]> git.sur5r.net Git - openocd/blob - src/target/cortex_m3.c
aecf371842beb3cfd55c8a67c4041345d0ea9505
[openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54
55 /* forward declarations */
56 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
57 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
58 static void cortex_m3_enable_watchpoints(struct target *target);
59 static int cortex_m3_store_core_reg_u32(struct target *target,
60                 enum armv7m_regtype type, uint32_t num, uint32_t value);
61
62 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
63                 uint32_t *value, int regnum)
64 {
65         int retval;
66         uint32_t dcrdr;
67
68         /* because the DCB_DCRDR is used for the emulated dcc channel
69          * we have to save/restore the DCB_DCRDR when used */
70
71         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
72
73         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
74         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
75         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
76
77         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
78         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
79         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
80
81         retval = jtagdp_transaction_endcheck(swjdp);
82
83         /* restore DCB_DCRDR - this needs to be in a seperate
84          * transaction otherwise the emulated DCC channel breaks */
85         if (retval == ERROR_OK)
86                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
87
88         return retval;
89 }
90
91 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
92                 uint32_t value, int regnum)
93 {
94         int retval;
95         uint32_t dcrdr;
96
97         /* because the DCB_DCRDR is used for the emulated dcc channel
98          * we have to save/restore the DCB_DCRDR when used */
99
100         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
101
102         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
103         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
104         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
105
106         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
107         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
108         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
109
110         retval = jtagdp_transaction_endcheck(swjdp);
111
112         /* restore DCB_DCRDR - this needs to be in a seperate
113          * transaction otherwise the emulated DCC channel breaks */
114         if (retval == ERROR_OK)
115                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
116
117         return retval;
118 }
119
120 static int cortex_m3_write_debug_halt_mask(struct target *target,
121                 uint32_t mask_on, uint32_t mask_off)
122 {
123         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
124         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
125
126         /* mask off status bits */
127         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
128         /* create new register mask */
129         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
130
131         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
132 }
133
134 static int cortex_m3_clear_halt(struct target *target)
135 {
136         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
137         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
138
139         /* clear step if any */
140         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
141
142         /* Read Debug Fault Status Register */
143         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
144
145         /* Clear Debug Fault Status */
146         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
147         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
148
149         return ERROR_OK;
150 }
151
152 static int cortex_m3_single_step_core(struct target *target)
153 {
154         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
155         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
156         uint32_t dhcsr_save;
157
158         /* backup dhcsr reg */
159         dhcsr_save = cortex_m3->dcb_dhcsr;
160
161         /* Mask interrupts before clearing halt, if done already.  This avoids
162          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
163          * HALT can put the core into an unknown state.
164          */
165         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
166                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
167                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
168         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
169                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
170         LOG_DEBUG(" ");
171
172         /* restore dhcsr reg */
173         cortex_m3->dcb_dhcsr = dhcsr_save;
174         cortex_m3_clear_halt(target);
175
176         return ERROR_OK;
177 }
178
179 static int cortex_m3_endreset_event(struct target *target)
180 {
181         int i;
182         uint32_t dcb_demcr;
183         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
184         struct armv7m_common *armv7m = &cortex_m3->armv7m;
185         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
186         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
187         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
188
189         /* REVISIT The four debug monitor bits are currently ignored... */
190         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
191         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
192
193         /* this register is used for emulated dcc channel */
194         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
195
196         /* Enable debug requests */
197         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
198         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
199                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
200
201         /* clear any interrupt masking */
202         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
203
204         /* Enable features controlled by ITM and DWT blocks, and catch only
205          * the vectors we were told to pay attention to.
206          *
207          * Target firmware is responsible for all fault handling policy
208          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
209          * or manual updates to the NVIC SHCSR and CCR registers.
210          */
211         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
212
213         /* Paranoia: evidently some (early?) chips don't preserve all the
214          * debug state (including FBP, DWT, etc) across reset...
215          */
216
217         /* Enable FPB */
218         target_write_u32(target, FP_CTRL, 3);
219         cortex_m3->fpb_enabled = 1;
220
221         /* Restore FPB registers */
222         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
223         {
224                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
225         }
226
227         /* Restore DWT registers */
228         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
229         {
230                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
231                                 dwt_list[i].comp);
232                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
233                                 dwt_list[i].mask);
234                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
235                                 dwt_list[i].function);
236         }
237         jtagdp_transaction_endcheck(swjdp);
238
239         register_cache_invalidate(cortex_m3->armv7m.core_cache);
240
241         /* make sure we have latest dhcsr flags */
242         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
243
244         return ERROR_OK;
245 }
246
247 static int cortex_m3_examine_debug_reason(struct target *target)
248 {
249         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
250
251         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
252         /* only check the debug reason if we don't know it already */
253
254         if ((target->debug_reason != DBG_REASON_DBGRQ)
255                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
256         {
257                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
258                 {
259                         target->debug_reason = DBG_REASON_BREAKPOINT;
260                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
261                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
262                 }
263                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
264                         target->debug_reason = DBG_REASON_WATCHPOINT;
265                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
266                         target->debug_reason = DBG_REASON_BREAKPOINT;
267                 else /* EXTERNAL, HALTED */
268                         target->debug_reason = DBG_REASON_UNDEFINED;
269         }
270
271         return ERROR_OK;
272 }
273
274 static int cortex_m3_examine_exception_reason(struct target *target)
275 {
276         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
277         struct armv7m_common *armv7m = target_to_armv7m(target);
278         struct swjdp_common *swjdp = &armv7m->swjdp_info;
279
280         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
281         switch (armv7m->exception_number)
282         {
283                 case 2: /* NMI */
284                         break;
285                 case 3: /* Hard Fault */
286                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
287                         if (except_sr & 0x40000000)
288                         {
289                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
290                         }
291                         break;
292                 case 4: /* Memory Management */
293                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
294                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
295                         break;
296                 case 5: /* Bus Fault */
297                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
298                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
299                         break;
300                 case 6: /* Usage Fault */
301                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
302                         break;
303                 case 11:        /* SVCall */
304                         break;
305                 case 12:        /* Debug Monitor */
306                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
307                         break;
308                 case 14:        /* PendSV */
309                         break;
310                 case 15:        /* SysTick */
311                         break;
312                 default:
313                         except_sr = 0;
314                         break;
315         }
316         jtagdp_transaction_endcheck(swjdp);
317         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
318                 shcsr, except_sr, cfsr, except_ar);
319         return ERROR_OK;
320 }
321
322 /* PSP is used in some thread modes */
323 static const int armv7m_psp_reg_map[17] = {
324         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
325         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
326         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
327         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
328         ARMV7M_xPSR,
329 };
330
331 /* MSP is used in handler and some thread modes */
332 static const int armv7m_msp_reg_map[17] = {
333         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
334         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
335         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
336         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
337         ARMV7M_xPSR,
338 };
339
340 static int cortex_m3_debug_entry(struct target *target)
341 {
342         int i;
343         uint32_t xPSR;
344         int retval;
345         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
346         struct armv7m_common *armv7m = &cortex_m3->armv7m;
347         struct arm *arm = &armv7m->arm;
348         struct swjdp_common *swjdp = &armv7m->swjdp_info;
349         struct reg *r;
350
351         LOG_DEBUG(" ");
352
353         cortex_m3_clear_halt(target);
354         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
355
356         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
357                 return retval;
358
359         /* Examine target state and mode */
360         /* First load register acessible through core debug port*/
361         int num_regs = armv7m->core_cache->num_regs;
362
363         for (i = 0; i < num_regs; i++)
364         {
365                 if (!armv7m->core_cache->reg_list[i].valid)
366                         armv7m->read_core_reg(target, i);
367         }
368
369         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
370         xPSR = buf_get_u32(r->value, 0, 32);
371
372 #ifdef ARMV7_GDB_HACKS
373         /* FIXME this breaks on scan chains with more than one Cortex-M3.
374          * Instead, each CM3 should have its own dummy value...
375          */
376         /* copy real xpsr reg for gdb, setting thumb bit */
377         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
378         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
379         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
380         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
381 #endif
382
383         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
384         if (xPSR & 0xf00)
385         {
386                 r->dirty = r->valid;
387                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
388         }
389
390         /* Are we in an exception handler */
391         if (xPSR & 0x1FF)
392         {
393                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
394                 armv7m->exception_number = (xPSR & 0x1FF);
395
396                 arm->core_mode = ARM_MODE_HANDLER;
397                 arm->map = armv7m_msp_reg_map;
398         }
399         else
400         {
401                 unsigned control = buf_get_u32(armv7m->core_cache
402                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
403
404                 /* is this thread privileged? */
405                 armv7m->core_mode = control & 1;
406                 arm->core_mode = armv7m->core_mode
407                                 ? ARM_MODE_USER_THREAD
408                                 : ARM_MODE_THREAD;
409
410                 /* which stack is it using? */
411                 if (control & 2)
412                         arm->map = armv7m_psp_reg_map;
413                 else
414                         arm->map = armv7m_msp_reg_map;
415
416                 armv7m->exception_number = 0;
417         }
418
419         if (armv7m->exception_number)
420         {
421                 cortex_m3_examine_exception_reason(target);
422         }
423
424         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
425                 armv7m_mode_strings[armv7m->core_mode],
426                 *(uint32_t*)(arm->pc->value),
427                 target_state_name(target));
428
429         if (armv7m->post_debug_entry)
430                 armv7m->post_debug_entry(target);
431
432         return ERROR_OK;
433 }
434
435 static int cortex_m3_poll(struct target *target)
436 {
437         int retval;
438         enum target_state prev_target_state = target->state;
439         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
440         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
441
442         /* Read from Debug Halting Control and Status Register */
443         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
444         if (retval != ERROR_OK)
445         {
446                 target->state = TARGET_UNKNOWN;
447                 return retval;
448         }
449
450         /* Recover from lockup.  See ARMv7-M architecture spec,
451          * section B1.5.15 "Unrecoverable exception cases".
452          *
453          * REVISIT Is there a better way to report and handle this?
454          */
455         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
456                 LOG_WARNING("%s -- clearing lockup after double fault",
457                                 target_name(target));
458                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
459                 target->debug_reason = DBG_REASON_DBGRQ;
460
461                 /* refresh status bits */
462                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
463         }
464
465         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
466         {
467                 /* check if still in reset */
468                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
469
470                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
471                 {
472                         target->state = TARGET_RESET;
473                         return ERROR_OK;
474                 }
475         }
476
477         if (target->state == TARGET_RESET)
478         {
479                 /* Cannot switch context while running so endreset is
480                  * called with target->state == TARGET_RESET
481                  */
482                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
483                                 cortex_m3->dcb_dhcsr);
484                 cortex_m3_endreset_event(target);
485                 target->state = TARGET_RUNNING;
486                 prev_target_state = TARGET_RUNNING;
487         }
488
489         if (cortex_m3->dcb_dhcsr & S_HALT)
490         {
491                 target->state = TARGET_HALTED;
492
493                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
494                 {
495                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
496                                 return retval;
497
498                         if (arm_semihosting(target, &retval) != 0)
499                                 return retval;
500
501                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
502                 }
503                 if (prev_target_state == TARGET_DEBUG_RUNNING)
504                 {
505                         LOG_DEBUG(" ");
506                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
507                                 return retval;
508
509                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
510                 }
511         }
512
513         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
514          * How best to model low power modes?
515          */
516
517         if (target->state == TARGET_UNKNOWN)
518         {
519                 /* check if processor is retiring instructions */
520                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
521                 {
522                         target->state = TARGET_RUNNING;
523                         return ERROR_OK;
524                 }
525         }
526
527         return ERROR_OK;
528 }
529
530 static int cortex_m3_halt(struct target *target)
531 {
532         LOG_DEBUG("target->state: %s",
533                 target_state_name(target));
534
535         if (target->state == TARGET_HALTED)
536         {
537                 LOG_DEBUG("target was already halted");
538                 return ERROR_OK;
539         }
540
541         if (target->state == TARGET_UNKNOWN)
542         {
543                 LOG_WARNING("target was in unknown state when halt was requested");
544         }
545
546         if (target->state == TARGET_RESET)
547         {
548                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
549                 {
550                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
551                         return ERROR_TARGET_FAILURE;
552                 }
553                 else
554                 {
555                         /* we came here in a reset_halt or reset_init sequence
556                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
557                          */
558                         target->debug_reason = DBG_REASON_DBGRQ;
559
560                         return ERROR_OK;
561                 }
562         }
563
564         /* Write to Debug Halting Control and Status Register */
565         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
566
567         target->debug_reason = DBG_REASON_DBGRQ;
568
569         return ERROR_OK;
570 }
571
572 static int cortex_m3_soft_reset_halt(struct target *target)
573 {
574         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
575         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
576         uint32_t dcb_dhcsr = 0;
577         int retval, timeout = 0;
578
579         /* Enter debug state on reset; restore DEMCR in endreset_event() */
580         mem_ap_write_u32(swjdp, DCB_DEMCR,
581                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
582
583         /* Request a core-only reset */
584         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
585                         AIRCR_VECTKEY | AIRCR_VECTRESET);
586         target->state = TARGET_RESET;
587
588         /* registers are now invalid */
589         register_cache_invalidate(cortex_m3->armv7m.core_cache);
590
591         while (timeout < 100)
592         {
593                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
594                 if (retval == ERROR_OK)
595                 {
596                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
597                                         &cortex_m3->nvic_dfsr);
598                         if ((dcb_dhcsr & S_HALT)
599                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
600                         {
601                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
602                                         "DFSR 0x%08x",
603                                         (unsigned) dcb_dhcsr,
604                                         (unsigned) cortex_m3->nvic_dfsr);
605                                 cortex_m3_poll(target);
606                                 /* FIXME restore user's vector catch config */
607                                 return ERROR_OK;
608                         }
609                         else
610                                 LOG_DEBUG("waiting for system reset-halt, "
611                                         "DHCSR 0x%08x, %d ms",
612                                         (unsigned) dcb_dhcsr, timeout);
613                 }
614                 timeout++;
615                 alive_sleep(1);
616         }
617
618         return ERROR_OK;
619 }
620
621 static void cortex_m3_enable_breakpoints(struct target *target)
622 {
623         struct breakpoint *breakpoint = target->breakpoints;
624
625         /* set any pending breakpoints */
626         while (breakpoint)
627         {
628                 if (!breakpoint->set)
629                         cortex_m3_set_breakpoint(target, breakpoint);
630                 breakpoint = breakpoint->next;
631         }
632 }
633
634 static int cortex_m3_resume(struct target *target, int current,
635                 uint32_t address, int handle_breakpoints, int debug_execution)
636 {
637         struct armv7m_common *armv7m = target_to_armv7m(target);
638         struct breakpoint *breakpoint = NULL;
639         uint32_t resume_pc;
640         struct reg *r;
641
642         if (target->state != TARGET_HALTED)
643         {
644                 LOG_WARNING("target not halted");
645                 return ERROR_TARGET_NOT_HALTED;
646         }
647
648         if (!debug_execution)
649         {
650                 target_free_all_working_areas(target);
651                 cortex_m3_enable_breakpoints(target);
652                 cortex_m3_enable_watchpoints(target);
653         }
654
655         if (debug_execution)
656         {
657                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
658
659                 /* Disable interrupts */
660                 /* We disable interrupts in the PRIMASK register instead of
661                  * masking with C_MASKINTS.  This is probably the same issue
662                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
663                  * in parallel with disabled interrupts can cause local faults
664                  * to not be taken.
665                  *
666                  * REVISIT this clearly breaks non-debug execution, since the
667                  * PRIMASK register state isn't saved/restored...  workaround
668                  * by never resuming app code after debug execution.
669                  */
670                 buf_set_u32(r->value, 0, 1, 1);
671                 r->dirty = true;
672                 r->valid = true;
673
674                 /* Make sure we are in Thumb mode */
675                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
676                 buf_set_u32(r->value, 24, 1, 1);
677                 r->dirty = true;
678                 r->valid = true;
679         }
680
681         /* current = 1: continue on current pc, otherwise continue at <address> */
682         r = armv7m->arm.pc;
683         if (!current)
684         {
685                 buf_set_u32(r->value, 0, 32, address);
686                 r->dirty = true;
687                 r->valid = true;
688         }
689
690         /* if we halted last time due to a bkpt instruction
691          * then we have to manually step over it, otherwise
692          * the core will break again */
693
694         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
695                         && !debug_execution)
696         {
697                 armv7m_maybe_skip_bkpt_inst(target, NULL);
698         }
699
700         resume_pc = buf_get_u32(r->value, 0, 32);
701
702         armv7m_restore_context(target);
703
704         /* the front-end may request us not to handle breakpoints */
705         if (handle_breakpoints)
706         {
707                 /* Single step past breakpoint at current address */
708                 if ((breakpoint = breakpoint_find(target, resume_pc)))
709                 {
710                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
711                                           breakpoint->address,
712                                           breakpoint->unique_id);
713                         cortex_m3_unset_breakpoint(target, breakpoint);
714                         cortex_m3_single_step_core(target);
715                         cortex_m3_set_breakpoint(target, breakpoint);
716                 }
717         }
718
719         /* Restart core */
720         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
721
722         target->debug_reason = DBG_REASON_NOTHALTED;
723
724         /* registers are now invalid */
725         register_cache_invalidate(armv7m->core_cache);
726
727         if (!debug_execution)
728         {
729                 target->state = TARGET_RUNNING;
730                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
731                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
732         }
733         else
734         {
735                 target->state = TARGET_DEBUG_RUNNING;
736                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
737                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
738         }
739
740         return ERROR_OK;
741 }
742
743 /* int irqstepcount = 0; */
744 static int cortex_m3_step(struct target *target, int current,
745                 uint32_t address, int handle_breakpoints)
746 {
747         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
748         struct armv7m_common *armv7m = &cortex_m3->armv7m;
749         struct swjdp_common *swjdp = &armv7m->swjdp_info;
750         struct breakpoint *breakpoint = NULL;
751         struct reg *pc = armv7m->arm.pc;
752         bool bkpt_inst_found = false;
753
754         if (target->state != TARGET_HALTED)
755         {
756                 LOG_WARNING("target not halted");
757                 return ERROR_TARGET_NOT_HALTED;
758         }
759
760         /* current = 1: continue on current pc, otherwise continue at <address> */
761         if (!current)
762                 buf_set_u32(pc->value, 0, 32, address);
763
764         /* the front-end may request us not to handle breakpoints */
765         if (handle_breakpoints) {
766                 breakpoint = breakpoint_find(target,
767                                 buf_get_u32(pc->value, 0, 32));
768                 if (breakpoint)
769                         cortex_m3_unset_breakpoint(target, breakpoint);
770         }
771
772         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
773
774         target->debug_reason = DBG_REASON_SINGLESTEP;
775
776         armv7m_restore_context(target);
777
778         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
779
780         /* if no bkpt instruction is found at pc then we can perform
781          * a normal step, otherwise we have to manually step over the bkpt
782          * instruction - as such simulate a step */
783         if (bkpt_inst_found == false)
784         {
785                 /* set step and clear halt */
786                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
787         }
788
789         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
790
791         /* registers are now invalid */
792         register_cache_invalidate(cortex_m3->armv7m.core_cache);
793
794         if (breakpoint)
795                 cortex_m3_set_breakpoint(target, breakpoint);
796
797         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
798                         " nvic_icsr = 0x%" PRIx32,
799                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
800
801         cortex_m3_debug_entry(target);
802         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
803
804         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
805                         " nvic_icsr = 0x%" PRIx32,
806                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
807
808         return ERROR_OK;
809 }
810
811 static int cortex_m3_assert_reset(struct target *target)
812 {
813         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
814         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
815         int assert_srst = 1;
816
817         LOG_DEBUG("target->state: %s",
818                 target_state_name(target));
819
820         enum reset_types jtag_reset_config = jtag_get_reset_config();
821
822         /*
823          * We can reset Cortex-M3 targets using just the NVIC without
824          * requiring SRST, getting a SoC reset (or a core-only reset)
825          * instead of a system reset.
826          */
827         if (!(jtag_reset_config & RESET_HAS_SRST))
828                 assert_srst = 0;
829
830         /* Enable debug requests */
831         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
832         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
833                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
834
835         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
836
837         if (!target->reset_halt)
838         {
839                 /* Set/Clear C_MASKINTS in a separate operation */
840                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
841                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
842                                         DBGKEY | C_DEBUGEN | C_HALT);
843
844                 /* clear any debug flags before resuming */
845                 cortex_m3_clear_halt(target);
846
847                 /* clear C_HALT in dhcsr reg */
848                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
849         }
850         else
851         {
852                 /* Halt in debug on reset; endreset_event() restores DEMCR.
853                  *
854                  * REVISIT catching BUSERR presumably helps to defend against
855                  * bad vector table entries.  Should this include MMERR or
856                  * other flags too?
857                  */
858                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
859                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
860         }
861
862         /*
863          * When nRST is asserted on most Stellaris devices, it clears some of
864          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
865          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
866          * chips.  (Only power-on reset should affect debug state, beyond a
867          * few specified bits; not the chip's nRST input, wired to SRST.)
868          *
869          * REVISIT current errata specs don't seem to cover this issue.
870          * Do we have more details than this email?
871          *   https://lists.berlios.de/pipermail
872          *      /openocd-development/2008-August/003065.html
873          */
874         if (strcmp(target->variant, "lm3s") == 0)
875         {
876                 /* Check for silicon revisions with the issue. */
877                 uint32_t did0;
878
879                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
880                 {
881                         switch ((did0 >> 16) & 0xff)
882                         {
883                                 case 0:
884                                         /* all Sandstorm suffer issue */
885                                         assert_srst = 0;
886                                         break;
887
888                                 case 1:
889                                 case 3:
890                                         /* Fury and DustDevil rev A have
891                                          * this nRST problem.  It should
892                                          * be fixed in rev B silicon.
893                                          */
894                                         if (((did0 >> 8) & 0xff) == 0)
895                                                 assert_srst = 0;
896                                         break;
897                                 case 4:
898                                         /* Tempest should be fine. */
899                                         break;
900                         }
901                 }
902         }
903
904         if (assert_srst)
905         {
906                 /* default to asserting srst */
907                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
908                 {
909                         jtag_add_reset(1, 1);
910                 }
911                 else
912                 {
913                         jtag_add_reset(0, 1);
914                 }
915         }
916         else
917         {
918                 /* Use a standard Cortex-M3 software reset mechanism.
919                  * SYSRESETREQ will reset SoC peripherals outside the
920                  * core, like watchdog timers, if the SoC wires it up
921                  * correctly.  Else VECRESET can reset just the core.
922                  */
923                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
924                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
925                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
926
927                 {
928                         /* I do not know why this is necessary, but it
929                          * fixes strange effects (step/resume cause NMI
930                          * after reset) on LM3S6918 -- Michael Schwingen
931                          */
932                         uint32_t tmp;
933                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
934                 }
935         }
936
937         target->state = TARGET_RESET;
938         jtag_add_sleep(50000);
939
940         register_cache_invalidate(cortex_m3->armv7m.core_cache);
941
942         if (target->reset_halt)
943         {
944                 int retval;
945                 if ((retval = target_halt(target)) != ERROR_OK)
946                         return retval;
947         }
948
949         return ERROR_OK;
950 }
951
952 static int cortex_m3_deassert_reset(struct target *target)
953 {
954         LOG_DEBUG("target->state: %s",
955                 target_state_name(target));
956
957         /* deassert reset lines */
958         jtag_add_reset(0, 0);
959
960         return ERROR_OK;
961 }
962
963 static int
964 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
965 {
966         int retval;
967         int fp_num = 0;
968         uint32_t hilo;
969         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
970         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
971
972         if (breakpoint->set)
973         {
974                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
975                 return ERROR_OK;
976         }
977
978         if (cortex_m3->auto_bp_type)
979         {
980                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
981         }
982
983         if (breakpoint->type == BKPT_HARD)
984         {
985                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
986                         fp_num++;
987                 if (fp_num >= cortex_m3->fp_num_code)
988                 {
989                         LOG_ERROR("Can not find free FPB Comparator!");
990                         return ERROR_FAIL;
991                 }
992                 breakpoint->set = fp_num + 1;
993                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
994                 comparator_list[fp_num].used = 1;
995                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
996                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
997                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
998                 if (!cortex_m3->fpb_enabled)
999                 {
1000                         LOG_DEBUG("FPB wasn't enabled, do it now");
1001                         target_write_u32(target, FP_CTRL, 3);
1002                 }
1003         }
1004         else if (breakpoint->type == BKPT_SOFT)
1005         {
1006                 uint8_t code[4];
1007
1008                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1009                  * semihosting; don't use that.  Otherwise the BKPT
1010                  * parameter is arbitrary.
1011                  */
1012                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1013                 retval = target_read_memory(target,
1014                                 breakpoint->address & 0xFFFFFFFE,
1015                                 breakpoint->length, 1,
1016                                 breakpoint->orig_instr);
1017                 if (retval != ERROR_OK)
1018                         return retval;
1019                 retval = target_write_memory(target,
1020                                 breakpoint->address & 0xFFFFFFFE,
1021                                 breakpoint->length, 1,
1022                                 code);
1023                 if (retval != ERROR_OK)
1024                         return retval;
1025                 breakpoint->set = true;
1026         }
1027
1028         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1029                           breakpoint->unique_id,
1030                           (int)(breakpoint->type),
1031                           breakpoint->address,
1032                           breakpoint->length,
1033                           breakpoint->set);
1034
1035         return ERROR_OK;
1036 }
1037
1038 static int
1039 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1040 {
1041         int retval;
1042         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1043         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1044
1045         if (!breakpoint->set)
1046         {
1047                 LOG_WARNING("breakpoint not set");
1048                 return ERROR_OK;
1049         }
1050
1051         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1052                           breakpoint->unique_id,
1053                           (int)(breakpoint->type),
1054                           breakpoint->address,
1055                           breakpoint->length,
1056                           breakpoint->set);
1057
1058         if (breakpoint->type == BKPT_HARD)
1059         {
1060                 int fp_num = breakpoint->set - 1;
1061                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1062                 {
1063                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1064                         return ERROR_OK;
1065                 }
1066                 comparator_list[fp_num].used = 0;
1067                 comparator_list[fp_num].fpcr_value = 0;
1068                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1069         }
1070         else
1071         {
1072                 /* restore original instruction (kept in target endianness) */
1073                 if (breakpoint->length == 4)
1074                 {
1075                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1076                         {
1077                                 return retval;
1078                         }
1079                 }
1080                 else
1081                 {
1082                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1083                         {
1084                                 return retval;
1085                         }
1086                 }
1087         }
1088         breakpoint->set = false;
1089
1090         return ERROR_OK;
1091 }
1092
1093 static int
1094 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1095 {
1096         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1097
1098         if (cortex_m3->auto_bp_type)
1099         {
1100                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1101 #ifdef ARMV7_GDB_HACKS
1102                 if (breakpoint->length != 2) {
1103                         /* XXX Hack: Replace all breakpoints with length != 2 with
1104                          * a hardware breakpoint. */
1105                         breakpoint->type = BKPT_HARD;
1106                         breakpoint->length = 2;
1107                 }
1108 #endif
1109         }
1110
1111         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
1112         {
1113                 LOG_INFO("flash patch comparator requested outside code memory region");
1114                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1115         }
1116
1117         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
1118         {
1119                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1120                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1121         }
1122
1123         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1124         {
1125                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1126                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1127         }
1128
1129         if ((breakpoint->length != 2))
1130         {
1131                 LOG_INFO("only breakpoints of two bytes length supported");
1132                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1133         }
1134
1135         if (breakpoint->type == BKPT_HARD)
1136                 cortex_m3->fp_code_available--;
1137         cortex_m3_set_breakpoint(target, breakpoint);
1138
1139         return ERROR_OK;
1140 }
1141
1142 static int
1143 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1144 {
1145         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1146
1147         /* REVISIT why check? FBP can be updated with core running ... */
1148         if (target->state != TARGET_HALTED)
1149         {
1150                 LOG_WARNING("target not halted");
1151                 return ERROR_TARGET_NOT_HALTED;
1152         }
1153
1154         if (cortex_m3->auto_bp_type)
1155         {
1156                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1157         }
1158
1159         if (breakpoint->set)
1160         {
1161                 cortex_m3_unset_breakpoint(target, breakpoint);
1162         }
1163
1164         if (breakpoint->type == BKPT_HARD)
1165                 cortex_m3->fp_code_available++;
1166
1167         return ERROR_OK;
1168 }
1169
1170 static int
1171 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1172 {
1173         int dwt_num = 0;
1174         uint32_t mask, temp;
1175         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1176
1177         /* watchpoint params were validated earlier */
1178         mask = 0;
1179         temp = watchpoint->length;
1180         while (temp) {
1181                 temp >>= 1;
1182                 mask++;
1183         }
1184         mask--;
1185
1186         /* REVISIT Don't fully trust these "not used" records ... users
1187          * may set up breakpoints by hand, e.g. dual-address data value
1188          * watchpoint using comparator #1; comparator #0 matching cycle
1189          * count; send data trace info through ITM and TPIU; etc
1190          */
1191         struct cortex_m3_dwt_comparator *comparator;
1192
1193         for (comparator = cortex_m3->dwt_comparator_list;
1194                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1195                         comparator++, dwt_num++)
1196                 continue;
1197         if (dwt_num >= cortex_m3->dwt_num_comp)
1198         {
1199                 LOG_ERROR("Can not find free DWT Comparator");
1200                 return ERROR_FAIL;
1201         }
1202         comparator->used = 1;
1203         watchpoint->set = dwt_num + 1;
1204
1205         comparator->comp = watchpoint->address;
1206         target_write_u32(target, comparator->dwt_comparator_address + 0,
1207                         comparator->comp);
1208
1209         comparator->mask = mask;
1210         target_write_u32(target, comparator->dwt_comparator_address + 4,
1211                         comparator->mask);
1212
1213         switch (watchpoint->rw) {
1214         case WPT_READ:
1215                 comparator->function = 5;
1216                 break;
1217         case WPT_WRITE:
1218                 comparator->function = 6;
1219                 break;
1220         case WPT_ACCESS:
1221                 comparator->function = 7;
1222                 break;
1223         }
1224         target_write_u32(target, comparator->dwt_comparator_address + 8,
1225                         comparator->function);
1226
1227         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1228                         watchpoint->unique_id, dwt_num,
1229                         (unsigned) comparator->comp,
1230                         (unsigned) comparator->mask,
1231                         (unsigned) comparator->function);
1232         return ERROR_OK;
1233 }
1234
1235 static int
1236 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1237 {
1238         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1239         struct cortex_m3_dwt_comparator *comparator;
1240         int dwt_num;
1241
1242         if (!watchpoint->set)
1243         {
1244                 LOG_WARNING("watchpoint (wpid: %d) not set",
1245                                 watchpoint->unique_id);
1246                 return ERROR_OK;
1247         }
1248
1249         dwt_num = watchpoint->set - 1;
1250
1251         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1252                         watchpoint->unique_id, dwt_num,
1253                         (unsigned) watchpoint->address);
1254
1255         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1256         {
1257                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1258                 return ERROR_OK;
1259         }
1260
1261         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1262         comparator->used = 0;
1263         comparator->function = 0;
1264         target_write_u32(target, comparator->dwt_comparator_address + 8,
1265                         comparator->function);
1266
1267         watchpoint->set = false;
1268
1269         return ERROR_OK;
1270 }
1271
1272 static int
1273 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1274 {
1275         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1276
1277         if (cortex_m3->dwt_comp_available < 1)
1278         {
1279                 LOG_DEBUG("no comparators?");
1280                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1281         }
1282
1283         /* hardware doesn't support data value masking */
1284         if (watchpoint->mask != ~(uint32_t)0) {
1285                 LOG_DEBUG("watchpoint value masks not supported");
1286                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1287         }
1288
1289         /* hardware allows address masks of up to 32K */
1290         unsigned mask;
1291
1292         for (mask = 0; mask < 16; mask++) {
1293                 if ((1u << mask) == watchpoint->length)
1294                         break;
1295         }
1296         if (mask == 16) {
1297                 LOG_DEBUG("unsupported watchpoint length");
1298                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1299         }
1300         if (watchpoint->address & ((1 << mask) - 1)) {
1301                 LOG_DEBUG("watchpoint address is unaligned");
1302                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1303         }
1304
1305         /* Caller doesn't seem to be able to describe watching for data
1306          * values of zero; that flags "no value".
1307          *
1308          * REVISIT This DWT may well be able to watch for specific data
1309          * values.  Requires comparator #1 to set DATAVMATCH and match
1310          * the data, and another comparator (DATAVADDR0) matching addr.
1311          */
1312         if (watchpoint->value) {
1313                 LOG_DEBUG("data value watchpoint not YET supported");
1314                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1315         }
1316
1317         cortex_m3->dwt_comp_available--;
1318         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1319
1320         return ERROR_OK;
1321 }
1322
1323 static int
1324 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1325 {
1326         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1327
1328         /* REVISIT why check? DWT can be updated with core running ... */
1329         if (target->state != TARGET_HALTED)
1330         {
1331                 LOG_WARNING("target not halted");
1332                 return ERROR_TARGET_NOT_HALTED;
1333         }
1334
1335         if (watchpoint->set)
1336         {
1337                 cortex_m3_unset_watchpoint(target, watchpoint);
1338         }
1339
1340         cortex_m3->dwt_comp_available++;
1341         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1342
1343         return ERROR_OK;
1344 }
1345
1346 static void cortex_m3_enable_watchpoints(struct target *target)
1347 {
1348         struct watchpoint *watchpoint = target->watchpoints;
1349
1350         /* set any pending watchpoints */
1351         while (watchpoint)
1352         {
1353                 if (!watchpoint->set)
1354                         cortex_m3_set_watchpoint(target, watchpoint);
1355                 watchpoint = watchpoint->next;
1356         }
1357 }
1358
1359 static int cortex_m3_load_core_reg_u32(struct target *target,
1360                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1361 {
1362         int retval;
1363         struct armv7m_common *armv7m = target_to_armv7m(target);
1364         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1365
1366         /* NOTE:  we "know" here that the register identifiers used
1367          * in the v7m header match the Cortex-M3 Debug Core Register
1368          * Selector values for R0..R15, xPSR, MSP, and PSP.
1369          */
1370         switch (num) {
1371         case 0 ... 18:
1372                 /* read a normal core register */
1373                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1374
1375                 if (retval != ERROR_OK)
1376                 {
1377                         LOG_ERROR("JTAG failure %i",retval);
1378                         return ERROR_JTAG_DEVICE_ERROR;
1379                 }
1380                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1381                 break;
1382
1383         case ARMV7M_PRIMASK:
1384         case ARMV7M_BASEPRI:
1385         case ARMV7M_FAULTMASK:
1386         case ARMV7M_CONTROL:
1387                 /* Cortex-M3 packages these four registers as bitfields
1388                  * in one Debug Core register.  So say r0 and r2 docs;
1389                  * it was removed from r1 docs, but still works.
1390                  */
1391                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1392
1393                 switch (num)
1394                 {
1395                         case ARMV7M_PRIMASK:
1396                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1397                                 break;
1398
1399                         case ARMV7M_BASEPRI:
1400                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1401                                 break;
1402
1403                         case ARMV7M_FAULTMASK:
1404                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1405                                 break;
1406
1407                         case ARMV7M_CONTROL:
1408                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1409                                 break;
1410                 }
1411
1412                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1413                 break;
1414
1415         default:
1416                 return ERROR_INVALID_ARGUMENTS;
1417         }
1418
1419         return ERROR_OK;
1420 }
1421
1422 static int cortex_m3_store_core_reg_u32(struct target *target,
1423                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1424 {
1425         int retval;
1426         uint32_t reg;
1427         struct armv7m_common *armv7m = target_to_armv7m(target);
1428         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1429
1430 #ifdef ARMV7_GDB_HACKS
1431         /* If the LR register is being modified, make sure it will put us
1432          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1433          * hack to deal with the fact that gdb will sometimes "forge"
1434          * return addresses, and doesn't set the LSB correctly (i.e., when
1435          * printing expressions containing function calls, it sets LR = 0.)
1436          * Valid exception return codes have bit 0 set too.
1437          */
1438         if (num == ARMV7M_R14)
1439                 value |= 0x01;
1440 #endif
1441
1442         /* NOTE:  we "know" here that the register identifiers used
1443          * in the v7m header match the Cortex-M3 Debug Core Register
1444          * Selector values for R0..R15, xPSR, MSP, and PSP.
1445          */
1446         switch (num) {
1447         case 0 ... 18:
1448                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1449                 if (retval != ERROR_OK)
1450                 {
1451                         struct reg *r;
1452
1453                         LOG_ERROR("JTAG failure %i", retval);
1454                         r = armv7m->core_cache->reg_list + num;
1455                         r->dirty = r->valid;
1456                         return ERROR_JTAG_DEVICE_ERROR;
1457                 }
1458                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1459                 break;
1460
1461         case ARMV7M_PRIMASK:
1462         case ARMV7M_BASEPRI:
1463         case ARMV7M_FAULTMASK:
1464         case ARMV7M_CONTROL:
1465                 /* Cortex-M3 packages these four registers as bitfields
1466                  * in one Debug Core register.  So say r0 and r2 docs;
1467                  * it was removed from r1 docs, but still works.
1468                  */
1469                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1470
1471                 switch (num)
1472                 {
1473                         case ARMV7M_PRIMASK:
1474                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1475                                 break;
1476
1477                         case ARMV7M_BASEPRI:
1478                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1479                                 break;
1480
1481                         case ARMV7M_FAULTMASK:
1482                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1483                                 break;
1484
1485                         case ARMV7M_CONTROL:
1486                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1487                                 break;
1488                 }
1489
1490                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1491
1492                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1493                 break;
1494
1495         default:
1496                 return ERROR_INVALID_ARGUMENTS;
1497         }
1498
1499         return ERROR_OK;
1500 }
1501
1502 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1503                 uint32_t size, uint32_t count, uint8_t *buffer)
1504 {
1505         struct armv7m_common *armv7m = target_to_armv7m(target);
1506         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1507         int retval = ERROR_INVALID_ARGUMENTS;
1508
1509         /* cortex_m3 handles unaligned memory access */
1510         if (count && buffer) {
1511                 switch (size) {
1512                 case 4:
1513                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1514                         break;
1515                 case 2:
1516                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1517                         break;
1518                 case 1:
1519                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1520                         break;
1521                 }
1522         }
1523
1524         return retval;
1525 }
1526
1527 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1528                 uint32_t size, uint32_t count, uint8_t *buffer)
1529 {
1530         struct armv7m_common *armv7m = target_to_armv7m(target);
1531         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1532         int retval = ERROR_INVALID_ARGUMENTS;
1533
1534         if (count && buffer) {
1535                 switch (size) {
1536                 case 4:
1537                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1538                         break;
1539                 case 2:
1540                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1541                         break;
1542                 case 1:
1543                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1544                         break;
1545                 }
1546         }
1547
1548         return retval;
1549 }
1550
1551 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1552                 uint32_t count, uint8_t *buffer)
1553 {
1554         return cortex_m3_write_memory(target, address, 4, count, buffer);
1555 }
1556
1557 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1558                 struct target *target)
1559 {
1560         armv7m_build_reg_cache(target);
1561         return ERROR_OK;
1562 }
1563
1564 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1565  * on r/w if the core is not running, and clear on resume or reset ... or
1566  * at least, in a post_restore_context() method.
1567  */
1568
1569 struct dwt_reg_state {
1570         struct target   *target;
1571         uint32_t        addr;
1572         uint32_t        value;  /* scratch/cache */
1573 };
1574
1575 static int cortex_m3_dwt_get_reg(struct reg *reg)
1576 {
1577         struct dwt_reg_state *state = reg->arch_info;
1578
1579         return target_read_u32(state->target, state->addr, &state->value);
1580 }
1581
1582 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1583 {
1584         struct dwt_reg_state *state = reg->arch_info;
1585
1586         return target_write_u32(state->target, state->addr,
1587                         buf_get_u32(buf, 0, reg->size));
1588 }
1589
1590 struct dwt_reg {
1591         uint32_t        addr;
1592         char            *name;
1593         unsigned        size;
1594 };
1595
1596 static struct dwt_reg dwt_base_regs[] = {
1597         { DWT_CTRL, "dwt_ctrl", 32, },
1598         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1599          * increments while the core is asleep.
1600          */
1601         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1602         /* plus some 8 bit counters, useful for profiling with TPIU */
1603 };
1604
1605 static struct dwt_reg dwt_comp[] = {
1606 #define DWT_COMPARATOR(i) \
1607                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1608                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1609                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1610         DWT_COMPARATOR(0),
1611         DWT_COMPARATOR(1),
1612         DWT_COMPARATOR(2),
1613         DWT_COMPARATOR(3),
1614 #undef DWT_COMPARATOR
1615 };
1616
1617 static const struct reg_arch_type dwt_reg_type = {
1618         .get = cortex_m3_dwt_get_reg,
1619         .set = cortex_m3_dwt_set_reg,
1620 };
1621
1622 static void
1623 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1624 {
1625         struct dwt_reg_state *state;
1626
1627         state = calloc(1, sizeof *state);
1628         if (!state)
1629                 return;
1630         state->addr = d->addr;
1631         state->target = t;
1632
1633         r->name = d->name;
1634         r->size = d->size;
1635         r->value = &state->value;
1636         r->arch_info = state;
1637         r->type = &dwt_reg_type;
1638 }
1639
1640 static void
1641 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1642 {
1643         uint32_t dwtcr;
1644         struct reg_cache *cache;
1645         struct cortex_m3_dwt_comparator *comparator;
1646         int reg, i;
1647
1648         target_read_u32(target, DWT_CTRL, &dwtcr);
1649         if (!dwtcr) {
1650                 LOG_DEBUG("no DWT");
1651                 return;
1652         }
1653
1654         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1655         cm3->dwt_comp_available = cm3->dwt_num_comp;
1656         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1657                         sizeof(struct cortex_m3_dwt_comparator));
1658         if (!cm3->dwt_comparator_list) {
1659 fail0:
1660                 cm3->dwt_num_comp = 0;
1661                 LOG_ERROR("out of mem");
1662                 return;
1663         }
1664
1665         cache = calloc(1, sizeof *cache);
1666         if (!cache) {
1667 fail1:
1668                 free(cm3->dwt_comparator_list);
1669                 goto fail0;
1670         }
1671         cache->name = "cortex-m3 dwt registers";
1672         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1673         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1674         if (!cache->reg_list) {
1675                 free(cache);
1676                 goto fail1;
1677         }
1678
1679         for (reg = 0; reg < 2; reg++)
1680                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1681                                 dwt_base_regs + reg);
1682
1683         comparator = cm3->dwt_comparator_list;
1684         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1685                 int j;
1686
1687                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1688                 for (j = 0; j < 3; j++, reg++)
1689                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1690                                         dwt_comp + 3 * i + j);
1691         }
1692
1693         *register_get_last_cache_p(&target->reg_cache) = cache;
1694         cm3->dwt_cache = cache;
1695
1696         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1697                         dwtcr, cm3->dwt_num_comp,
1698                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1699
1700         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1701          * implement single-address data value watchpoints ... so we
1702          * won't need to check it later, when asked to set one up.
1703          */
1704 }
1705
1706 static int cortex_m3_examine(struct target *target)
1707 {
1708         int retval;
1709         uint32_t cpuid, fpcr;
1710         int i;
1711         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1712         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1713
1714         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1715                 return retval;
1716
1717         if (!target_was_examined(target))
1718         {
1719                 target_set_examined(target);
1720
1721                 /* Read from Device Identification Registers */
1722                 retval = target_read_u32(target, CPUID, &cpuid);
1723                 if (retval != ERROR_OK)
1724                         return retval;
1725
1726                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1727                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1728                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1729                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1730
1731                 /* NOTE: FPB and DWT are both optional. */
1732
1733                 /* Setup FPB */
1734                 target_read_u32(target, FP_CTRL, &fpcr);
1735                 cortex_m3->auto_bp_type = 1;
1736                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1737                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1738                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1739                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1740                 cortex_m3->fpb_enabled = fpcr & 1;
1741                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1742                 {
1743                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1744                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1745                 }
1746                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1747
1748                 /* Setup DWT */
1749                 cortex_m3_dwt_setup(cortex_m3, target);
1750
1751                 /* These hardware breakpoints only work for code in flash! */
1752                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1753                                 target_name(target),
1754                                 cortex_m3->fp_num_code,
1755                                 cortex_m3->dwt_num_comp);
1756         }
1757
1758         return ERROR_OK;
1759 }
1760
1761 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1762 {
1763         uint16_t dcrdr;
1764
1765         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1766         *ctrl = (uint8_t)dcrdr;
1767         *value = (uint8_t)(dcrdr >> 8);
1768
1769         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1770
1771         /* write ack back to software dcc register
1772          * signify we have read data */
1773         if (dcrdr & (1 << 0))
1774         {
1775                 dcrdr = 0;
1776                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1777         }
1778
1779         return ERROR_OK;
1780 }
1781
1782 static int cortex_m3_target_request_data(struct target *target,
1783                 uint32_t size, uint8_t *buffer)
1784 {
1785         struct armv7m_common *armv7m = target_to_armv7m(target);
1786         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1787         uint8_t data;
1788         uint8_t ctrl;
1789         uint32_t i;
1790
1791         for (i = 0; i < (size * 4); i++)
1792         {
1793                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1794                 buffer[i] = data;
1795         }
1796
1797         return ERROR_OK;
1798 }
1799
1800 static int cortex_m3_handle_target_request(void *priv)
1801 {
1802         struct target *target = priv;
1803         if (!target_was_examined(target))
1804                 return ERROR_OK;
1805         struct armv7m_common *armv7m = target_to_armv7m(target);
1806         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1807
1808         if (!target->dbg_msg_enabled)
1809                 return ERROR_OK;
1810
1811         if (target->state == TARGET_RUNNING)
1812         {
1813                 uint8_t data;
1814                 uint8_t ctrl;
1815
1816                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1817
1818                 /* check if we have data */
1819                 if (ctrl & (1 << 0))
1820                 {
1821                         uint32_t request;
1822
1823                         /* we assume target is quick enough */
1824                         request = data;
1825                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1826                         request |= (data << 8);
1827                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1828                         request |= (data << 16);
1829                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1830                         request |= (data << 24);
1831                         target_request(target, request);
1832                 }
1833         }
1834
1835         return ERROR_OK;
1836 }
1837
1838 static int cortex_m3_init_arch_info(struct target *target,
1839                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1840 {
1841         int retval;
1842         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1843
1844         armv7m_init_arch_info(target, armv7m);
1845
1846         /* prepare JTAG information for the new target */
1847         cortex_m3->jtag_info.tap = tap;
1848         cortex_m3->jtag_info.scann_size = 4;
1849
1850         /* Leave (only) generic DAP stuff for debugport_init(); */
1851         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1852         armv7m->swjdp_info.memaccess_tck = 8;
1853         /* Cortex-M3 has 4096 bytes autoincrement range */
1854         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);
1855
1856         /* register arch-specific functions */
1857         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1858
1859         armv7m->post_debug_entry = NULL;
1860
1861         armv7m->pre_restore_context = NULL;
1862         armv7m->post_restore_context = NULL;
1863
1864         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1865         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1866
1867         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1868
1869         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1870         {
1871                 return retval;
1872         }
1873
1874         return ERROR_OK;
1875 }
1876
1877 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1878 {
1879         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1880
1881         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1882         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1883
1884         return ERROR_OK;
1885 }
1886
1887 /*--------------------------------------------------------------------------*/
1888
1889 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1890                 struct cortex_m3_common *cm3)
1891 {
1892         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1893                 command_print(cmd_ctx, "target is not a Cortex-M3");
1894                 return ERROR_TARGET_INVALID;
1895         }
1896         return ERROR_OK;
1897 }
1898
1899 /*
1900  * Only stuff below this line should need to verify that its target
1901  * is a Cortex-M3.  Everything else should have indirected through the
1902  * cortexm3_target structure, which is only used with CM3 targets.
1903  */
1904
1905 static const struct {
1906         char name[10];
1907         unsigned mask;
1908 } vec_ids[] = {
1909         { "hard_err",   VC_HARDERR, },
1910         { "int_err",    VC_INTERR, },
1911         { "bus_err",    VC_BUSERR, },
1912         { "state_err",  VC_STATERR, },
1913         { "chk_err",    VC_CHKERR, },
1914         { "nocp_err",   VC_NOCPERR, },
1915         { "mm_err",     VC_MMERR, },
1916         { "reset",      VC_CORERESET, },
1917 };
1918
1919 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1920 {
1921         struct target *target = get_current_target(CMD_CTX);
1922         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1923         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1924         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1925         uint32_t demcr = 0;
1926         int retval;
1927
1928         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1929         if (retval != ERROR_OK)
1930                 return retval;
1931
1932         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1933
1934         if (CMD_ARGC > 0) {
1935                 unsigned catch = 0;
1936
1937                 if (CMD_ARGC == 1) {
1938                         if (strcmp(CMD_ARGV[0], "all") == 0) {
1939                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1940                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1941                                         | VC_MMERR | VC_CORERESET;
1942                                 goto write;
1943                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1944                                 goto write;
1945                         }
1946                 }
1947                 while (CMD_ARGC-- > 0) {
1948                         unsigned i;
1949                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1950                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1951                                         continue;
1952                                 catch |= vec_ids[i].mask;
1953                                 break;
1954                         }
1955                         if (i == ARRAY_SIZE(vec_ids)) {
1956                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
1957                                 return ERROR_INVALID_ARGUMENTS;
1958                         }
1959                 }
1960 write:
1961                 /* For now, armv7m->demcr only stores vector catch flags. */
1962                 armv7m->demcr = catch;
1963
1964                 demcr &= ~0xffff;
1965                 demcr |= catch;
1966
1967                 /* write, but don't assume it stuck (why not??) */
1968                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
1969                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1970
1971                 /* FIXME be sure to clear DEMCR on clean server shutdown.
1972                  * Otherwise the vector catch hardware could fire when there's
1973                  * no debugger hooked up, causing much confusion...
1974                  */
1975         }
1976
1977         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
1978         {
1979                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
1980                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
1981         }
1982
1983         return ERROR_OK;
1984 }
1985
1986 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
1987 {
1988         struct target *target = get_current_target(CMD_CTX);
1989         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1990         int retval;
1991
1992         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1993         if (retval != ERROR_OK)
1994                 return retval;
1995
1996         if (target->state != TARGET_HALTED)
1997         {
1998                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
1999                 return ERROR_OK;
2000         }
2001
2002         if (CMD_ARGC > 0)
2003         {
2004                 bool enable;
2005                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2006                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
2007                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
2008                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
2009         }
2010
2011         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
2012                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
2013
2014         return ERROR_OK;
2015 }
2016
2017 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2018         {
2019                 .name = "maskisr",
2020                 .handler = handle_cortex_m3_mask_interrupts_command,
2021                 .mode = COMMAND_EXEC,
2022                 .help = "mask cortex_m3 interrupts",
2023                 .usage = "['on'|'off']",
2024         },
2025         {
2026                 .name = "vector_catch",
2027                 .handler = handle_cortex_m3_vector_catch_command,
2028                 .mode = COMMAND_EXEC,
2029                 .help = "configure hardware vectors to trigger debug entry",
2030                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2031         },
2032         COMMAND_REGISTRATION_DONE
2033 };
2034 static const struct command_registration cortex_m3_command_handlers[] = {
2035         {
2036                 .chain = armv7m_command_handlers,
2037         },
2038         {
2039                 .name = "cortex_m3",
2040                 .mode = COMMAND_EXEC,
2041                 .help = "Cortex-M3 command group",
2042                 .chain = cortex_m3_exec_command_handlers,
2043         },
2044         COMMAND_REGISTRATION_DONE
2045 };
2046
2047 struct target_type cortexm3_target =
2048 {
2049         .name = "cortex_m3",
2050
2051         .poll = cortex_m3_poll,
2052         .arch_state = armv7m_arch_state,
2053
2054         .target_request_data = cortex_m3_target_request_data,
2055
2056         .halt = cortex_m3_halt,
2057         .resume = cortex_m3_resume,
2058         .step = cortex_m3_step,
2059
2060         .assert_reset = cortex_m3_assert_reset,
2061         .deassert_reset = cortex_m3_deassert_reset,
2062         .soft_reset_halt = cortex_m3_soft_reset_halt,
2063
2064         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2065
2066         .read_memory = cortex_m3_read_memory,
2067         .write_memory = cortex_m3_write_memory,
2068         .bulk_write_memory = cortex_m3_bulk_write_memory,
2069         .checksum_memory = armv7m_checksum_memory,
2070         .blank_check_memory = armv7m_blank_check_memory,
2071
2072         .run_algorithm = armv7m_run_algorithm,
2073
2074         .add_breakpoint = cortex_m3_add_breakpoint,
2075         .remove_breakpoint = cortex_m3_remove_breakpoint,
2076         .add_watchpoint = cortex_m3_add_watchpoint,
2077         .remove_watchpoint = cortex_m3_remove_watchpoint,
2078
2079         .commands = cortex_m3_command_handlers,
2080         .target_create = cortex_m3_target_create,
2081         .init_target = cortex_m3_init_target,
2082         .examine = cortex_m3_examine,
2083 };