (handle_breakpoints) {
771                 /* Single step past breakpoint at current address */
772                 breakpoint = breakpoint_find(target, resume_pc);
773                 if (breakpoint) {
774                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %" PRIu32 ")",
775                                 breakpoint->address,
776                                 breakpoint->unique_id);
777                         cortex_m_unset_breakpoint(target, breakpoint);
778                         cortex_m_single_step_core(target);
779                         cortex_m_set_breakpoint(target, breakpoint);
780                 }
781         }
782
783         /* Restart core */
784         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
785
786         target->debug_reason = DBG_REASON_NOTHALTED;
787
788         /* registers are now invalid */
789         register_cache_invalidate(armv7m->arm.core_cache);
790
791         if (!debug_execution) {
792                 target->state = TARGET_RUNNING;
793                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
794                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
795         } else {
796                 target->state = TARGET_DEBUG_RUNNING;
797                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
798                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
799         }
800
801         return ERROR_OK;
802 }
803
804 /* int irqstepcount = 0; */
805 static int cortex_m_step(struct target *target, int current,
806         uint32_t address, int handle_breakpoints)
807 {
808         struct cortex_m_common *cortex_m = target_to_cm(target);
809         struct armv7m_common *armv7m = &cortex_m->armv7m;
810         struct adiv5_dap *swjdp = armv7m->arm.dap;
811         struct breakpoint *breakpoint = NULL;
812         struct reg *pc = armv7m->arm.pc;
813         bool bkpt_inst_found = false;
814         int retval;
815         bool isr_timed_out = false;
816
817         if (target->state != TARGET_HALTED) {
818                 LOG_WARNING("target not halted");
819                 return ERROR_TARGET_NOT_HALTED;
820         }
821
822         /* current = 1: continue on current pc, otherwise continue at <address> */
823         if (!current)
824                 buf_set_u32(pc->value, 0, 32, address);
825
826         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
827
828         /* the front-end may request us not to handle breakpoints */
829         if (handle_breakpoints) {
830                 breakpoint = breakpoint_find(target, pc_value);
831                 if (breakpoint)
832                         cortex_m_unset_breakpoint(target, breakpoint);
833         }
834
835         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
836
837         target->debug_reason = DBG_REASON_SINGLESTEP;
838
839         armv7m_restore_context(target);
840
841         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
842
843         /* if no bkpt instruction is found at pc then we can perform
844          * a normal step, otherwise we have to manually step over the bkpt
845          * instruction - as such simulate a step */
846         if (bkpt_inst_found == false) {
847                 /* Automatic ISR masking mode off: Just step over the next instruction */
848                 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
849                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
850                 else {
851                         /* Process interrupts during stepping in a way they don't interfere
852                          * debugging.
853                          *
854                          * Principle:
855                          *
856                          * Set a temporary break point at the current pc and let the core run
857                          * with interrupts enabled. Pending interrupts get served and we run
858                          * into the breakpoint again afterwards. Then we step over the next
859                          * instruction with interrupts disabled.
860                          *
861                          * If the pending interrupts don't complete within time, we leave the
862                          * core running. This may happen if the interrupts trigger faster
863                          * than the core can process them or the handler doesn't return.
864                          *
865                          * If no more breakpoints are available we simply do a step with
866                          * interrupts enabled.
867                          *
868                          */
869
870                         /* 2012-09-29 ph
871                          *
872                          * If a break point is already set on the lower half word then a break point on
873                          * the upper half word will not break again when the core is restarted. So we
874                          * just step over the instruction with interrupts disabled.
875                          *
876                          * The documentation has no information about this, it was found by observation
877                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
878                          * suffer from this problem.
879                          *
880                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
881                          * address has it always cleared. The former is done to indicate thumb mode
882                          * to gdb.
883                          *
884                          */
885                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
886                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
887                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
888                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
889                                 /* Re-enable interrupts */
890                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
891                         }
892                         else {
893
894                                 /* Set a temporary break point */
895                                 if (breakpoint)
896                                         retval = cortex_m_set_breakpoint(target, breakpoint);
897                                 else
898                                         retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
899                                 bool tmp_bp_set = (retval == ERROR_OK);
900
901                                 /* No more breakpoints left, just do a step */
902                                 if (!tmp_bp_set)
903                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
904                                 else {
905                                         /* Start the core */
906                                         LOG_DEBUG("Starting core to serve pending interrupts");
907                                         int64_t t_start = timeval_ms();
908                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
909
910                                         /* Wait for pending handlers to complete or timeout */
911                                         do {
912                                                 retval = mem_ap_read_atomic_u32(swjdp,
913                                                                 DCB_DHCSR,
914                                                                 &cortex_m->dcb_dhcsr);
915                                                 if (retval != ERROR_OK) {
916                                                         target->state = TARGET_UNKNOWN;
917                                                         return retval;
918                                                 }
919                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
920                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
921
922                                         /* only remove breakpoint if we created it */
923                                         if (breakpoint)
924                                                 cortex_m_unset_breakpoint(target, breakpoint);
925                                         else {
926                                                 /* Remove the temporary breakpoint */
927                                                 breakpoint_remove(target, pc_value);
928                                         }
929
930                                         if (isr_timed_out) {
931                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
932                                                         "leaving target running");
933                                         } else {
934                                                 /* Step over next instruction with interrupts disabled */
935                                                 cortex_m_write_debug_halt_mask(target,
936                                                         C_HALT | C_MASKINTS,
937                                                         0);
938                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
939                                                 /* Re-enable interrupts */
940                                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
941                                         }
942                                 }
943                         }
944                 }
945         }
946
947         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
948         if (retval != ERROR_OK)
949                 return retval;
950
951         /* registers are now invalid */
952         register_cache_invalidate(armv7m->arm.core_cache);
953
954         if (breakpoint)
955                 cortex_m_set_breakpoint(target, breakpoint);
956
957         if (isr_timed_out) {
958                 /* Leave the core running. The user has to stop execution manually. */
959                 target->debug_reason = DBG_REASON_NOTHALTED;
960                 target->state = TARGET_RUNNING;
961                 return ERROR_OK;
962         }
963
964         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
965                 " nvic_icsr = 0x%" PRIx32,
966                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
967
968         retval = cortex_m_debug_entry(target);
969         if (retval != ERROR_OK)
970                 return retval;
971         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
972
973         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
974                 " nvic_icsr = 0x%" PRIx32,
975                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
976
977         return ERROR_OK;
978 }
979
980 static int cortex_m_assert_reset(struct target *target)
981 {
982         struct cortex_m_common *cortex_m = target_to_cm(target);
983         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
984         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
985
986         LOG_DEBUG("target->state: %s",
987                 target_state_name(target));
988
989         enum reset_types jtag_reset_config = jtag_get_reset_config();
990
991         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
992                 /* allow scripts to override the reset event */
993
994                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
995                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
996                 target->state = TARGET_RESET;
997
998                 return ERROR_OK;
999         }
1000
1001         /* some cores support connecting while srst is asserted
1002          * use that mode is it has been configured */
1003
1004         bool srst_asserted = false;
1005
1006         if ((jtag_reset_config & RESET_HAS_SRST) &&
1007             (jtag_reset_config & RESET_SRST_NO_GATING)) {
1008                 adapter_assert_reset();
1009                 srst_asserted = true;
1010         }
1011
1012         /* Enable debug requests */
1013         int retval;
1014         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1015         if (retval != ERROR_OK)
1016                 return retval;
1017         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
1018                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1019                 if (retval != ERROR_OK)
1020                         return retval;
1021         }
1022
1023         /* If the processor is sleeping in a WFI or WFE instruction, the
1024          * C_HALT bit must be asserted to regain control */
1025         if (cortex_m->dcb_dhcsr & S_SLEEP) {
1026                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1027                 if (retval != ERROR_OK)
1028                         return retval;
1029         }
1030
1031         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1032         if (retval != ERROR_OK)
1033                 return retval;
1034
1035         if (!target->reset_halt) {
1036                 /* Set/Clear C_MASKINTS in a separate operation */
1037                 if (cortex_m->dcb_dhcsr & C_MASKINTS) {
1038                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1039                                         DBGKEY | C_DEBUGEN | C_HALT);
1040                         if (retval != ERROR_OK)
1041                                 return retval;
1042                 }
1043
1044                 /* clear any debug flags before resuming */
1045                 cortex_m_clear_halt(target);
1046
1047                 /* clear C_HALT in dhcsr reg */
1048                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1049         } else {
1050                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1051                  *
1052                  * REVISIT catching BUSERR presumably helps to defend against
1053                  * bad vector table entries.  Should this include MMERR or
1054                  * other flags too?
1055                  */
1056                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1057                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1058                 if (retval != ERROR_OK)
1059                         return retval;
1060         }
1061
1062         if (jtag_reset_config & RESET_HAS_SRST) {
1063                 /* default to asserting srst */
1064                 if (!srst_asserted)
1065                         adapter_assert_reset();
1066         } else {
1067                 /* Use a standard Cortex-M3 software reset mechanism.
1068                  * We default to using VECRESET as it is supported on all current cores.
1069                  * This has the disadvantage of not resetting the peripherals, so a
1070                  * reset-init event handler is needed to perform any peripheral resets.
1071                  */
1072                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1073                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1074                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1075                 if (retval != ERROR_OK)
1076                         return retval;
1077
1078                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1079                         ? "SYSRESETREQ" : "VECTRESET");
1080
1081                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1082                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1083                                 "handler to reset any peripherals or configure hardware srst support.");
1084                 }
1085
1086                 {
1087                         /* I do not know why this is necessary, but it
1088                          * fixes strange effects (step/resume cause NMI
1089                          * after reset) on LM3S6918 -- Michael Schwingen
1090                          */
1091                         uint32_t tmp;
1092                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1093                         if (retval != ERROR_OK)
1094                                 return retval;
1095                 }
1096         }
1097
1098         target->state = TARGET_RESET;
1099         jtag_add_sleep(50000);
1100
1101         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1102
1103         if (target->reset_halt) {
1104                 retval = target_halt(target);
1105                 if (retval != ERROR_OK)
1106                         return retval;
1107         }
1108
1109         return ERROR_OK;
1110 }
1111
1112 static int cortex_m_deassert_reset(struct target *target)
1113 {
1114         LOG_DEBUG("target->state: %s",
1115                 target_state_name(target));
1116
1117         /* deassert reset lines */
1118         adapter_deassert_reset();
1119
1120         return ERROR_OK;
1121 }
1122
1123 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1124 {
1125         int retval;
1126         int fp_num = 0;
1127         uint32_t hilo;
1128         struct cortex_m_common *cortex_m = target_to_cm(target);
1129         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1130
1131         if (breakpoint->set) {
1132                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1133                 return ERROR_OK;
1134         }
1135
1136         if (cortex_m->auto_bp_type)
1137                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1138
1139         if (breakpoint->type == BKPT_HARD) {
1140                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1141                         fp_num++;
1142                 if (fp_num >= cortex_m->fp_num_code) {
1143                         LOG_ERROR("Can not find free FPB Comparator!");
1144                         return ERROR_FAIL;
1145                 }
1146                 breakpoint->set = fp_num + 1;
1147                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1148                 comparator_list[fp_num].used = 1;
1149                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1150                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1151                         comparator_list[fp_num].fpcr_value);
1152                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1153                         fp_num,
1154                         comparator_list[fp_num].fpcr_value);
1155                 if (!cortex_m->fpb_enabled) {
1156                         LOG_DEBUG("FPB wasn't enabled, do it now");
1157                         retval = cortex_m_enable_fpb(target);
1158                         if (retval != ERROR_OK) {
1159                                 LOG_ERROR("Failed to enable the FPB");
1160                                 return retval;
1161                         }
1162
1163                         cortex_m->fpb_enabled = 1;
1164                 }
1165         } else if (breakpoint->type == BKPT_SOFT) {
1166                 uint8_t code[4];
1167
1168                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1169                  * semihosting; don't use that.  Otherwise the BKPT
1170                  * parameter is arbitrary.
1171                  */
1172                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1173                 retval = target_read_memory(target,
1174                                 breakpoint->address & 0xFFFFFFFE,
1175                                 breakpoint->length, 1,
1176                                 breakpoint->orig_instr);
1177                 if (retval != ERROR_OK)
1178                         return retval;
1179                 retval = target_write_memory(target,
1180                                 breakpoint->address & 0xFFFFFFFE,
1181                                 breakpoint->length, 1,
1182                                 code);
1183                 if (retval != ERROR_OK)
1184                         return retval;
1185                 breakpoint->set = true;
1186         }
1187
1188         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1189                 breakpoint->unique_id,
1190                 (int)(breakpoint->type),
1191                 breakpoint->address,
1192                 breakpoint->length,
1193                 breakpoint->set);
1194
1195         return ERROR_OK;
1196 }
1197
1198 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1199 {
1200         int retval;
1201         struct cortex_m_common *cortex_m = target_to_cm(target);
1202         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1203
1204         if (!breakpoint->set) {
1205                 LOG_WARNING("breakpoint not set");
1206                 return ERROR_OK;
1207         }
1208
1209         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1210                 breakpoint->unique_id,
1211                 (int)(breakpoint->type),
1212                 breakpoint->address,
1213                 breakpoint->length,
1214                 breakpoint->set);
1215
1216         if (breakpoint->type == BKPT_HARD) {
1217                 int fp_num = breakpoint->set - 1;
1218                 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1219                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1220                         return ERROR_OK;
1221                 }
1222                 comparator_list[fp_num].used = 0;
1223                 comparator_list[fp_num].fpcr_value = 0;
1224                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1225                         comparator_list[fp_num].fpcr_value);
1226         } else {
1227                 /* restore original instruction (kept in target endianness) */
1228                 if (breakpoint->length == 4) {
1229                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1230                                         breakpoint->orig_instr);
1231                         if (retval != ERROR_OK)
1232                                 return retval;
1233                 } else {
1234                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1235                                         breakpoint->orig_instr);
1236                         if (retval != ERROR_OK)
1237                                 return retval;
1238                 }
1239         }
1240         breakpoint->set = false;
1241
1242         return ERROR_OK;
1243 }
1244
1245 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1246 {
1247         struct cortex_m_common *cortex_m = target_to_cm(target);
1248
1249         if (cortex_m->auto_bp_type)
1250                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1251
1252         if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1253                 if (breakpoint->type == BKPT_HARD) {
1254                         LOG_INFO("flash patch comparator requested outside code memory region");
1255                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1256                 }
1257
1258                 if (breakpoint->type == BKPT_SOFT) {
1259                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1260                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1261                 }
1262         }
1263
1264         if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1265                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1266                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1267         }
1268
1269         if ((breakpoint->length != 2)) {
1270                 LOG_INFO("only breakpoints of two bytes length supported");
1271                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1272         }
1273
1274         if (breakpoint->type == BKPT_HARD)
1275                 cortex_m->fp_code_available--;
1276
1277         return cortex_m_set_breakpoint(target, breakpoint);
1278 }
1279
1280 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1281 {
1282         struct cortex_m_common *cortex_m = target_to_cm(target);
1283
1284         /* REVISIT why check? FBP can be updated with core running ... */
1285         if (target->state != TARGET_HALTED) {
1286                 LOG_WARNING("target not halted");
1287                 return ERROR_TARGET_NOT_HALTED;
1288         }
1289
1290         if (cortex_m->auto_bp_type)
1291                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1292
1293         if (breakpoint->set)
1294                 cortex_m_unset_breakpoint(target, breakpoint);
1295
1296         if (breakpoint->type == BKPT_HARD)
1297                 cortex_m->fp_code_available++;
1298
1299         return ERROR_OK;
1300 }
1301
1302 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1303 {
1304         int dwt_num = 0;
1305         uint32_t mask, temp;
1306         struct cortex_m_common *cortex_m = target_to_cm(target);
1307
1308         /* watchpoint params were validated earlier */
1309         mask = 0;
1310         temp = watchpoint->length;
1311         while (temp) {
1312                 temp >>= 1;
1313                 mask++;
1314         }
1315         mask--;
1316
1317         /* REVISIT Don't fully trust these "not used" records ... users
1318          * may set up breakpoints by hand, e.g. dual-address data value
1319          * watchpoint using comparator #1; comparator #0 matching cycle
1320          * count; send data trace info through ITM and TPIU; etc
1321          */
1322         struct cortex_m_dwt_comparator *comparator;
1323
1324         for (comparator = cortex_m->dwt_comparator_list;
1325                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1326                 comparator++, dwt_num++)
1327                 continue;
1328         if (dwt_num >= cortex_m->dwt_num_comp) {
1329                 LOG_ERROR("Can not find free DWT Comparator");
1330                 return ERROR_FAIL;
1331         }
1332         comparator->used = 1;
1333         watchpoint->set = dwt_num + 1;
1334
1335         comparator->comp = watchpoint->address;
1336         target_write_u32(target, comparator->dwt_comparator_address + 0,
1337                 comparator->comp);
1338
1339         comparator->mask = mask;
1340         target_write_u32(target, comparator->dwt_comparator_address + 4,
1341                 comparator->mask);
1342
1343         switch (watchpoint->rw) {
1344                 case WPT_READ:
1345                         comparator->function = 5;
1346                         break;
1347                 case WPT_WRITE:
1348                         comparator->function = 6;
1349                         break;
1350                 case WPT_ACCESS:
1351                         comparator->function = 7;
1352                         break;
1353         }
1354         target_write_u32(target, comparator->dwt_comparator_address + 8,
1355                 comparator->function);
1356
1357         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1358                 watchpoint->unique_id, dwt_num,
1359                 (unsigned) comparator->comp,
1360                 (unsigned) comparator->mask,
1361                 (unsigned) comparator->function);
1362         return ERROR_OK;
1363 }
1364
1365 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1366 {
1367         struct cortex_m_common *cortex_m = target_to_cm(target);
1368         struct cortex_m_dwt_comparator *comparator;
1369         int dwt_num;
1370
1371         if (!watchpoint->set) {
1372                 LOG_WARNING("watchpoint (wpid: %d) not set",
1373                         watchpoint->unique_id);
1374                 return ERROR_OK;
1375         }
1376
1377         dwt_num = watchpoint->set - 1;
1378
1379         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1380                 watchpoint->unique_id, dwt_num,
1381                 (unsigned) watchpoint->address);
1382
1383         if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1384                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1385                 return ERROR_OK;
1386         }
1387
1388         comparator = cortex_m->dwt_comparator_list + dwt_num;
1389         comparator->used = 0;
1390         comparator->function = 0;
1391         target_write_u32(target, comparator->dwt_comparator_address + 8,
1392                 comparator->function);
1393
1394         watchpoint->set = false;
1395
1396         return ERROR_OK;
1397 }
1398
1399 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1400 {
1401         struct cortex_m_common *cortex_m = target_to_cm(target);
1402
1403         if (cortex_m->dwt_comp_available < 1) {
1404                 LOG_DEBUG("no comparators?");
1405                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1406         }
1407
1408         /* hardware doesn't support data value masking */
1409         if (watchpoint->mask != ~(uint32_t)0) {
1410                 LOG_DEBUG("watchpoint value masks not supported");
1411                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1412         }
1413
1414         /* hardware allows address masks of up to 32K */
1415         unsigned mask;
1416
1417         for (mask = 0; mask < 16; mask++) {
1418                 if ((1u << mask) == watchpoint->length)
1419                         break;
1420         }
1421         if (mask == 16) {
1422                 LOG_DEBUG("unsupported watchpoint length");
1423                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1424         }
1425         if (watchpoint->address & ((1 << mask) - 1)) {
1426                 LOG_DEBUG("watchpoint address is unaligned");
1427                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1428         }
1429
1430         /* Caller doesn't seem to be able to describe watching for data
1431          * values of zero; that flags "no value".
1432          *
1433          * REVISIT This DWT may well be able to watch for specific data
1434          * values.  Requires comparator #1 to set DATAVMATCH and match
1435          * the data, and another comparator (DATAVADDR0) matching addr.
1436          */
1437         if (watchpoint->value) {
1438                 LOG_DEBUG("data value watchpoint not YET supported");
1439                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1440         }
1441
1442         cortex_m->dwt_comp_available--;
1443         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1444
1445         return ERROR_OK;
1446 }
1447
1448 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1449 {
1450         struct cortex_m_common *cortex_m = target_to_cm(target);
1451
1452         /* REVISIT why check? DWT can be updated with core running ... */
1453         if (target->state != TARGET_HALTED) {
1454                 LOG_WARNING("target not halted");
1455                 return ERROR_TARGET_NOT_HALTED;
1456         }
1457
1458         if (watchpoint->set)
1459                 cortex_m_unset_watchpoint(target, watchpoint);
1460
1461         cortex_m->dwt_comp_available++;
1462         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1463
1464         return ERROR_OK;
1465 }
1466
1467 void cortex_m_enable_watchpoints(struct target *target)
1468 {
1469         struct watchpoint *watchpoint = target->watchpoints;
1470
1471         /* set any pending watchpoints */
1472         while (watchpoint) {
1473                 if (!watchpoint->set)
1474                         cortex_m_set_watchpoint(target, watchpoint);
1475                 watchpoint = watchpoint->next;
1476         }
1477 }
1478
1479 static int cortex_m_load_core_reg_u32(struct target *target,
1480                 uint32_t num, uint32_t *value)
1481 {
1482         int retval;
1483         struct armv7m_common *armv7m = target_to_armv7m(target);
1484         struct adiv5_dap *swjdp = armv7m->arm.dap;
1485
1486         /* NOTE:  we "know" here that the register identifiers used
1487          * in the v7m header match the Cortex-M3 Debug Core Register
1488          * Selector values for R0..R15, xPSR, MSP, and PSP.
1489          */
1490         switch (num) {
1491                 case 0 ... 18:
1492                         /* read a normal core register */
1493                         retval = cortexm_dap_read_coreregister_u32(swjdp, value, num);
1494
1495                         if (retval != ERROR_OK) {
1496                                 LOG_ERROR("JTAG failure %i", retval);
1497                                 return ERROR_JTAG_DEVICE_ERROR;
1498                         }
1499                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1500                         break;
1501
1502                 case ARMV7M_PRIMASK:
1503                 case ARMV7M_BASEPRI:
1504                 case ARMV7M_FAULTMASK:
1505                 case ARMV7M_CONTROL:
1506                         /* Cortex-M3 packages these four registers as bitfields
1507                          * in one Debug Core register.  So say r0 and r2 docs;
1508                          * it was removed from r1 docs, but still works.
1509                          */
1510                         cortexm_dap_read_coreregister_u32(swjdp, value, 20);
1511
1512                         switch (num) {
1513                                 case ARMV7M_PRIMASK:
1514                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1515                                         break;
1516
1517                                 case ARMV7M_BASEPRI:
1518                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1519                                         break;
1520
1521                                 case ARMV7M_FAULTMASK:
1522                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1523                                         break;
1524
1525                                 case ARMV7M_CONTROL:
1526                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1527                                         break;
1528                         }
1529
1530                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1531                         break;
1532
1533                 default:
1534                         return ERROR_COMMAND_SYNTAX_ERROR;
1535         }
1536
1537         return ERROR_OK;
1538 }
1539
1540 static int cortex_m_store_core_reg_u32(struct target *target,
1541                 uint32_t num, uint32_t value)
1542 {
1543         int retval;
1544         uint32_t reg;
1545         struct armv7m_common *armv7m = target_to_armv7m(target);
1546         struct adiv5_dap *swjdp = armv7m->arm.dap;
1547
1548         /* NOTE:  we "know" here that the register identifiers used
1549          * in the v7m header match the Cortex-M3 Debug Core Register
1550          * Selector values for R0..R15, xPSR, MSP, and PSP.
1551          */
1552         switch (num) {
1553                 case 0 ... 18:
1554                         retval = cortexm_dap_write_coreregister_u32(swjdp, value, num);
1555                         if (retval != ERROR_OK) {
1556                                 struct reg *r;
1557
1558                                 LOG_ERROR("JTAG failure");
1559                                 r = armv7m->arm.core_cache->reg_list + num;
1560                                 r->dirty = r->valid;
1561                                 return ERROR_JTAG_DEVICE_ERROR;
1562                         }
1563                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1564                         break;
1565
1566                 case ARMV7M_PRIMASK:
1567                 case ARMV7M_BASEPRI:
1568                 case ARMV7M_FAULTMASK:
1569                 case ARMV7M_CONTROL:
1570                         /* Cortex-M3 packages these four registers as bitfields
1571                          * in one Debug Core register.  So say r0 and r2 docs;
1572                          * it was removed from r1 docs, but still works.
1573                          */
1574                         cortexm_dap_read_coreregister_u32(swjdp, &reg, 20);
1575
1576                         switch (num) {
1577                                 case ARMV7M_PRIMASK:
1578                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1579                                         break;
1580
1581                                 case ARMV7M_BASEPRI:
1582                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1583                                         break;
1584
1585                                 case ARMV7M_FAULTMASK:
1586                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1587                                         break;
1588
1589                                 case ARMV7M_CONTROL:
1590                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1591                                         break;
1592                         }
1593
1594                         cortexm_dap_write_coreregister_u32(swjdp, reg, 20);
1595
1596                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1597                         break;
1598
1599                 default:
1600                         return ERROR_COMMAND_SYNTAX_ERROR;
1601         }
1602
1603         return ERROR_OK;
1604 }
1605
1606 static int cortex_m_read_memory(struct target *target, uint32_t address,
1607         uint32_t size, uint32_t count, uint8_t *buffer)
1608 {
1609         struct armv7m_common *armv7m = target_to_armv7m(target);
1610         struct adiv5_dap *swjdp = armv7m->arm.dap;
1611
1612         if (armv7m->arm.is_armv6m) {
1613                 /* armv6m does not handle unaligned memory access */
1614                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1615                         return ERROR_TARGET_UNALIGNED_ACCESS;
1616         }
1617
1618         return mem_ap_read(swjdp, buffer, size, count, address, true);
1619 }
1620
1621 static int cortex_m_write_memory(struct target *target, uint32_t address,
1622         uint32_t size, uint32_t count, const uint8_t *buffer)
1623 {
1624         struct armv7m_common *armv7m = target_to_armv7m(target);
1625         struct adiv5_dap *swjdp = armv7m->arm.dap;
1626
1627         if (armv7m->arm.is_armv6m) {
1628                 /* armv6m does not handle unaligned memory access */
1629                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1630                         return ERROR_TARGET_UNALIGNED_ACCESS;
1631         }
1632
1633         return mem_ap_write(swjdp, buffer, size, count, address, true);
1634 }
1635
1636 static int cortex_m_init_target(struct command_context *cmd_ctx,
1637         struct target *target)
1638 {
1639         armv7m_build_reg_cache(target);
1640         return ERROR_OK;
1641 }
1642
1643 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1644  * on r/w if the core is not running, and clear on resume or reset ... or
1645  * at least, in a post_restore_context() method.
1646  */
1647
1648 struct dwt_reg_state {
1649         struct target *target;
1650         uint32_t addr;
1651         uint32_t value;         /* scratch/cache */
1652 };
1653
1654 static int cortex_m_dwt_get_reg(struct reg *reg)
1655 {
1656         struct dwt_reg_state *state = reg->arch_info;
1657
1658         return target_read_u32(state->target, state->addr, &state->value);
1659 }
1660
1661 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1662 {
1663         struct dwt_reg_state *state = reg->arch_info;
1664
1665         return target_write_u32(state->target, state->addr,
1666                         buf_get_u32(buf, 0, reg->size));
1667 }
1668
1669 struct dwt_reg {
1670         uint32_t addr;
1671         char *name;
1672         unsigned size;
1673 };
1674
1675 static struct dwt_reg dwt_base_regs[] = {
1676         { DWT_CTRL, "dwt_ctrl", 32, },
1677         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1678          * increments while the core is asleep.
1679          */
1680         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1681         /* plus some 8 bit counters, useful for profiling with TPIU */
1682 };
1683
1684 static struct dwt_reg dwt_comp[] = {
1685 #define DWT_COMPARATOR(i) \
1686                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1687                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1688                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1689         DWT_COMPARATOR(0),
1690         DWT_COMPARATOR(1),
1691         DWT_COMPARATOR(2),
1692         DWT_COMPARATOR(3),
1693 #undef DWT_COMPARATOR
1694 };
1695
1696 static const struct reg_arch_type dwt_reg_type = {
1697         .get = cortex_m_dwt_get_reg,
1698         .set = cortex_m_dwt_set_reg,
1699 };
1700
1701 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1702 {
1703         struct dwt_reg_state *state;
1704
1705         state = calloc(1, sizeof *state);
1706         if (!state)
1707                 return;
1708         state->addr = d->addr;
1709         state->target = t;
1710
1711         r->name = d->name;
1712         r->size = d->size;
1713         r->value = &state->value;
1714         r->arch_info = state;
1715         r->type = &dwt_reg_type;
1716 }
1717
1718 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1719 {
1720         uint32_t dwtcr;
1721         struct reg_cache *cache;
1722         struct cortex_m_dwt_comparator *comparator;
1723         int reg, i;
1724
1725         target_read_u32(target, DWT_CTRL, &dwtcr);
1726         if (!dwtcr) {
1727                 LOG_DEBUG("no DWT");
1728                 return;
1729         }
1730
1731         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1732         cm->dwt_comp_available = cm->dwt_num_comp;
1733         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1734                         sizeof(struct cortex_m_dwt_comparator));
1735         if (!cm->dwt_comparator_list) {
1736 fail0:
1737                 cm->dwt_num_comp = 0;
1738                 LOG_ERROR("out of mem");
1739                 return;
1740         }
1741
1742         cache = calloc(1, sizeof *cache);
1743         if (!cache) {
1744 fail1:
1745                 free(cm->dwt_comparator_list);
1746                 goto fail0;
1747         }
1748         cache->name = "cortex-m3 dwt registers";
1749         cache->num_regs = 2 + cm->dwt_num_comp * 3;
1750         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1751         if (!cache->reg_list) {
1752                 free(cache);
1753                 goto fail1;
1754         }
1755
1756         for (reg = 0; reg < 2; reg++)
1757                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1758                         dwt_base_regs + reg);
1759
1760         comparator = cm->dwt_comparator_list;
1761         for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1762                 int j;
1763
1764                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1765                 for (j = 0; j < 3; j++, reg++)
1766                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
1767                                 dwt_comp + 3 * i + j);
1768
1769                 /* make sure we clear any watchpoints enabled on the target */
1770                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1771         }
1772
1773         *register_get_last_cache_p(&target->reg_cache) = cache;
1774         cm->dwt_cache = cache;
1775
1776         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1777                 dwtcr, cm->dwt_num_comp,
1778                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1779
1780         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1781          * implement single-address data value watchpoints ... so we
1782          * won't need to check it later, when asked to set one up.
1783          */
1784 }
1785
1786 #define MVFR0 0xe000ef40
1787 #define MVFR1 0xe000ef44
1788
1789 #define MVFR0_DEFAULT_M4 0x10110021
1790 #define MVFR1_DEFAULT_M4 0x11000011
1791
1792 int cortex_m_examine(struct target *target)
1793 {
1794         int retval;
1795         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1796         int i;
1797         struct cortex_m_common *cortex_m = target_to_cm(target);
1798         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1799         struct armv7m_common *armv7m = target_to_armv7m(target);
1800
1801         /* stlink shares the examine handler but does not support
1802          * all its calls */
1803         if (!armv7m->stlink) {
1804                 retval = ahbap_debugport_init(swjdp);
1805                 if (retval != ERROR_OK)
1806                         return retval;
1807         }
1808
1809         if (!target_was_examined(target)) {
1810                 target_set_examined(target);
1811
1812                 /* Read from Device Identification Registers */
1813                 retval = target_read_u32(target, CPUID, &cpuid);
1814                 if (retval != ERROR_OK)
1815                         return retval;
1816
1817                 /* Get CPU Type */
1818                 i = (cpuid >> 4) & 0xf;
1819
1820                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1821                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1822                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1823
1824                 /* test for floating point feature on cortex-m4 */
1825                 if (i == 4) {
1826                         target_read_u32(target, MVFR0, &mvfr0);
1827                         target_read_u32(target, MVFR1, &mvfr1);
1828
1829                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1830                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1831                                 armv7m->fp_feature = FPv4_SP;
1832                         }
1833                 } else if (i == 0) {
1834                         /* Cortex-M0 does not support unaligned memory access */
1835                         armv7m->arm.is_armv6m = true;
1836                 }
1837
1838                 if (i == 4 || i == 3) {
1839                         /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1840                         armv7m->dap.tar_autoincr_block = (1 << 12);
1841                 }
1842
1843                 /* NOTE: FPB and DWT are both optional. */
1844
1845                 /* Setup FPB */
1846                 target_read_u32(target, FP_CTRL, &fpcr);
1847                 cortex_m->auto_bp_type = 1;
1848                 /* bits [14:12] and [7:4] */
1849                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
1850                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
1851                 cortex_m->fp_code_available = cortex_m->fp_num_code;
1852                 cortex_m->fp_comparator_list = calloc(
1853                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
1854                                 sizeof(struct cortex_m_fp_comparator));
1855                 cortex_m->fpb_enabled = fpcr & 1;
1856                 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
1857                         cortex_m->fp_comparator_list[i].type =
1858                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1859                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1860
1861                         /* make sure we clear any breakpoints enabled on the target */
1862                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
1863                 }
1864                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1865                         fpcr,
1866                         cortex_m->fp_num_code,
1867                         cortex_m->fp_num_lit);
1868
1869                 /* Setup DWT */
1870                 cortex_m_dwt_setup(cortex_m, target);
1871
1872                 /* These hardware breakpoints only work for code in flash! */
1873                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1874                         target_name(target),
1875                         cortex_m->fp_num_code,
1876                         cortex_m->dwt_num_comp);
1877         }
1878
1879         return ERROR_OK;
1880 }
1881
1882 static int cortex_m_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1883 {
1884         uint16_t dcrdr;
1885         int retval;
1886
1887         mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 2, DCB_DCRDR);
1888         *ctrl = (uint8_t)dcrdr;
1889         *value = (uint8_t)(dcrdr >> 8);
1890
1891         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1892
1893         /* write ack back to software dcc register
1894          * signify we have read data */
1895         if (dcrdr & (1 << 0)) {
1896                 dcrdr = 0;
1897                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 2, DCB_DCRDR);
1898                 if (retval != ERROR_OK)
1899                         return retval;
1900         }
1901
1902         return ERROR_OK;
1903 }
1904
1905 static int cortex_m_target_request_data(struct target *target,
1906         uint32_t size, uint8_t *buffer)
1907 {
1908         struct armv7m_common *armv7m = target_to_armv7m(target);
1909         struct adiv5_dap *swjdp = armv7m->arm.dap;
1910         uint8_t data;
1911         uint8_t ctrl;
1912         uint32_t i;
1913
1914         for (i = 0; i < (size * 4); i++) {
1915                 cortex_m_dcc_read(swjdp, &data, &ctrl);
1916                 buffer[i] = data;
1917         }
1918
1919         return ERROR_OK;
1920 }
1921
1922 static int cortex_m_handle_target_request(void *priv)
1923 {
1924         struct target *target = priv;
1925         if (!target_was_examined(target))
1926                 return ERROR_OK;
1927         struct armv7m_common *armv7m = target_to_armv7m(target);
1928         struct adiv5_dap *swjdp = armv7m->arm.dap;
1929
1930         if (!target->dbg_msg_enabled)
1931                 return ERROR_OK;
1932
1933         if (target->state == TARGET_RUNNING) {
1934                 uint8_t data;
1935                 uint8_t ctrl;
1936
1937                 cortex_m_dcc_read(swjdp, &data, &ctrl);
1938
1939                 /* check if we have data */
1940                 if (ctrl & (1 << 0)) {
1941                         uint32_t request;
1942
1943                         /* we assume target is quick enough */
1944                         request = data;
1945                         cortex_m_dcc_read(swjdp, &data, &ctrl);
1946                         request |= (data << 8);
1947                         cortex_m_dcc_read(swjdp, &data, &ctrl);
1948                         request |= (data << 16);
1949                         cortex_m_dcc_read(swjdp, &data, &ctrl);
1950                         request |= (data << 24);
1951                         target_request(target, request);
1952                 }
1953         }
1954
1955         return ERROR_OK;
1956 }
1957
1958 static int cortex_m_init_arch_info(struct target *target,
1959         struct cortex_m_common *cortex_m, struct jtag_tap *tap)
1960 {
1961         int retval;
1962         struct armv7m_common *armv7m = &cortex_m->armv7m;
1963
1964         armv7m_init_arch_info(target, armv7m);
1965
1966         /* prepare JTAG information for the new target */
1967         cortex_m->jtag_info.tap = tap;
1968         cortex_m->jtag_info.scann_size = 4;
1969
1970         /* default reset mode is to use srst if fitted
1971          * if not it will use CORTEX_M3_RESET_VECTRESET */
1972         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
1973
1974         armv7m->arm.dap = &armv7m->dap;
1975
1976         /* Leave (only) generic DAP stuff for debugport_init(); */
1977         armv7m->dap.jtag_info = &cortex_m->jtag_info;
1978         armv7m->dap.memaccess_tck = 8;
1979
1980         /* Cortex-M3/M4 has 4096 bytes autoincrement range
1981          * but set a safe default to 1024 to support Cortex-M0
1982          * this will be changed in cortex_m3_examine if a M3/M4 is detected */
1983         armv7m->dap.tar_autoincr_block = (1 << 10);
1984
1985         /* register arch-specific functions */
1986         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
1987
1988         armv7m->post_debug_entry = NULL;
1989
1990         armv7m->pre_restore_context = NULL;
1991
1992         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
1993         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
1994
1995         target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
1996
1997         retval = arm_jtag_setup_connection(&cortex_m->jtag_info);
1998         if (retval != ERROR_OK)
1999                 return retval;
2000
2001         return ERROR_OK;
2002 }
2003
2004 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2005 {
2006         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2007
2008         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2009         cortex_m_init_arch_info(target, cortex_m, target->tap);
2010
2011         return ERROR_OK;
2012 }
2013
2014 /*--------------------------------------------------------------------------*/
2015
2016 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2017         struct cortex_m_common *cm)
2018 {
2019         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2020                 command_print(cmd_ctx, "target is not a Cortex-M");
2021                 return ERROR_TARGET_INVALID;
2022         }
2023         return ERROR_OK;
2024 }
2025
2026 /*
2027  * Only stuff below this line should need to verify that its target
2028  * is a Cortex-M3.  Everything else should have indirected through the
2029  * cortexm3_target structure, which is only used with CM3 targets.
2030  */
2031
2032 static const struct {
2033         char name[10];
2034         unsigned mask;
2035 } vec_ids[] = {
2036         { "hard_err",   VC_HARDERR, },
2037         { "int_err",    VC_INTERR, },
2038         { "bus_err",    VC_BUSERR, },
2039         { "state_err",  VC_STATERR, },
2040         { "chk_err",    VC_CHKERR, },
2041         { "nocp_err",   VC_NOCPERR, },
2042         { "mm_err",     VC_MMERR, },
2043         { "reset",      VC_CORERESET, },
2044 };
2045
2046 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2047 {
2048         struct target *target = get_current_target(CMD_CTX);
2049         struct cortex_m_common *cortex_m = target_to_cm(target);
2050         struct armv7m_common *armv7m = &cortex_m->armv7m;
2051         struct adiv5_dap *swjdp = armv7m->arm.dap;
2052         uint32_t demcr = 0;
2053         int retval;
2054
2055         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2056         if (retval != ERROR_OK)
2057                 return retval;
2058
2059         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2060         if (retval != ERROR_OK)
2061                 return retval;
2062
2063         if (CMD_ARGC > 0) {
2064                 unsigned catch = 0;
2065
2066                 if (CMD_ARGC == 1) {
2067                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2068                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2069                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2070                                         | VC_MMERR | VC_CORERESET;
2071                                 goto write;
2072                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2073                                 goto write;
2074                 }
2075                 while (CMD_ARGC-- > 0) {
2076                         unsigned i;
2077                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2078                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2079                                         continue;
2080                                 catch |= vec_ids[i].mask;
2081                                 break;
2082                         }
2083                         if (i == ARRAY_SIZE(vec_ids)) {
2084                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2085                                 return ERROR_COMMAND_SYNTAX_ERROR;
2086                         }
2087                 }
2088 write:
2089                 /* For now, armv7m->demcr only stores vector catch flags. */
2090                 armv7m->demcr = catch;
2091
2092                 demcr &= ~0xffff;
2093                 demcr |= catch;
2094
2095                 /* write, but don't assume it stuck (why not??) */
2096                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2097                 if (retval != ERROR_OK)
2098                         return retval;
2099                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2100                 if (retval != ERROR_OK)
2101                         return retval;
2102
2103                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2104                  * Otherwise the vector catch hardware could fire when there's
2105                  * no debugger hooked up, causing much confusion...
2106                  */
2107         }
2108
2109         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2110                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2111                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2112         }
2113
2114         return ERROR_OK;
2115 }
2116
2117 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2118 {
2119         struct target *target = get_current_target(CMD_CTX);
2120         struct cortex_m_common *cortex_m = target_to_cm(target);
2121         int retval;
2122
2123         static const Jim_Nvp nvp_maskisr_modes[] = {
2124                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2125                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2126                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2127                 { .name = NULL, .value = -1 },
2128         };
2129         const Jim_Nvp *n;
2130
2131
2132         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2133         if (retval != ERROR_OK)
2134                 return retval;
2135
2136         if (target->state != TARGET_HALTED) {
2137                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2138                 return ERROR_OK;
2139         }
2140
2141         if (CMD_ARGC > 0) {
2142                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2143                 if (n->name == NULL)
2144                         return ERROR_COMMAND_SYNTAX_ERROR;
2145                 cortex_m->isrmasking_mode = n->value;
2146
2147
2148                 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2149                         cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2150                 else
2151                         cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2152         }
2153
2154         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2155         command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2156
2157         return ERROR_OK;
2158 }
2159
2160 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2161 {
2162         struct target *target = get_current_target(CMD_CTX);
2163         struct cortex_m_common *cortex_m = target_to_cm(target);
2164         int retval;
2165         char *reset_config;
2166
2167         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2168         if (retval != ERROR_OK)
2169                 return retval;
2170
2171         if (CMD_ARGC > 0) {
2172                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2173                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2174                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2175                         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2176         }
2177
2178         switch (cortex_m->soft_reset_config) {
2179                 case CORTEX_M_RESET_SYSRESETREQ:
2180                         reset_config = "sysresetreq";
2181                         break;
2182
2183                 case CORTEX_M_RESET_VECTRESET:
2184                         reset_config = "vectreset";
2185                         break;
2186
2187                 default:
2188                         reset_config = "unknown";
2189                         break;
2190         }
2191
2192         command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2193
2194         return ERROR_OK;
2195 }
2196
2197 static const struct command_registration cortex_m_exec_command_handlers[] = {
2198         {
2199                 .name = "maskisr",
2200                 .handler = handle_cortex_m_mask_interrupts_command,
2201                 .mode = COMMAND_EXEC,
2202                 .help = "mask cortex_m interrupts",
2203                 .usage = "['auto'|'on'|'off']",
2204         },
2205         {
2206                 .name = "vector_catch",
2207                 .handler = handle_cortex_m_vector_catch_command,
2208                 .mode = COMMAND_EXEC,
2209                 .help = "configure hardware vectors to trigger debug entry",
2210                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2211         },
2212         {
2213                 .name = "reset_config",
2214                 .handler = handle_cortex_m_reset_config_command,
2215                 .mode = COMMAND_ANY,
2216                 .help = "configure software reset handling",
2217                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2218         },
2219         COMMAND_REGISTRATION_DONE
2220 };
2221 static const struct command_registration cortex_m_command_handlers[] = {
2222         {
2223                 .chain = armv7m_command_handlers,
2224         },
2225         {
2226                 .name = "cortex_m",
2227                 .mode = COMMAND_EXEC,
2228                 .help = "Cortex-M command group",
2229                 .usage = "",
2230                 .chain = cortex_m_exec_command_handlers,
2231         },
2232         COMMAND_REGISTRATION_DONE
2233 };
2234
2235 struct target_type cortexm_target = {
2236         .name = "cortex_m",
2237         .deprecated_name = "cortex_m3",
2238
2239         .poll = cortex_m_poll,
2240         .arch_state = armv7m_arch_state,
2241
2242         .target_request_data = cortex_m_target_request_data,
2243
2244         .halt = cortex_m_halt,
2245         .resume = cortex_m_resume,
2246         .step = cortex_m_step,
2247
2248         .assert_reset = cortex_m_assert_reset,
2249         .deassert_reset = cortex_m_deassert_reset,
2250         .soft_reset_halt = cortex_m_soft_reset_halt,
2251
2252         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2253
2254         .read_memory = cortex_m_read_memory,
2255         .write_memory = cortex_m_write_memory,
2256         .checksum_memory = armv7m_checksum_memory,
2257         .blank_check_memory = armv7m_blank_check_memory,
2258
2259         .run_algorithm = armv7m_run_algorithm,
2260         .start_algorithm = armv7m_start_algorithm,
2261         .wait_algorithm = armv7m_wait_algorithm,
2262
2263         .add_breakpoint = cortex_m_add_breakpoint,
2264         .remove_breakpoint = cortex_m_remove_breakpoint,
2265         .add_watchpoint = cortex_m_add_watchpoint,
2266         .remove_watchpoint = cortex_m_remove_watchpoint,
2267
2268         .commands = cortex_m_command_handlers,
2269         .target_create = cortex_m_target_create,
2270         .init_target = cortex_m_init_target,
2271         .examine = cortex_m_examine,
2272 };