]> git.sur5r.net Git - openocd/blob - src/target/target.c
75c41d381f700e7a83e67d9d628d87edfc7d443d
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53
54 /* targets */
55 extern struct target_type arm7tdmi_target;
56 extern struct target_type arm720t_target;
57 extern struct target_type arm9tdmi_target;
58 extern struct target_type arm920t_target;
59 extern struct target_type arm966e_target;
60 extern struct target_type arm926ejs_target;
61 extern struct target_type fa526_target;
62 extern struct target_type feroceon_target;
63 extern struct target_type dragonite_target;
64 extern struct target_type xscale_target;
65 extern struct target_type cortexm3_target;
66 extern struct target_type cortexa8_target;
67 extern struct target_type arm11_target;
68 extern struct target_type mips_m4k_target;
69 extern struct target_type avr_target;
70 extern struct target_type dsp563xx_target;
71 extern struct target_type testee_target;
72
73 struct target_type *target_types[] =
74 {
75         &arm7tdmi_target,
76         &arm9tdmi_target,
77         &arm920t_target,
78         &arm720t_target,
79         &arm966e_target,
80         &arm926ejs_target,
81         &fa526_target,
82         &feroceon_target,
83         &dragonite_target,
84         &xscale_target,
85         &cortexm3_target,
86         &cortexa8_target,
87         &arm11_target,
88         &mips_m4k_target,
89         &avr_target,
90         &dsp563xx_target,
91         &testee_target,
92         NULL,
93 };
94
95 struct target *all_targets = NULL;
96 struct target_event_callback *target_event_callbacks = NULL;
97 struct target_timer_callback *target_timer_callbacks = NULL;
98
99 static const Jim_Nvp nvp_assert[] = {
100         { .name = "assert", NVP_ASSERT },
101         { .name = "deassert", NVP_DEASSERT },
102         { .name = "T", NVP_ASSERT },
103         { .name = "F", NVP_DEASSERT },
104         { .name = "t", NVP_ASSERT },
105         { .name = "f", NVP_DEASSERT },
106         { .name = NULL, .value = -1 }
107 };
108
109 static const Jim_Nvp nvp_error_target[] = {
110         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
111         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
112         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
113         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
114         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
115         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
116         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
117         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
118         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
119         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
120         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
121         { .value = -1, .name = NULL }
122 };
123
124 const char *target_strerror_safe(int err)
125 {
126         const Jim_Nvp *n;
127
128         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
129         if (n->name == NULL) {
130                 return "unknown";
131         } else {
132                 return n->name;
133         }
134 }
135
136 static const Jim_Nvp nvp_target_event[] = {
137         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
138         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
139
140         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
141         { .value = TARGET_EVENT_HALTED, .name = "halted" },
142         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
143         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
144         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
145
146         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
147         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
148
149         /* historical name */
150
151         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
152
153         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
154         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
155         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
156         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
157         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
158         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
159         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
160         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
161         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
162         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
163         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
164
165         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
166         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
167
168         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
169         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
170
171         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
172         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
173
174         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
175         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
176
177         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
178         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
179
180         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
181         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
182         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
183
184         { .name = NULL, .value = -1 }
185 };
186
187 static const Jim_Nvp nvp_target_state[] = {
188         { .name = "unknown", .value = TARGET_UNKNOWN },
189         { .name = "running", .value = TARGET_RUNNING },
190         { .name = "halted",  .value = TARGET_HALTED },
191         { .name = "reset",   .value = TARGET_RESET },
192         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
193         { .name = NULL, .value = -1 },
194 };
195
196 static const Jim_Nvp nvp_target_debug_reason [] = {
197         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
198         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
199         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
200         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
201         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
202         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
203         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
204         { .name = NULL, .value = -1 },
205 };
206
207 static const Jim_Nvp nvp_target_endian[] = {
208         { .name = "big",    .value = TARGET_BIG_ENDIAN },
209         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
210         { .name = "be",     .value = TARGET_BIG_ENDIAN },
211         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
212         { .name = NULL,     .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_reset_modes[] = {
216         { .name = "unknown", .value = RESET_UNKNOWN },
217         { .name = "run"    , .value = RESET_RUN },
218         { .name = "halt"   , .value = RESET_HALT },
219         { .name = "init"   , .value = RESET_INIT },
220         { .name = NULL     , .value = -1 },
221 };
222
223 const char *debug_reason_name(struct target *t)
224 {
225         const char *cp;
226
227         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
228                         t->debug_reason)->name;
229         if (!cp) {
230                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
231                 cp = "(*BUG*unknown*BUG*)";
232         }
233         return cp;
234 }
235
236 const char *
237 target_state_name( struct target *t )
238 {
239         const char *cp;
240         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
241         if( !cp ){
242                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
243                 cp = "(*BUG*unknown*BUG*)";
244         }
245         return cp;
246 }
247
248 /* determine the number of the new target */
249 static int new_target_number(void)
250 {
251         struct target *t;
252         int x;
253
254         /* number is 0 based */
255         x = -1;
256         t = all_targets;
257         while (t) {
258                 if (x < t->target_number) {
259                         x = t->target_number;
260                 }
261                 t = t->next;
262         }
263         return x + 1;
264 }
265
266 /* read a uint32_t from a buffer in target memory endianness */
267 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
268 {
269         if (target->endianness == TARGET_LITTLE_ENDIAN)
270                 return le_to_h_u32(buffer);
271         else
272                 return be_to_h_u32(buffer);
273 }
274
275 /* read a uint16_t from a buffer in target memory endianness */
276 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u16(buffer);
280         else
281                 return be_to_h_u16(buffer);
282 }
283
284 /* read a uint8_t from a buffer in target memory endianness */
285 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
286 {
287         return *buffer & 0x0ff;
288 }
289
290 /* write a uint32_t to a buffer in target memory endianness */
291 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
292 {
293         if (target->endianness == TARGET_LITTLE_ENDIAN)
294                 h_u32_to_le(buffer, value);
295         else
296                 h_u32_to_be(buffer, value);
297 }
298
299 /* write a uint16_t to a buffer in target memory endianness */
300 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u16_to_le(buffer, value);
304         else
305                 h_u16_to_be(buffer, value);
306 }
307
308 /* write a uint8_t to a buffer in target memory endianness */
309 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
310 {
311         *buffer = value;
312 }
313
314 /* return a pointer to a configured target; id is name or number */
315 struct target *get_target(const char *id)
316 {
317         struct target *target;
318
319         /* try as tcltarget name */
320         for (target = all_targets; target; target = target->next) {
321                 if (target->cmd_name == NULL)
322                         continue;
323                 if (strcmp(id, target->cmd_name) == 0)
324                         return target;
325         }
326
327         /* It's OK to remove this fallback sometime after August 2010 or so */
328
329         /* no match, try as number */
330         unsigned num;
331         if (parse_uint(id, &num) != ERROR_OK)
332                 return NULL;
333
334         for (target = all_targets; target; target = target->next) {
335                 if (target->target_number == (int)num) {
336                         LOG_WARNING("use '%s' as target identifier, not '%u'",
337                                         target->cmd_name, num);
338                         return target;
339                 }
340         }
341
342         return NULL;
343 }
344
345 /* returns a pointer to the n-th configured target */
346 static struct target *get_target_by_num(int num)
347 {
348         struct target *target = all_targets;
349
350         while (target) {
351                 if (target->target_number == num) {
352                         return target;
353                 }
354                 target = target->next;
355         }
356
357         return NULL;
358 }
359
360 struct target* get_current_target(struct command_context *cmd_ctx)
361 {
362         struct target *target = get_target_by_num(cmd_ctx->current_target);
363
364         if (target == NULL)
365         {
366                 LOG_ERROR("BUG: current_target out of bounds");
367                 exit(-1);
368         }
369
370         return target;
371 }
372
373 int target_poll(struct target *target)
374 {
375         int retval;
376
377         /* We can't poll until after examine */
378         if (!target_was_examined(target))
379         {
380                 /* Fail silently lest we pollute the log */
381                 return ERROR_FAIL;
382         }
383
384         retval = target->type->poll(target);
385         if (retval != ERROR_OK)
386                 return retval;
387
388         if (target->halt_issued)
389         {
390                 if (target->state == TARGET_HALTED)
391                 {
392                         target->halt_issued = false;
393                 } else
394                 {
395                         long long t = timeval_ms() - target->halt_issued_time;
396                         if (t>1000)
397                         {
398                                 target->halt_issued = false;
399                                 LOG_INFO("Halt timed out, wake up GDB.");
400                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
401                         }
402                 }
403         }
404
405         return ERROR_OK;
406 }
407
408 int target_halt(struct target *target)
409 {
410         int retval;
411         /* We can't poll until after examine */
412         if (!target_was_examined(target))
413         {
414                 LOG_ERROR("Target not examined yet");
415                 return ERROR_FAIL;
416         }
417
418         retval = target->type->halt(target);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         target->halt_issued = true;
423         target->halt_issued_time = timeval_ms();
424
425         return ERROR_OK;
426 }
427
428 /**
429  * Make the target (re)start executing using its saved execution
430  * context (possibly with some modifications).
431  *
432  * @param target Which target should start executing.
433  * @param current True to use the target's saved program counter instead
434  *      of the address parameter
435  * @param address Optionally used as the program counter.
436  * @param handle_breakpoints True iff breakpoints at the resumption PC
437  *      should be skipped.  (For example, maybe execution was stopped by
438  *      such a breakpoint, in which case it would be counterprodutive to
439  *      let it re-trigger.
440  * @param debug_execution False if all working areas allocated by OpenOCD
441  *      should be released and/or restored to their original contents.
442  *      (This would for example be true to run some downloaded "helper"
443  *      algorithm code, which resides in one such working buffer and uses
444  *      another for data storage.)
445  *
446  * @todo Resolve the ambiguity about what the "debug_execution" flag
447  * signifies.  For example, Target implementations don't agree on how
448  * it relates to invalidation of the register cache, or to whether
449  * breakpoints and watchpoints should be enabled.  (It would seem wrong
450  * to enable breakpoints when running downloaded "helper" algorithms
451  * (debug_execution true), since the breakpoints would be set to match
452  * target firmware being debugged, not the helper algorithm.... and
453  * enabling them could cause such helpers to malfunction (for example,
454  * by overwriting data with a breakpoint instruction.  On the other
455  * hand the infrastructure for running such helpers might use this
456  * procedure but rely on hardware breakpoint to detect termination.)
457  */
458 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
459 {
460         int retval;
461
462         /* We can't poll until after examine */
463         if (!target_was_examined(target))
464         {
465                 LOG_ERROR("Target not examined yet");
466                 return ERROR_FAIL;
467         }
468
469         /* note that resume *must* be asynchronous. The CPU can halt before
470          * we poll. The CPU can even halt at the current PC as a result of
471          * a software breakpoint being inserted by (a bug?) the application.
472          */
473         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
474                 return retval;
475
476         /* Invalidate any cached protect/erase/... flash status, since
477          * almost all targets will now be able modify the flash by
478          * themselves.  We want flash drivers and infrastructure to
479          * be able to rely on (non-invalidated) cached state.
480          *
481          * REVISIT do the same for NAND ; maybe other flash flavors too...
482          */
483         nor_resume(target);
484         return retval;
485 }
486
487 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
488 {
489         char buf[100];
490         int retval;
491         Jim_Nvp *n;
492         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
493         if (n->name == NULL) {
494                 LOG_ERROR("invalid reset mode");
495                 return ERROR_FAIL;
496         }
497
498         /* disable polling during reset to make reset event scripts
499          * more predictable, i.e. dr/irscan & pathmove in events will
500          * not have JTAG operations injected into the middle of a sequence.
501          */
502         bool save_poll = jtag_poll_get_enabled();
503
504         jtag_poll_set_enabled(false);
505
506         sprintf(buf, "ocd_process_reset %s", n->name);
507         retval = Jim_Eval(cmd_ctx->interp, buf);
508
509         jtag_poll_set_enabled(save_poll);
510
511         if (retval != JIM_OK) {
512                 Jim_PrintErrorMessage(cmd_ctx->interp);
513                 return ERROR_FAIL;
514         }
515
516         /* We want any events to be processed before the prompt */
517         retval = target_call_timer_callbacks_now();
518
519         struct target *target;
520         for (target = all_targets; target; target = target->next) {
521                 target->type->check_reset(target);
522         }
523
524         return retval;
525 }
526
527 static int identity_virt2phys(struct target *target,
528                 uint32_t virtual, uint32_t *physical)
529 {
530         *physical = virtual;
531         return ERROR_OK;
532 }
533
534 static int no_mmu(struct target *target, int *enabled)
535 {
536         *enabled = 0;
537         return ERROR_OK;
538 }
539
540 static int default_examine(struct target *target)
541 {
542         target_set_examined(target);
543         return ERROR_OK;
544 }
545
546 /* no check by default */
547 static int default_check_reset(struct target *target)
548 {
549         return ERROR_OK;
550 }
551
552 int target_examine_one(struct target *target)
553 {
554         return target->type->examine(target);
555 }
556
557 static int jtag_enable_callback(enum jtag_event event, void *priv)
558 {
559         struct target *target = priv;
560
561         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
562                 return ERROR_OK;
563
564         jtag_unregister_event_callback(jtag_enable_callback, target);
565         return target_examine_one(target);
566 }
567
568
569 /* Targets that correctly implement init + examine, i.e.
570  * no communication with target during init:
571  *
572  * XScale
573  */
574 int target_examine(void)
575 {
576         int retval = ERROR_OK;
577         struct target *target;
578
579         for (target = all_targets; target; target = target->next)
580         {
581                 /* defer examination, but don't skip it */
582                 if (!target->tap->enabled) {
583                         jtag_register_event_callback(jtag_enable_callback,
584                                         target);
585                         continue;
586                 }
587                 if ((retval = target_examine_one(target)) != ERROR_OK)
588                         return retval;
589         }
590         return retval;
591 }
592 const char *target_type_name(struct target *target)
593 {
594         return target->type->name;
595 }
596
597 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
598 {
599         if (!target_was_examined(target))
600         {
601                 LOG_ERROR("Target not examined yet");
602                 return ERROR_FAIL;
603         }
604         return target->type->write_memory_imp(target, address, size, count, buffer);
605 }
606
607 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
608 {
609         if (!target_was_examined(target))
610         {
611                 LOG_ERROR("Target not examined yet");
612                 return ERROR_FAIL;
613         }
614         return target->type->read_memory_imp(target, address, size, count, buffer);
615 }
616
617 static int target_soft_reset_halt_imp(struct target *target)
618 {
619         if (!target_was_examined(target))
620         {
621                 LOG_ERROR("Target not examined yet");
622                 return ERROR_FAIL;
623         }
624         if (!target->type->soft_reset_halt_imp) {
625                 LOG_ERROR("Target %s does not support soft_reset_halt",
626                                 target_name(target));
627                 return ERROR_FAIL;
628         }
629         return target->type->soft_reset_halt_imp(target);
630 }
631
632 /**
633  * Downloads a target-specific native code algorithm to the target,
634  * and executes it.  * Note that some targets may need to set up, enable,
635  * and tear down a breakpoint (hard or * soft) to detect algorithm
636  * termination, while others may support  lower overhead schemes where
637  * soft breakpoints embedded in the algorithm automatically terminate the
638  * algorithm.
639  *
640  * @param target used to run the algorithm
641  * @param arch_info target-specific description of the algorithm.
642  */
643 int target_run_algorithm(struct target *target,
644                 int num_mem_params, struct mem_param *mem_params,
645                 int num_reg_params, struct reg_param *reg_param,
646                 uint32_t entry_point, uint32_t exit_point,
647                 int timeout_ms, void *arch_info)
648 {
649         int retval = ERROR_FAIL;
650
651         if (!target_was_examined(target))
652         {
653                 LOG_ERROR("Target not examined yet");
654                 goto done;
655         }
656         if (target->type->run_algorithm) {
657                 LOG_ERROR("Target type '%s' does not support %s",
658                                 target_type_name(target), __func__);
659                 goto done;
660         }
661
662         retval = target->type->run_algorithm(target,
663                         num_mem_params, mem_params,
664                         num_reg_params, reg_param,
665                         entry_point, exit_point, timeout_ms, arch_info);
666
667 done:
668         return retval;
669 }
670
671
672 int target_read_memory(struct target *target,
673                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
674 {
675         return target->type->read_memory(target, address, size, count, buffer);
676 }
677
678 int target_read_phys_memory(struct target *target,
679                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
680 {
681         return target->type->read_phys_memory(target, address, size, count, buffer);
682 }
683
684 int target_write_memory(struct target *target,
685                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
686 {
687         return target->type->write_memory(target, address, size, count, buffer);
688 }
689
690 int target_write_phys_memory(struct target *target,
691                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
692 {
693         return target->type->write_phys_memory(target, address, size, count, buffer);
694 }
695
696 int target_bulk_write_memory(struct target *target,
697                 uint32_t address, uint32_t count, uint8_t *buffer)
698 {
699         return target->type->bulk_write_memory(target, address, count, buffer);
700 }
701
702 int target_add_breakpoint(struct target *target,
703                 struct breakpoint *breakpoint)
704 {
705         if (target->state != TARGET_HALTED) {
706                 LOG_WARNING("target %s is not halted", target->cmd_name);
707                 return ERROR_TARGET_NOT_HALTED;
708         }
709         return target->type->add_breakpoint(target, breakpoint);
710 }
711 int target_remove_breakpoint(struct target *target,
712                 struct breakpoint *breakpoint)
713 {
714         return target->type->remove_breakpoint(target, breakpoint);
715 }
716
717 int target_add_watchpoint(struct target *target,
718                 struct watchpoint *watchpoint)
719 {
720         if (target->state != TARGET_HALTED) {
721                 LOG_WARNING("target %s is not halted", target->cmd_name);
722                 return ERROR_TARGET_NOT_HALTED;
723         }
724         return target->type->add_watchpoint(target, watchpoint);
725 }
726 int target_remove_watchpoint(struct target *target,
727                 struct watchpoint *watchpoint)
728 {
729         return target->type->remove_watchpoint(target, watchpoint);
730 }
731
732 int target_get_gdb_reg_list(struct target *target,
733                 struct reg **reg_list[], int *reg_list_size)
734 {
735         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
736 }
737 int target_step(struct target *target,
738                 int current, uint32_t address, int handle_breakpoints)
739 {
740         return target->type->step(target, current, address, handle_breakpoints);
741 }
742
743
744 /**
745  * Reset the @c examined flag for the given target.
746  * Pure paranoia -- targets are zeroed on allocation.
747  */
748 static void target_reset_examined(struct target *target)
749 {
750         target->examined = false;
751 }
752
753 static int
754 err_read_phys_memory(struct target *target, uint32_t address,
755                 uint32_t size, uint32_t count, uint8_t *buffer)
756 {
757         LOG_ERROR("Not implemented: %s", __func__);
758         return ERROR_FAIL;
759 }
760
761 static int
762 err_write_phys_memory(struct target *target, uint32_t address,
763                 uint32_t size, uint32_t count, uint8_t *buffer)
764 {
765         LOG_ERROR("Not implemented: %s", __func__);
766         return ERROR_FAIL;
767 }
768
769 static int handle_target(void *priv);
770
771 static int target_init_one(struct command_context *cmd_ctx,
772                 struct target *target)
773 {
774         target_reset_examined(target);
775
776         struct target_type *type = target->type;
777         if (type->examine == NULL)
778                 type->examine = default_examine;
779
780         if (type->check_reset== NULL)
781                 type->check_reset = default_check_reset;
782
783         int retval = type->init_target(cmd_ctx, target);
784         if (ERROR_OK != retval)
785         {
786                 LOG_ERROR("target '%s' init failed", target_name(target));
787                 return retval;
788         }
789
790         /**
791          * @todo get rid of those *memory_imp() methods, now that all
792          * callers are using target_*_memory() accessors ... and make
793          * sure the "physical" paths handle the same issues.
794          */
795         /* a non-invasive way(in terms of patches) to add some code that
796          * runs before the type->write/read_memory implementation
797          */
798         type->write_memory_imp = target->type->write_memory;
799         type->write_memory = target_write_memory_imp;
800
801         type->read_memory_imp = target->type->read_memory;
802         type->read_memory = target_read_memory_imp;
803
804         type->soft_reset_halt_imp = target->type->soft_reset_halt;
805         type->soft_reset_halt = target_soft_reset_halt_imp;
806
807         /* Sanity-check MMU support ... stub in what we must, to help
808          * implement it in stages, but warn if we need to do so.
809          */
810         if (type->mmu)
811         {
812                 if (type->write_phys_memory == NULL)
813                 {
814                         LOG_ERROR("type '%s' is missing write_phys_memory",
815                                         type->name);
816                         type->write_phys_memory = err_write_phys_memory;
817                 }
818                 if (type->read_phys_memory == NULL)
819                 {
820                         LOG_ERROR("type '%s' is missing read_phys_memory",
821                                         type->name);
822                         type->read_phys_memory = err_read_phys_memory;
823                 }
824                 if (type->virt2phys == NULL)
825                 {
826                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
827                         type->virt2phys = identity_virt2phys;
828                 }
829         }
830         else
831         {
832                 /* Make sure no-MMU targets all behave the same:  make no
833                  * distinction between physical and virtual addresses, and
834                  * ensure that virt2phys() is always an identity mapping.
835                  */
836                 if (type->write_phys_memory || type->read_phys_memory
837                                 || type->virt2phys)
838                 {
839                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
840                 }
841
842                 type->mmu = no_mmu;
843                 type->write_phys_memory = type->write_memory;
844                 type->read_phys_memory = type->read_memory;
845                 type->virt2phys = identity_virt2phys;
846         }
847         return ERROR_OK;
848 }
849
850 int target_init(struct command_context *cmd_ctx)
851 {
852         struct target *target;
853         int retval;
854
855         for (target = all_targets; target; target = target->next)
856         {
857                 retval = target_init_one(cmd_ctx, target);
858                 if (ERROR_OK != retval)
859                         return retval;
860         }
861
862         if (!all_targets)
863                 return ERROR_OK;
864
865         retval = target_register_user_commands(cmd_ctx);
866         if (ERROR_OK != retval)
867                 return retval;
868
869         retval = target_register_timer_callback(&handle_target,
870                         100, 1, cmd_ctx->interp);
871         if (ERROR_OK != retval)
872                 return retval;
873
874         return ERROR_OK;
875 }
876
877 COMMAND_HANDLER(handle_target_init_command)
878 {
879         if (CMD_ARGC != 0)
880                 return ERROR_COMMAND_SYNTAX_ERROR;
881
882         static bool target_initialized = false;
883         if (target_initialized)
884         {
885                 LOG_INFO("'target init' has already been called");
886                 return ERROR_OK;
887         }
888         target_initialized = true;
889
890         LOG_DEBUG("Initializing targets...");
891         return target_init(CMD_CTX);
892 }
893
894 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
895 {
896         struct target_event_callback **callbacks_p = &target_event_callbacks;
897
898         if (callback == NULL)
899         {
900                 return ERROR_INVALID_ARGUMENTS;
901         }
902
903         if (*callbacks_p)
904         {
905                 while ((*callbacks_p)->next)
906                         callbacks_p = &((*callbacks_p)->next);
907                 callbacks_p = &((*callbacks_p)->next);
908         }
909
910         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
911         (*callbacks_p)->callback = callback;
912         (*callbacks_p)->priv = priv;
913         (*callbacks_p)->next = NULL;
914
915         return ERROR_OK;
916 }
917
918 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
919 {
920         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
921         struct timeval now;
922
923         if (callback == NULL)
924         {
925                 return ERROR_INVALID_ARGUMENTS;
926         }
927
928         if (*callbacks_p)
929         {
930                 while ((*callbacks_p)->next)
931                         callbacks_p = &((*callbacks_p)->next);
932                 callbacks_p = &((*callbacks_p)->next);
933         }
934
935         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
936         (*callbacks_p)->callback = callback;
937         (*callbacks_p)->periodic = periodic;
938         (*callbacks_p)->time_ms = time_ms;
939
940         gettimeofday(&now, NULL);
941         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
942         time_ms -= (time_ms % 1000);
943         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
944         if ((*callbacks_p)->when.tv_usec > 1000000)
945         {
946                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
947                 (*callbacks_p)->when.tv_sec += 1;
948         }
949
950         (*callbacks_p)->priv = priv;
951         (*callbacks_p)->next = NULL;
952
953         return ERROR_OK;
954 }
955
956 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
957 {
958         struct target_event_callback **p = &target_event_callbacks;
959         struct target_event_callback *c = target_event_callbacks;
960
961         if (callback == NULL)
962         {
963                 return ERROR_INVALID_ARGUMENTS;
964         }
965
966         while (c)
967         {
968                 struct target_event_callback *next = c->next;
969                 if ((c->callback == callback) && (c->priv == priv))
970                 {
971                         *p = next;
972                         free(c);
973                         return ERROR_OK;
974                 }
975                 else
976                         p = &(c->next);
977                 c = next;
978         }
979
980         return ERROR_OK;
981 }
982
983 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
984 {
985         struct target_timer_callback **p = &target_timer_callbacks;
986         struct target_timer_callback *c = target_timer_callbacks;
987
988         if (callback == NULL)
989         {
990                 return ERROR_INVALID_ARGUMENTS;
991         }
992
993         while (c)
994         {
995                 struct target_timer_callback *next = c->next;
996                 if ((c->callback == callback) && (c->priv == priv))
997                 {
998                         *p = next;
999                         free(c);
1000                         return ERROR_OK;
1001                 }
1002                 else
1003                         p = &(c->next);
1004                 c = next;
1005         }
1006
1007         return ERROR_OK;
1008 }
1009
1010 int target_call_event_callbacks(struct target *target, enum target_event event)
1011 {
1012         struct target_event_callback *callback = target_event_callbacks;
1013         struct target_event_callback *next_callback;
1014
1015         if (event == TARGET_EVENT_HALTED)
1016         {
1017                 /* execute early halted first */
1018                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1019         }
1020
1021         LOG_DEBUG("target event %i (%s)",
1022                           event,
1023                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1024
1025         target_handle_event(target, event);
1026
1027         while (callback)
1028         {
1029                 next_callback = callback->next;
1030                 callback->callback(target, event, callback->priv);
1031                 callback = next_callback;
1032         }
1033
1034         return ERROR_OK;
1035 }
1036
1037 static int target_timer_callback_periodic_restart(
1038                 struct target_timer_callback *cb, struct timeval *now)
1039 {
1040         int time_ms = cb->time_ms;
1041         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1042         time_ms -= (time_ms % 1000);
1043         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1044         if (cb->when.tv_usec > 1000000)
1045         {
1046                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1047                 cb->when.tv_sec += 1;
1048         }
1049         return ERROR_OK;
1050 }
1051
1052 static int target_call_timer_callback(struct target_timer_callback *cb,
1053                 struct timeval *now)
1054 {
1055         cb->callback(cb->priv);
1056
1057         if (cb->periodic)
1058                 return target_timer_callback_periodic_restart(cb, now);
1059
1060         return target_unregister_timer_callback(cb->callback, cb->priv);
1061 }
1062
1063 static int target_call_timer_callbacks_check_time(int checktime)
1064 {
1065         keep_alive();
1066
1067         struct timeval now;
1068         gettimeofday(&now, NULL);
1069
1070         struct target_timer_callback *callback = target_timer_callbacks;
1071         while (callback)
1072         {
1073                 // cleaning up may unregister and free this callback
1074                 struct target_timer_callback *next_callback = callback->next;
1075
1076                 bool call_it = callback->callback &&
1077                         ((!checktime && callback->periodic) ||
1078                           now.tv_sec > callback->when.tv_sec ||
1079                          (now.tv_sec == callback->when.tv_sec &&
1080                           now.tv_usec >= callback->when.tv_usec));
1081
1082                 if (call_it)
1083                 {
1084                         int retval = target_call_timer_callback(callback, &now);
1085                         if (retval != ERROR_OK)
1086                                 return retval;
1087                 }
1088
1089                 callback = next_callback;
1090         }
1091
1092         return ERROR_OK;
1093 }
1094
1095 int target_call_timer_callbacks(void)
1096 {
1097         return target_call_timer_callbacks_check_time(1);
1098 }
1099
1100 /* invoke periodic callbacks immediately */
1101 int target_call_timer_callbacks_now(void)
1102 {
1103         return target_call_timer_callbacks_check_time(0);
1104 }
1105
1106 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1107 {
1108         struct working_area *c = target->working_areas;
1109         struct working_area *new_wa = NULL;
1110
1111         /* Reevaluate working area address based on MMU state*/
1112         if (target->working_areas == NULL)
1113         {
1114                 int retval;
1115                 int enabled;
1116
1117                 retval = target->type->mmu(target, &enabled);
1118                 if (retval != ERROR_OK)
1119                 {
1120                         return retval;
1121                 }
1122
1123                 if (!enabled) {
1124                         if (target->working_area_phys_spec) {
1125                                 LOG_DEBUG("MMU disabled, using physical "
1126                                         "address for working memory 0x%08x",
1127                                         (unsigned)target->working_area_phys);
1128                                 target->working_area = target->working_area_phys;
1129                         } else {
1130                                 LOG_ERROR("No working memory available. "
1131                                         "Specify -work-area-phys to target.");
1132                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1133                         }
1134                 } else {
1135                         if (target->working_area_virt_spec) {
1136                                 LOG_DEBUG("MMU enabled, using virtual "
1137                                         "address for working memory 0x%08x",
1138                                         (unsigned)target->working_area_virt);
1139                                 target->working_area = target->working_area_virt;
1140                         } else {
1141                                 LOG_ERROR("No working memory available. "
1142                                         "Specify -work-area-virt to target.");
1143                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1144                         }
1145                 }
1146         }
1147
1148         /* only allocate multiples of 4 byte */
1149         if (size % 4)
1150         {
1151                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1152                 size = (size + 3) & (~3);
1153         }
1154
1155         /* see if there's already a matching working area */
1156         while (c)
1157         {
1158                 if ((c->free) && (c->size == size))
1159                 {
1160                         new_wa = c;
1161                         break;
1162                 }
1163                 c = c->next;
1164         }
1165
1166         /* if not, allocate a new one */
1167         if (!new_wa)
1168         {
1169                 struct working_area **p = &target->working_areas;
1170                 uint32_t first_free = target->working_area;
1171                 uint32_t free_size = target->working_area_size;
1172
1173                 c = target->working_areas;
1174                 while (c)
1175                 {
1176                         first_free += c->size;
1177                         free_size -= c->size;
1178                         p = &c->next;
1179                         c = c->next;
1180                 }
1181
1182                 if (free_size < size)
1183                 {
1184                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1185                                     (unsigned)(size), (unsigned)(free_size));
1186                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1187                 }
1188
1189                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1190
1191                 new_wa = malloc(sizeof(struct working_area));
1192                 new_wa->next = NULL;
1193                 new_wa->size = size;
1194                 new_wa->address = first_free;
1195
1196                 if (target->backup_working_area)
1197                 {
1198                         int retval;
1199                         new_wa->backup = malloc(new_wa->size);
1200                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1201                         {
1202                                 free(new_wa->backup);
1203                                 free(new_wa);
1204                                 return retval;
1205                         }
1206                 }
1207                 else
1208                 {
1209                         new_wa->backup = NULL;
1210                 }
1211
1212                 /* put new entry in list */
1213                 *p = new_wa;
1214         }
1215
1216         /* mark as used, and return the new (reused) area */
1217         new_wa->free = 0;
1218         *area = new_wa;
1219
1220         /* user pointer */
1221         new_wa->user = area;
1222
1223         return ERROR_OK;
1224 }
1225
1226 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1227 {
1228         if (area->free)
1229                 return ERROR_OK;
1230
1231         if (restore && target->backup_working_area)
1232         {
1233                 int retval;
1234                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1235                         return retval;
1236         }
1237
1238         area->free = 1;
1239
1240         /* mark user pointer invalid */
1241         *area->user = NULL;
1242         area->user = NULL;
1243
1244         return ERROR_OK;
1245 }
1246
1247 int target_free_working_area(struct target *target, struct working_area *area)
1248 {
1249         return target_free_working_area_restore(target, area, 1);
1250 }
1251
1252 /* free resources and restore memory, if restoring memory fails,
1253  * free up resources anyway
1254  */
1255 void target_free_all_working_areas_restore(struct target *target, int restore)
1256 {
1257         struct working_area *c = target->working_areas;
1258
1259         while (c)
1260         {
1261                 struct working_area *next = c->next;
1262                 target_free_working_area_restore(target, c, restore);
1263
1264                 if (c->backup)
1265                         free(c->backup);
1266
1267                 free(c);
1268
1269                 c = next;
1270         }
1271
1272         target->working_areas = NULL;
1273 }
1274
1275 void target_free_all_working_areas(struct target *target)
1276 {
1277         target_free_all_working_areas_restore(target, 1);
1278 }
1279
1280 int target_arch_state(struct target *target)
1281 {
1282         int retval;
1283         if (target == NULL)
1284         {
1285                 LOG_USER("No target has been configured");
1286                 return ERROR_OK;
1287         }
1288
1289         LOG_USER("target state: %s", target_state_name( target ));
1290
1291         if (target->state != TARGET_HALTED)
1292                 return ERROR_OK;
1293
1294         retval = target->type->arch_state(target);
1295         return retval;
1296 }
1297
1298 /* Single aligned words are guaranteed to use 16 or 32 bit access
1299  * mode respectively, otherwise data is handled as quickly as
1300  * possible
1301  */
1302 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1303 {
1304         int retval;
1305         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1306                   (int)size, (unsigned)address);
1307
1308         if (!target_was_examined(target))
1309         {
1310                 LOG_ERROR("Target not examined yet");
1311                 return ERROR_FAIL;
1312         }
1313
1314         if (size == 0) {
1315                 return ERROR_OK;
1316         }
1317
1318         if ((address + size - 1) < address)
1319         {
1320                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1321                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1322                                   (unsigned)address,
1323                                   (unsigned)size);
1324                 return ERROR_FAIL;
1325         }
1326
1327         if (((address % 2) == 0) && (size == 2))
1328         {
1329                 return target_write_memory(target, address, 2, 1, buffer);
1330         }
1331
1332         /* handle unaligned head bytes */
1333         if (address % 4)
1334         {
1335                 uint32_t unaligned = 4 - (address % 4);
1336
1337                 if (unaligned > size)
1338                         unaligned = size;
1339
1340                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1341                         return retval;
1342
1343                 buffer += unaligned;
1344                 address += unaligned;
1345                 size -= unaligned;
1346         }
1347
1348         /* handle aligned words */
1349         if (size >= 4)
1350         {
1351                 int aligned = size - (size % 4);
1352
1353                 /* use bulk writes above a certain limit. This may have to be changed */
1354                 if (aligned > 128)
1355                 {
1356                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1357                                 return retval;
1358                 }
1359                 else
1360                 {
1361                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1362                                 return retval;
1363                 }
1364
1365                 buffer += aligned;
1366                 address += aligned;
1367                 size -= aligned;
1368         }
1369
1370         /* handle tail writes of less than 4 bytes */
1371         if (size > 0)
1372         {
1373                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1374                         return retval;
1375         }
1376
1377         return ERROR_OK;
1378 }
1379
1380 /* Single aligned words are guaranteed to use 16 or 32 bit access
1381  * mode respectively, otherwise data is handled as quickly as
1382  * possible
1383  */
1384 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1385 {
1386         int retval;
1387         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1388                           (int)size, (unsigned)address);
1389
1390         if (!target_was_examined(target))
1391         {
1392                 LOG_ERROR("Target not examined yet");
1393                 return ERROR_FAIL;
1394         }
1395
1396         if (size == 0) {
1397                 return ERROR_OK;
1398         }
1399
1400         if ((address + size - 1) < address)
1401         {
1402                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1403                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1404                                   address,
1405                                   size);
1406                 return ERROR_FAIL;
1407         }
1408
1409         if (((address % 2) == 0) && (size == 2))
1410         {
1411                 return target_read_memory(target, address, 2, 1, buffer);
1412         }
1413
1414         /* handle unaligned head bytes */
1415         if (address % 4)
1416         {
1417                 uint32_t unaligned = 4 - (address % 4);
1418
1419                 if (unaligned > size)
1420                         unaligned = size;
1421
1422                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1423                         return retval;
1424
1425                 buffer += unaligned;
1426                 address += unaligned;
1427                 size -= unaligned;
1428         }
1429
1430         /* handle aligned words */
1431         if (size >= 4)
1432         {
1433                 int aligned = size - (size % 4);
1434
1435                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1436                         return retval;
1437
1438                 buffer += aligned;
1439                 address += aligned;
1440                 size -= aligned;
1441         }
1442
1443         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1444         if(size >=2)
1445         {
1446                 int aligned = size - (size%2);
1447                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1448                 if (retval != ERROR_OK)
1449                         return retval;
1450
1451                 buffer += aligned;
1452                 address += aligned;
1453                 size -= aligned;
1454         }
1455         /* handle tail writes of less than 4 bytes */
1456         if (size > 0)
1457         {
1458                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1459                         return retval;
1460         }
1461
1462         return ERROR_OK;
1463 }
1464
1465 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1466 {
1467         uint8_t *buffer;
1468         int retval;
1469         uint32_t i;
1470         uint32_t checksum = 0;
1471         if (!target_was_examined(target))
1472         {
1473                 LOG_ERROR("Target not examined yet");
1474                 return ERROR_FAIL;
1475         }
1476
1477         if ((retval = target->type->checksum_memory(target, address,
1478                 size, &checksum)) != ERROR_OK)
1479         {
1480                 buffer = malloc(size);
1481                 if (buffer == NULL)
1482                 {
1483                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1484                         return ERROR_INVALID_ARGUMENTS;
1485                 }
1486                 retval = target_read_buffer(target, address, size, buffer);
1487                 if (retval != ERROR_OK)
1488                 {
1489                         free(buffer);
1490                         return retval;
1491                 }
1492
1493                 /* convert to target endianess */
1494                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1495                 {
1496                         uint32_t target_data;
1497                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1498                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1499                 }
1500
1501                 retval = image_calculate_checksum(buffer, size, &checksum);
1502                 free(buffer);
1503         }
1504
1505         *crc = checksum;
1506
1507         return retval;
1508 }
1509
1510 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1511 {
1512         int retval;
1513         if (!target_was_examined(target))
1514         {
1515                 LOG_ERROR("Target not examined yet");
1516                 return ERROR_FAIL;
1517         }
1518
1519         if (target->type->blank_check_memory == 0)
1520                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1521
1522         retval = target->type->blank_check_memory(target, address, size, blank);
1523
1524         return retval;
1525 }
1526
1527 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1528 {
1529         uint8_t value_buf[4];
1530         if (!target_was_examined(target))
1531         {
1532                 LOG_ERROR("Target not examined yet");
1533                 return ERROR_FAIL;
1534         }
1535
1536         int retval = target_read_memory(target, address, 4, 1, value_buf);
1537
1538         if (retval == ERROR_OK)
1539         {
1540                 *value = target_buffer_get_u32(target, value_buf);
1541                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1542                                   address,
1543                                   *value);
1544         }
1545         else
1546         {
1547                 *value = 0x0;
1548                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1549                                   address);
1550         }
1551
1552         return retval;
1553 }
1554
1555 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1556 {
1557         uint8_t value_buf[2];
1558         if (!target_was_examined(target))
1559         {
1560                 LOG_ERROR("Target not examined yet");
1561                 return ERROR_FAIL;
1562         }
1563
1564         int retval = target_read_memory(target, address, 2, 1, value_buf);
1565
1566         if (retval == ERROR_OK)
1567         {
1568                 *value = target_buffer_get_u16(target, value_buf);
1569                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1570                                   address,
1571                                   *value);
1572         }
1573         else
1574         {
1575                 *value = 0x0;
1576                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1577                                   address);
1578         }
1579
1580         return retval;
1581 }
1582
1583 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1584 {
1585         int retval = target_read_memory(target, address, 1, 1, value);
1586         if (!target_was_examined(target))
1587         {
1588                 LOG_ERROR("Target not examined yet");
1589                 return ERROR_FAIL;
1590         }
1591
1592         if (retval == ERROR_OK)
1593         {
1594                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1595                                   address,
1596                                   *value);
1597         }
1598         else
1599         {
1600                 *value = 0x0;
1601                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1602                                   address);
1603         }
1604
1605         return retval;
1606 }
1607
1608 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1609 {
1610         int retval;
1611         uint8_t value_buf[4];
1612         if (!target_was_examined(target))
1613         {
1614                 LOG_ERROR("Target not examined yet");
1615                 return ERROR_FAIL;
1616         }
1617
1618         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1619                           address,
1620                           value);
1621
1622         target_buffer_set_u32(target, value_buf, value);
1623         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1624         {
1625                 LOG_DEBUG("failed: %i", retval);
1626         }
1627
1628         return retval;
1629 }
1630
1631 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1632 {
1633         int retval;
1634         uint8_t value_buf[2];
1635         if (!target_was_examined(target))
1636         {
1637                 LOG_ERROR("Target not examined yet");
1638                 return ERROR_FAIL;
1639         }
1640
1641         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1642                           address,
1643                           value);
1644
1645         target_buffer_set_u16(target, value_buf, value);
1646         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1647         {
1648                 LOG_DEBUG("failed: %i", retval);
1649         }
1650
1651         return retval;
1652 }
1653
1654 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1655 {
1656         int retval;
1657         if (!target_was_examined(target))
1658         {
1659                 LOG_ERROR("Target not examined yet");
1660                 return ERROR_FAIL;
1661         }
1662
1663         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1664                           address, value);
1665
1666         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1667         {
1668                 LOG_DEBUG("failed: %i", retval);
1669         }
1670
1671         return retval;
1672 }
1673
1674 COMMAND_HANDLER(handle_targets_command)
1675 {
1676         struct target *target = all_targets;
1677
1678         if (CMD_ARGC == 1)
1679         {
1680                 target = get_target(CMD_ARGV[0]);
1681                 if (target == NULL) {
1682                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1683                         goto DumpTargets;
1684                 }
1685                 if (!target->tap->enabled) {
1686                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1687                                         "can't be the current target\n",
1688                                         target->tap->dotted_name);
1689                         return ERROR_FAIL;
1690                 }
1691
1692                 CMD_CTX->current_target = target->target_number;
1693                 return ERROR_OK;
1694         }
1695 DumpTargets:
1696
1697         target = all_targets;
1698         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1699         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1700         while (target)
1701         {
1702                 const char *state;
1703                 char marker = ' ';
1704
1705                 if (target->tap->enabled)
1706                         state = target_state_name( target );
1707                 else
1708                         state = "tap-disabled";
1709
1710                 if (CMD_CTX->current_target == target->target_number)
1711                         marker = '*';
1712
1713                 /* keep columns lined up to match the headers above */
1714                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1715                                           target->target_number,
1716                                           marker,
1717                                           target_name(target),
1718                                           target_type_name(target),
1719                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1720                                                                 target->endianness)->name,
1721                                           target->tap->dotted_name,
1722                                           state);
1723                 target = target->next;
1724         }
1725
1726         return ERROR_OK;
1727 }
1728
1729 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1730
1731 static int powerDropout;
1732 static int srstAsserted;
1733
1734 static int runPowerRestore;
1735 static int runPowerDropout;
1736 static int runSrstAsserted;
1737 static int runSrstDeasserted;
1738
1739 static int sense_handler(void)
1740 {
1741         static int prevSrstAsserted = 0;
1742         static int prevPowerdropout = 0;
1743
1744         int retval;
1745         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1746                 return retval;
1747
1748         int powerRestored;
1749         powerRestored = prevPowerdropout && !powerDropout;
1750         if (powerRestored)
1751         {
1752                 runPowerRestore = 1;
1753         }
1754
1755         long long current = timeval_ms();
1756         static long long lastPower = 0;
1757         int waitMore = lastPower + 2000 > current;
1758         if (powerDropout && !waitMore)
1759         {
1760                 runPowerDropout = 1;
1761                 lastPower = current;
1762         }
1763
1764         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1765                 return retval;
1766
1767         int srstDeasserted;
1768         srstDeasserted = prevSrstAsserted && !srstAsserted;
1769
1770         static long long lastSrst = 0;
1771         waitMore = lastSrst + 2000 > current;
1772         if (srstDeasserted && !waitMore)
1773         {
1774                 runSrstDeasserted = 1;
1775                 lastSrst = current;
1776         }
1777
1778         if (!prevSrstAsserted && srstAsserted)
1779         {
1780                 runSrstAsserted = 1;
1781         }
1782
1783         prevSrstAsserted = srstAsserted;
1784         prevPowerdropout = powerDropout;
1785
1786         if (srstDeasserted || powerRestored)
1787         {
1788                 /* Other than logging the event we can't do anything here.
1789                  * Issuing a reset is a particularly bad idea as we might
1790                  * be inside a reset already.
1791                  */
1792         }
1793
1794         return ERROR_OK;
1795 }
1796
1797 /* process target state changes */
1798 static int handle_target(void *priv)
1799 {
1800         Jim_Interp *interp = (Jim_Interp *)priv;
1801         int retval = ERROR_OK;
1802
1803         if (!is_jtag_poll_safe())
1804         {
1805                 /* polling is disabled currently */
1806                 return ERROR_OK;
1807         }
1808
1809         /* we do not want to recurse here... */
1810         static int recursive = 0;
1811         if (! recursive)
1812         {
1813                 recursive = 1;
1814                 sense_handler();
1815                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1816                  * We need to avoid an infinite loop/recursion here and we do that by
1817                  * clearing the flags after running these events.
1818                  */
1819                 int did_something = 0;
1820                 if (runSrstAsserted)
1821                 {
1822                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1823                         Jim_Eval(interp, "srst_asserted");
1824                         did_something = 1;
1825                 }
1826                 if (runSrstDeasserted)
1827                 {
1828                         Jim_Eval(interp, "srst_deasserted");
1829                         did_something = 1;
1830                 }
1831                 if (runPowerDropout)
1832                 {
1833                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1834                         Jim_Eval(interp, "power_dropout");
1835                         did_something = 1;
1836                 }
1837                 if (runPowerRestore)
1838                 {
1839                         Jim_Eval(interp, "power_restore");
1840                         did_something = 1;
1841                 }
1842
1843                 if (did_something)
1844                 {
1845                         /* clear detect flags */
1846                         sense_handler();
1847                 }
1848
1849                 /* clear action flags */
1850
1851                 runSrstAsserted = 0;
1852                 runSrstDeasserted = 0;
1853                 runPowerRestore = 0;
1854                 runPowerDropout = 0;
1855
1856                 recursive = 0;
1857         }
1858
1859         /* Poll targets for state changes unless that's globally disabled.
1860          * Skip targets that are currently disabled.
1861          */
1862         for (struct target *target = all_targets;
1863                         is_jtag_poll_safe() && target;
1864                         target = target->next)
1865         {
1866                 if (!target->tap->enabled)
1867                         continue;
1868
1869                 /* only poll target if we've got power and srst isn't asserted */
1870                 if (!powerDropout && !srstAsserted)
1871                 {
1872                         /* polling may fail silently until the target has been examined */
1873                         if ((retval = target_poll(target)) != ERROR_OK)
1874                         {
1875                                 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1876                                  * *why* we are aborting GDB, then we'll spam telnet when the
1877                                  * poll is failing persistently.
1878                                  *
1879                                  * If we could implement an event that detected the
1880                                  * target going from non-pollable to pollable, we could issue
1881                                  * an error only upon the transition.
1882                                  */
1883                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1884                                 return retval;
1885                         }
1886                 }
1887         }
1888
1889         return retval;
1890 }
1891
1892 COMMAND_HANDLER(handle_reg_command)
1893 {
1894         struct target *target;
1895         struct reg *reg = NULL;
1896         unsigned count = 0;
1897         char *value;
1898
1899         LOG_DEBUG("-");
1900
1901         target = get_current_target(CMD_CTX);
1902
1903         /* list all available registers for the current target */
1904         if (CMD_ARGC == 0)
1905         {
1906                 struct reg_cache *cache = target->reg_cache;
1907
1908                 count = 0;
1909                 while (cache)
1910                 {
1911                         unsigned i;
1912
1913                         command_print(CMD_CTX, "===== %s", cache->name);
1914
1915                         for (i = 0, reg = cache->reg_list;
1916                                         i < cache->num_regs;
1917                                         i++, reg++, count++)
1918                         {
1919                                 /* only print cached values if they are valid */
1920                                 if (reg->valid) {
1921                                         value = buf_to_str(reg->value,
1922                                                         reg->size, 16);
1923                                         command_print(CMD_CTX,
1924                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1925                                                         count, reg->name,
1926                                                         reg->size, value,
1927                                                         reg->dirty
1928                                                                 ? " (dirty)"
1929                                                                 : "");
1930                                         free(value);
1931                                 } else {
1932                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1933                                                           count, reg->name,
1934                                                           reg->size) ;
1935                                 }
1936                         }
1937                         cache = cache->next;
1938                 }
1939
1940                 return ERROR_OK;
1941         }
1942
1943         /* access a single register by its ordinal number */
1944         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1945         {
1946                 unsigned num;
1947                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1948
1949                 struct reg_cache *cache = target->reg_cache;
1950                 count = 0;
1951                 while (cache)
1952                 {
1953                         unsigned i;
1954                         for (i = 0; i < cache->num_regs; i++)
1955                         {
1956                                 if (count++ == num)
1957                                 {
1958                                         reg = &cache->reg_list[i];
1959                                         break;
1960                                 }
1961                         }
1962                         if (reg)
1963                                 break;
1964                         cache = cache->next;
1965                 }
1966
1967                 if (!reg)
1968                 {
1969                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1970                         return ERROR_OK;
1971                 }
1972         } else /* access a single register by its name */
1973         {
1974                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1975
1976                 if (!reg)
1977                 {
1978                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1979                         return ERROR_OK;
1980                 }
1981         }
1982
1983         /* display a register */
1984         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1985         {
1986                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1987                         reg->valid = 0;
1988
1989                 if (reg->valid == 0)
1990                 {
1991                         reg->type->get(reg);
1992                 }
1993                 value = buf_to_str(reg->value, reg->size, 16);
1994                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1995                 free(value);
1996                 return ERROR_OK;
1997         }
1998
1999         /* set register value */
2000         if (CMD_ARGC == 2)
2001         {
2002                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2003                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2004
2005                 reg->type->set(reg, buf);
2006
2007                 value = buf_to_str(reg->value, reg->size, 16);
2008                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2009                 free(value);
2010
2011                 free(buf);
2012
2013                 return ERROR_OK;
2014         }
2015
2016         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2017
2018         return ERROR_OK;
2019 }
2020
2021 COMMAND_HANDLER(handle_poll_command)
2022 {
2023         int retval = ERROR_OK;
2024         struct target *target = get_current_target(CMD_CTX);
2025
2026         if (CMD_ARGC == 0)
2027         {
2028                 command_print(CMD_CTX, "background polling: %s",
2029                                 jtag_poll_get_enabled() ? "on" : "off");
2030                 command_print(CMD_CTX, "TAP: %s (%s)",
2031                                 target->tap->dotted_name,
2032                                 target->tap->enabled ? "enabled" : "disabled");
2033                 if (!target->tap->enabled)
2034                         return ERROR_OK;
2035                 if ((retval = target_poll(target)) != ERROR_OK)
2036                         return retval;
2037                 if ((retval = target_arch_state(target)) != ERROR_OK)
2038                         return retval;
2039         }
2040         else if (CMD_ARGC == 1)
2041         {
2042                 bool enable;
2043                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2044                 jtag_poll_set_enabled(enable);
2045         }
2046         else
2047         {
2048                 return ERROR_COMMAND_SYNTAX_ERROR;
2049         }
2050
2051         return retval;
2052 }
2053
2054 COMMAND_HANDLER(handle_wait_halt_command)
2055 {
2056         if (CMD_ARGC > 1)
2057                 return ERROR_COMMAND_SYNTAX_ERROR;
2058
2059         unsigned ms = 5000;
2060         if (1 == CMD_ARGC)
2061         {
2062                 int retval = parse_uint(CMD_ARGV[0], &ms);
2063                 if (ERROR_OK != retval)
2064                 {
2065                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2066                         return ERROR_COMMAND_SYNTAX_ERROR;
2067                 }
2068                 // convert seconds (given) to milliseconds (needed)
2069                 ms *= 1000;
2070         }
2071
2072         struct target *target = get_current_target(CMD_CTX);
2073         return target_wait_state(target, TARGET_HALTED, ms);
2074 }
2075
2076 /* wait for target state to change. The trick here is to have a low
2077  * latency for short waits and not to suck up all the CPU time
2078  * on longer waits.
2079  *
2080  * After 500ms, keep_alive() is invoked
2081  */
2082 int target_wait_state(struct target *target, enum target_state state, int ms)
2083 {
2084         int retval;
2085         long long then = 0, cur;
2086         int once = 1;
2087
2088         for (;;)
2089         {
2090                 if ((retval = target_poll(target)) != ERROR_OK)
2091                         return retval;
2092                 if (target->state == state)
2093                 {
2094                         break;
2095                 }
2096                 cur = timeval_ms();
2097                 if (once)
2098                 {
2099                         once = 0;
2100                         then = timeval_ms();
2101                         LOG_DEBUG("waiting for target %s...",
2102                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2103                 }
2104
2105                 if (cur-then > 500)
2106                 {
2107                         keep_alive();
2108                 }
2109
2110                 if ((cur-then) > ms)
2111                 {
2112                         LOG_ERROR("timed out while waiting for target %s",
2113                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2114                         return ERROR_FAIL;
2115                 }
2116         }
2117
2118         return ERROR_OK;
2119 }
2120
2121 COMMAND_HANDLER(handle_halt_command)
2122 {
2123         LOG_DEBUG("-");
2124
2125         struct target *target = get_current_target(CMD_CTX);
2126         int retval = target_halt(target);
2127         if (ERROR_OK != retval)
2128                 return retval;
2129
2130         if (CMD_ARGC == 1)
2131         {
2132                 unsigned wait;
2133                 retval = parse_uint(CMD_ARGV[0], &wait);
2134                 if (ERROR_OK != retval)
2135                         return ERROR_COMMAND_SYNTAX_ERROR;
2136                 if (!wait)
2137                         return ERROR_OK;
2138         }
2139
2140         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2141 }
2142
2143 COMMAND_HANDLER(handle_soft_reset_halt_command)
2144 {
2145         struct target *target = get_current_target(CMD_CTX);
2146
2147         LOG_USER("requesting target halt and executing a soft reset");
2148
2149         target->type->soft_reset_halt(target);
2150
2151         return ERROR_OK;
2152 }
2153
2154 COMMAND_HANDLER(handle_reset_command)
2155 {
2156         if (CMD_ARGC > 1)
2157                 return ERROR_COMMAND_SYNTAX_ERROR;
2158
2159         enum target_reset_mode reset_mode = RESET_RUN;
2160         if (CMD_ARGC == 1)
2161         {
2162                 const Jim_Nvp *n;
2163                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2164                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2165                         return ERROR_COMMAND_SYNTAX_ERROR;
2166                 }
2167                 reset_mode = n->value;
2168         }
2169
2170         /* reset *all* targets */
2171         return target_process_reset(CMD_CTX, reset_mode);
2172 }
2173
2174
2175 COMMAND_HANDLER(handle_resume_command)
2176 {
2177         int current = 1;
2178         if (CMD_ARGC > 1)
2179                 return ERROR_COMMAND_SYNTAX_ERROR;
2180
2181         struct target *target = get_current_target(CMD_CTX);
2182         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2183
2184         /* with no CMD_ARGV, resume from current pc, addr = 0,
2185          * with one arguments, addr = CMD_ARGV[0],
2186          * handle breakpoints, not debugging */
2187         uint32_t addr = 0;
2188         if (CMD_ARGC == 1)
2189         {
2190                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2191                 current = 0;
2192         }
2193
2194         return target_resume(target, current, addr, 1, 0);
2195 }
2196
2197 COMMAND_HANDLER(handle_step_command)
2198 {
2199         if (CMD_ARGC > 1)
2200                 return ERROR_COMMAND_SYNTAX_ERROR;
2201
2202         LOG_DEBUG("-");
2203
2204         /* with no CMD_ARGV, step from current pc, addr = 0,
2205          * with one argument addr = CMD_ARGV[0],
2206          * handle breakpoints, debugging */
2207         uint32_t addr = 0;
2208         int current_pc = 1;
2209         if (CMD_ARGC == 1)
2210         {
2211                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2212                 current_pc = 0;
2213         }
2214
2215         struct target *target = get_current_target(CMD_CTX);
2216
2217         return target->type->step(target, current_pc, addr, 1);
2218 }
2219
2220 static void handle_md_output(struct command_context *cmd_ctx,
2221                 struct target *target, uint32_t address, unsigned size,
2222                 unsigned count, const uint8_t *buffer)
2223 {
2224         const unsigned line_bytecnt = 32;
2225         unsigned line_modulo = line_bytecnt / size;
2226
2227         char output[line_bytecnt * 4 + 1];
2228         unsigned output_len = 0;
2229
2230         const char *value_fmt;
2231         switch (size) {
2232         case 4: value_fmt = "%8.8x "; break;
2233         case 2: value_fmt = "%4.4x "; break;
2234         case 1: value_fmt = "%2.2x "; break;
2235         default:
2236                 /* "can't happen", caller checked */
2237                 LOG_ERROR("invalid memory read size: %u", size);
2238                 return;
2239         }
2240
2241         for (unsigned i = 0; i < count; i++)
2242         {
2243                 if (i % line_modulo == 0)
2244                 {
2245                         output_len += snprintf(output + output_len,
2246                                         sizeof(output) - output_len,
2247                                         "0x%8.8x: ",
2248                                         (unsigned)(address + (i*size)));
2249                 }
2250
2251                 uint32_t value = 0;
2252                 const uint8_t *value_ptr = buffer + i * size;
2253                 switch (size) {
2254                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2255                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2256                 case 1: value = *value_ptr;
2257                 }
2258                 output_len += snprintf(output + output_len,
2259                                 sizeof(output) - output_len,
2260                                 value_fmt, value);
2261
2262                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2263                 {
2264                         command_print(cmd_ctx, "%s", output);
2265                         output_len = 0;
2266                 }
2267         }
2268 }
2269
2270 COMMAND_HANDLER(handle_md_command)
2271 {
2272         if (CMD_ARGC < 1)
2273                 return ERROR_COMMAND_SYNTAX_ERROR;
2274
2275         unsigned size = 0;
2276         switch (CMD_NAME[2]) {
2277         case 'w': size = 4; break;
2278         case 'h': size = 2; break;
2279         case 'b': size = 1; break;
2280         default: return ERROR_COMMAND_SYNTAX_ERROR;
2281         }
2282
2283         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2284         int (*fn)(struct target *target,
2285                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2286         if (physical)
2287         {
2288                 CMD_ARGC--;
2289                 CMD_ARGV++;
2290                 fn=target_read_phys_memory;
2291         } else
2292         {
2293                 fn=target_read_memory;
2294         }
2295         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2296         {
2297                 return ERROR_COMMAND_SYNTAX_ERROR;
2298         }
2299
2300         uint32_t address;
2301         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2302
2303         unsigned count = 1;
2304         if (CMD_ARGC == 2)
2305                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2306
2307         uint8_t *buffer = calloc(count, size);
2308
2309         struct target *target = get_current_target(CMD_CTX);
2310         int retval = fn(target, address, size, count, buffer);
2311         if (ERROR_OK == retval)
2312                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2313
2314         free(buffer);
2315
2316         return retval;
2317 }
2318
2319 typedef int (*target_write_fn)(struct target *target,
2320                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2321
2322 static int target_write_memory_fast(struct target *target,
2323                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2324 {
2325         return target_write_buffer(target, address, size * count, buffer);
2326 }
2327
2328 static int target_fill_mem(struct target *target,
2329                 uint32_t address,
2330                 target_write_fn fn,
2331                 unsigned data_size,
2332                 /* value */
2333                 uint32_t b,
2334                 /* count */
2335                 unsigned c)
2336 {
2337         /* We have to write in reasonably large chunks to be able
2338          * to fill large memory areas with any sane speed */
2339         const unsigned chunk_size = 16384;
2340         uint8_t *target_buf = malloc(chunk_size * data_size);
2341         if (target_buf == NULL)
2342         {
2343                 LOG_ERROR("Out of memory");
2344                 return ERROR_FAIL;
2345         }
2346
2347         for (unsigned i = 0; i < chunk_size; i ++)
2348         {
2349                 switch (data_size)
2350                 {
2351                 case 4:
2352                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2353                         break;
2354                 case 2:
2355                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2356                         break;
2357                 case 1:
2358                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2359                         break;
2360                 default:
2361                         exit(-1);
2362                 }
2363         }
2364
2365         int retval = ERROR_OK;
2366
2367         for (unsigned x = 0; x < c; x += chunk_size)
2368         {
2369                 unsigned current;
2370                 current = c - x;
2371                 if (current > chunk_size)
2372                 {
2373                         current = chunk_size;
2374                 }
2375                 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2376                 if (retval != ERROR_OK)
2377                 {
2378                         break;
2379                 }
2380                 /* avoid GDB timeouts */
2381                 keep_alive();
2382         }
2383         free(target_buf);
2384
2385         return retval;
2386 }
2387
2388
2389 COMMAND_HANDLER(handle_mw_command)
2390 {
2391         if (CMD_ARGC < 2)
2392         {
2393                 return ERROR_COMMAND_SYNTAX_ERROR;
2394         }
2395         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2396         target_write_fn fn;
2397         if (physical)
2398         {
2399                 CMD_ARGC--;
2400                 CMD_ARGV++;
2401                 fn=target_write_phys_memory;
2402         } else
2403         {
2404                 fn = target_write_memory_fast;
2405         }
2406         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2407                 return ERROR_COMMAND_SYNTAX_ERROR;
2408
2409         uint32_t address;
2410         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2411
2412         uint32_t value;
2413         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2414
2415         unsigned count = 1;
2416         if (CMD_ARGC == 3)
2417                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2418
2419         struct target *target = get_current_target(CMD_CTX);
2420         unsigned wordsize;
2421         switch (CMD_NAME[2])
2422         {
2423                 case 'w':
2424                         wordsize = 4;
2425                         break;
2426                 case 'h':
2427                         wordsize = 2;
2428                         break;
2429                 case 'b':
2430                         wordsize = 1;
2431                         break;
2432                 default:
2433                         return ERROR_COMMAND_SYNTAX_ERROR;
2434         }
2435
2436         return target_fill_mem(target, address, fn, wordsize, value, count);
2437 }
2438
2439 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2440                 uint32_t *min_address, uint32_t *max_address)
2441 {
2442         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2443                 return ERROR_COMMAND_SYNTAX_ERROR;
2444
2445         /* a base address isn't always necessary,
2446          * default to 0x0 (i.e. don't relocate) */
2447         if (CMD_ARGC >= 2)
2448         {
2449                 uint32_t addr;
2450                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2451                 image->base_address = addr;
2452                 image->base_address_set = 1;
2453         }
2454         else
2455                 image->base_address_set = 0;
2456
2457         image->start_address_set = 0;
2458
2459         if (CMD_ARGC >= 4)
2460         {
2461                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2462         }
2463         if (CMD_ARGC == 5)
2464         {
2465                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2466                 // use size (given) to find max (required)
2467                 *max_address += *min_address;
2468         }
2469
2470         if (*min_address > *max_address)
2471                 return ERROR_COMMAND_SYNTAX_ERROR;
2472
2473         return ERROR_OK;
2474 }
2475
2476 COMMAND_HANDLER(handle_load_image_command)
2477 {
2478         uint8_t *buffer;
2479         size_t buf_cnt;
2480         uint32_t image_size;
2481         uint32_t min_address = 0;
2482         uint32_t max_address = 0xffffffff;
2483         int i;
2484         struct image image;
2485
2486         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2487                         &image, &min_address, &max_address);
2488         if (ERROR_OK != retval)
2489                 return retval;
2490
2491         struct target *target = get_current_target(CMD_CTX);
2492
2493         struct duration bench;
2494         duration_start(&bench);
2495
2496         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2497         {
2498                 return ERROR_OK;
2499         }
2500
2501         image_size = 0x0;
2502         retval = ERROR_OK;
2503         for (i = 0; i < image.num_sections; i++)
2504         {
2505                 buffer = malloc(image.sections[i].size);
2506                 if (buffer == NULL)
2507                 {
2508                         command_print(CMD_CTX,
2509                                                   "error allocating buffer for section (%d bytes)",
2510                                                   (int)(image.sections[i].size));
2511                         break;
2512                 }
2513
2514                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2515                 {
2516                         free(buffer);
2517                         break;
2518                 }
2519
2520                 uint32_t offset = 0;
2521                 uint32_t length = buf_cnt;
2522
2523                 /* DANGER!!! beware of unsigned comparision here!!! */
2524
2525                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2526                                 (image.sections[i].base_address < max_address))
2527                 {
2528                         if (image.sections[i].base_address < min_address)
2529                         {
2530                                 /* clip addresses below */
2531                                 offset += min_address-image.sections[i].base_address;
2532                                 length -= offset;
2533                         }
2534
2535                         if (image.sections[i].base_address + buf_cnt > max_address)
2536                         {
2537                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2538                         }
2539
2540                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2541                         {
2542                                 free(buffer);
2543                                 break;
2544                         }
2545                         image_size += length;
2546                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2547                                                   (unsigned int)length,
2548                                                   image.sections[i].base_address + offset);
2549                 }
2550
2551                 free(buffer);
2552         }
2553
2554         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2555         {
2556                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2557                                 "in %fs (%0.3f kb/s)", image_size,
2558                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2559         }
2560
2561         image_close(&image);
2562
2563         return retval;
2564
2565 }
2566
2567 COMMAND_HANDLER(handle_dump_image_command)
2568 {
2569         struct fileio fileio;
2570
2571         uint8_t buffer[560];
2572         int retvaltemp;
2573
2574
2575         struct target *target = get_current_target(CMD_CTX);
2576
2577         if (CMD_ARGC != 3)
2578         {
2579                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2580                 return ERROR_OK;
2581         }
2582
2583         uint32_t address;
2584         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2585         uint32_t size;
2586         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2587
2588         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2589         {
2590                 return ERROR_OK;
2591         }
2592
2593         struct duration bench;
2594         duration_start(&bench);
2595
2596         int retval = ERROR_OK;
2597         while (size > 0)
2598         {
2599                 size_t size_written;
2600                 uint32_t this_run_size = (size > 560) ? 560 : size;
2601                 retval = target_read_buffer(target, address, this_run_size, buffer);
2602                 if (retval != ERROR_OK)
2603                 {
2604                         break;
2605                 }
2606
2607                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2608                 if (retval != ERROR_OK)
2609                 {
2610                         break;
2611                 }
2612
2613                 size -= this_run_size;
2614                 address += this_run_size;
2615         }
2616
2617         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2618                 return retvaltemp;
2619
2620         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2621         {
2622                 command_print(CMD_CTX,
2623                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2624                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2625         }
2626
2627         return retval;
2628 }
2629
2630 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2631 {
2632         uint8_t *buffer;
2633         size_t buf_cnt;
2634         uint32_t image_size;
2635         int i;
2636         int retval;
2637         uint32_t checksum = 0;
2638         uint32_t mem_checksum = 0;
2639
2640         struct image image;
2641
2642         struct target *target = get_current_target(CMD_CTX);
2643
2644         if (CMD_ARGC < 1)
2645         {
2646                 return ERROR_COMMAND_SYNTAX_ERROR;
2647         }
2648
2649         if (!target)
2650         {
2651                 LOG_ERROR("no target selected");
2652                 return ERROR_FAIL;
2653         }
2654
2655         struct duration bench;
2656         duration_start(&bench);
2657
2658         if (CMD_ARGC >= 2)
2659         {
2660                 uint32_t addr;
2661                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2662                 image.base_address = addr;
2663                 image.base_address_set = 1;
2664         }
2665         else
2666         {
2667                 image.base_address_set = 0;
2668                 image.base_address = 0x0;
2669         }
2670
2671         image.start_address_set = 0;
2672
2673         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2674         {
2675                 return retval;
2676         }
2677
2678         image_size = 0x0;
2679         retval = ERROR_OK;
2680         for (i = 0; i < image.num_sections; i++)
2681         {
2682                 buffer = malloc(image.sections[i].size);
2683                 if (buffer == NULL)
2684                 {
2685                         command_print(CMD_CTX,
2686                                                   "error allocating buffer for section (%d bytes)",
2687                                                   (int)(image.sections[i].size));
2688                         break;
2689                 }
2690                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2691                 {
2692                         free(buffer);
2693                         break;
2694                 }
2695
2696                 if (verify)
2697                 {
2698                         /* calculate checksum of image */
2699                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2700
2701                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2702                         if (retval != ERROR_OK)
2703                         {
2704                                 free(buffer);
2705                                 break;
2706                         }
2707
2708                         if (checksum != mem_checksum)
2709                         {
2710                                 /* failed crc checksum, fall back to a binary compare */
2711                                 uint8_t *data;
2712
2713                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2714
2715                                 data = (uint8_t*)malloc(buf_cnt);
2716
2717                                 /* Can we use 32bit word accesses? */
2718                                 int size = 1;
2719                                 int count = buf_cnt;
2720                                 if ((count % 4) == 0)
2721                                 {
2722                                         size *= 4;
2723                                         count /= 4;
2724                                 }
2725                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2726                                 if (retval == ERROR_OK)
2727                                 {
2728                                         uint32_t t;
2729                                         for (t = 0; t < buf_cnt; t++)
2730                                         {
2731                                                 if (data[t] != buffer[t])
2732                                                 {
2733                                                         command_print(CMD_CTX,
2734                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2735                                                                                   (unsigned)(t + image.sections[i].base_address),
2736                                                                                   data[t],
2737                                                                                   buffer[t]);
2738                                                         free(data);
2739                                                         free(buffer);
2740                                                         retval = ERROR_FAIL;
2741                                                         goto done;
2742                                                 }
2743                                                 if ((t%16384) == 0)
2744                                                 {
2745                                                         keep_alive();
2746                                                 }
2747                                         }
2748                                 }
2749
2750                                 free(data);
2751                         }
2752                 } else
2753                 {
2754                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2755                                                   image.sections[i].base_address,
2756                                                   buf_cnt);
2757                 }
2758
2759                 free(buffer);
2760                 image_size += buf_cnt;
2761         }
2762 done:
2763         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2764         {
2765                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2766                                 "in %fs (%0.3f kb/s)", image_size,
2767                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2768         }
2769
2770         image_close(&image);
2771
2772         return retval;
2773 }
2774
2775 COMMAND_HANDLER(handle_verify_image_command)
2776 {
2777         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2778 }
2779
2780 COMMAND_HANDLER(handle_test_image_command)
2781 {
2782         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2783 }
2784
2785 static int handle_bp_command_list(struct command_context *cmd_ctx)
2786 {
2787         struct target *target = get_current_target(cmd_ctx);
2788         struct breakpoint *breakpoint = target->breakpoints;
2789         while (breakpoint)
2790         {
2791                 if (breakpoint->type == BKPT_SOFT)
2792                 {
2793                         char* buf = buf_to_str(breakpoint->orig_instr,
2794                                         breakpoint->length, 16);
2795                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2796                                         breakpoint->address,
2797                                         breakpoint->length,
2798                                         breakpoint->set, buf);
2799                         free(buf);
2800                 }
2801                 else
2802                 {
2803                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2804                                                   breakpoint->address,
2805                                                   breakpoint->length, breakpoint->set);
2806                 }
2807
2808                 breakpoint = breakpoint->next;
2809         }
2810         return ERROR_OK;
2811 }
2812
2813 static int handle_bp_command_set(struct command_context *cmd_ctx,
2814                 uint32_t addr, uint32_t length, int hw)
2815 {
2816         struct target *target = get_current_target(cmd_ctx);
2817         int retval = breakpoint_add(target, addr, length, hw);
2818         if (ERROR_OK == retval)
2819                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2820         else
2821                 LOG_ERROR("Failure setting breakpoint");
2822         return retval;
2823 }
2824
2825 COMMAND_HANDLER(handle_bp_command)
2826 {
2827         if (CMD_ARGC == 0)
2828                 return handle_bp_command_list(CMD_CTX);
2829
2830         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2831         {
2832                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2833                 return ERROR_COMMAND_SYNTAX_ERROR;
2834         }
2835
2836         uint32_t addr;
2837         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2838         uint32_t length;
2839         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2840
2841         int hw = BKPT_SOFT;
2842         if (CMD_ARGC == 3)
2843         {
2844                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2845                         hw = BKPT_HARD;
2846                 else
2847                         return ERROR_COMMAND_SYNTAX_ERROR;
2848         }
2849
2850         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2851 }
2852
2853 COMMAND_HANDLER(handle_rbp_command)
2854 {
2855         if (CMD_ARGC != 1)
2856                 return ERROR_COMMAND_SYNTAX_ERROR;
2857
2858         uint32_t addr;
2859         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2860
2861         struct target *target = get_current_target(CMD_CTX);
2862         breakpoint_remove(target, addr);
2863
2864         return ERROR_OK;
2865 }
2866
2867 COMMAND_HANDLER(handle_wp_command)
2868 {
2869         struct target *target = get_current_target(CMD_CTX);
2870
2871         if (CMD_ARGC == 0)
2872         {
2873                 struct watchpoint *watchpoint = target->watchpoints;
2874
2875                 while (watchpoint)
2876                 {
2877                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2878                                         ", len: 0x%8.8" PRIx32
2879                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2880                                         ", mask: 0x%8.8" PRIx32,
2881                                         watchpoint->address,
2882                                         watchpoint->length,
2883                                         (int)watchpoint->rw,
2884                                         watchpoint->value,
2885                                         watchpoint->mask);
2886                         watchpoint = watchpoint->next;
2887                 }
2888                 return ERROR_OK;
2889         }
2890
2891         enum watchpoint_rw type = WPT_ACCESS;
2892         uint32_t addr = 0;
2893         uint32_t length = 0;
2894         uint32_t data_value = 0x0;
2895         uint32_t data_mask = 0xffffffff;
2896
2897         switch (CMD_ARGC)
2898         {
2899         case 5:
2900                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2901                 // fall through
2902         case 4:
2903                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2904                 // fall through
2905         case 3:
2906                 switch (CMD_ARGV[2][0])
2907                 {
2908                 case 'r':
2909                         type = WPT_READ;
2910                         break;
2911                 case 'w':
2912                         type = WPT_WRITE;
2913                         break;
2914                 case 'a':
2915                         type = WPT_ACCESS;
2916                         break;
2917                 default:
2918                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2919                         return ERROR_COMMAND_SYNTAX_ERROR;
2920                 }
2921                 // fall through
2922         case 2:
2923                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2924                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2925                 break;
2926
2927         default:
2928                 command_print(CMD_CTX, "usage: wp [address length "
2929                                 "[(r|w|a) [value [mask]]]]");
2930                 return ERROR_COMMAND_SYNTAX_ERROR;
2931         }
2932
2933         int retval = watchpoint_add(target, addr, length, type,
2934                         data_value, data_mask);
2935         if (ERROR_OK != retval)
2936                 LOG_ERROR("Failure setting watchpoints");
2937
2938         return retval;
2939 }
2940
2941 COMMAND_HANDLER(handle_rwp_command)
2942 {
2943         if (CMD_ARGC != 1)
2944                 return ERROR_COMMAND_SYNTAX_ERROR;
2945
2946         uint32_t addr;
2947         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2948
2949         struct target *target = get_current_target(CMD_CTX);
2950         watchpoint_remove(target, addr);
2951
2952         return ERROR_OK;
2953 }
2954
2955
2956 /**
2957  * Translate a virtual address to a physical address.
2958  *
2959  * The low-level target implementation must have logged a detailed error
2960  * which is forwarded to telnet/GDB session.
2961  */
2962 COMMAND_HANDLER(handle_virt2phys_command)
2963 {
2964         if (CMD_ARGC != 1)
2965                 return ERROR_COMMAND_SYNTAX_ERROR;
2966
2967         uint32_t va;
2968         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2969         uint32_t pa;
2970
2971         struct target *target = get_current_target(CMD_CTX);
2972         int retval = target->type->virt2phys(target, va, &pa);
2973         if (retval == ERROR_OK)
2974                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2975
2976         return retval;
2977 }
2978
2979 static void writeData(FILE *f, const void *data, size_t len)
2980 {
2981         size_t written = fwrite(data, 1, len, f);
2982         if (written != len)
2983                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2984 }
2985
2986 static void writeLong(FILE *f, int l)
2987 {
2988         int i;
2989         for (i = 0; i < 4; i++)
2990         {
2991                 char c = (l >> (i*8))&0xff;
2992                 writeData(f, &c, 1);
2993         }
2994
2995 }
2996
2997 static void writeString(FILE *f, char *s)
2998 {
2999         writeData(f, s, strlen(s));
3000 }
3001
3002 /* Dump a gmon.out histogram file. */
3003 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3004 {
3005         uint32_t i;
3006         FILE *f = fopen(filename, "w");
3007         if (f == NULL)
3008                 return;
3009         writeString(f, "gmon");
3010         writeLong(f, 0x00000001); /* Version */
3011         writeLong(f, 0); /* padding */
3012         writeLong(f, 0); /* padding */
3013         writeLong(f, 0); /* padding */
3014
3015         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3016         writeData(f, &zero, 1);
3017
3018         /* figure out bucket size */
3019         uint32_t min = samples[0];
3020         uint32_t max = samples[0];
3021         for (i = 0; i < sampleNum; i++)
3022         {
3023                 if (min > samples[i])
3024                 {
3025                         min = samples[i];
3026                 }
3027                 if (max < samples[i])
3028                 {
3029                         max = samples[i];
3030                 }
3031         }
3032
3033         int addressSpace = (max-min + 1);
3034
3035         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3036         uint32_t length = addressSpace;
3037         if (length > maxBuckets)
3038         {
3039                 length = maxBuckets;
3040         }
3041         int *buckets = malloc(sizeof(int)*length);
3042         if (buckets == NULL)
3043         {
3044                 fclose(f);
3045                 return;
3046         }
3047         memset(buckets, 0, sizeof(int)*length);
3048         for (i = 0; i < sampleNum;i++)
3049         {
3050                 uint32_t address = samples[i];
3051                 long long a = address-min;
3052                 long long b = length-1;
3053                 long long c = addressSpace-1;
3054                 int index = (a*b)/c; /* danger!!!! int32 overflows */
3055                 buckets[index]++;
3056         }
3057
3058         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3059         writeLong(f, min);                      /* low_pc */
3060         writeLong(f, max);                      /* high_pc */
3061         writeLong(f, length);           /* # of samples */
3062         writeLong(f, 64000000);         /* 64MHz */
3063         writeString(f, "seconds");
3064         for (i = 0; i < (15-strlen("seconds")); i++)
3065                 writeData(f, &zero, 1);
3066         writeString(f, "s");
3067
3068         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3069
3070         char *data = malloc(2*length);
3071         if (data != NULL)
3072         {
3073                 for (i = 0; i < length;i++)
3074                 {
3075                         int val;
3076                         val = buckets[i];
3077                         if (val > 65535)
3078                         {
3079                                 val = 65535;
3080                         }
3081                         data[i*2]=val&0xff;
3082                         data[i*2 + 1]=(val >> 8)&0xff;
3083                 }
3084                 free(buckets);
3085                 writeData(f, data, length * 2);
3086                 free(data);
3087         } else
3088         {
3089                 free(buckets);
3090         }
3091
3092         fclose(f);
3093 }
3094
3095 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3096  * which will be used as a random sampling of PC */
3097 COMMAND_HANDLER(handle_profile_command)
3098 {
3099         struct target *target = get_current_target(CMD_CTX);
3100         struct timeval timeout, now;
3101
3102         gettimeofday(&timeout, NULL);
3103         if (CMD_ARGC != 2)
3104         {
3105                 return ERROR_COMMAND_SYNTAX_ERROR;
3106         }
3107         unsigned offset;
3108         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3109
3110         timeval_add_time(&timeout, offset, 0);
3111
3112         /**
3113          * @todo: Some cores let us sample the PC without the
3114          * annoying halt/resume step; for example, ARMv7 PCSR.
3115          * Provide a way to use that more efficient mechanism.
3116          */
3117
3118         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3119
3120         static const int maxSample = 10000;
3121         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3122         if (samples == NULL)
3123                 return ERROR_OK;
3124
3125         int numSamples = 0;
3126         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3127         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3128
3129         for (;;)
3130         {
3131                 int retval;
3132                 target_poll(target);
3133                 if (target->state == TARGET_HALTED)
3134                 {
3135                         uint32_t t=*((uint32_t *)reg->value);
3136                         samples[numSamples++]=t;
3137                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3138                         target_poll(target);
3139                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3140                 } else if (target->state == TARGET_RUNNING)
3141                 {
3142                         /* We want to quickly sample the PC. */
3143                         if ((retval = target_halt(target)) != ERROR_OK)
3144                         {
3145                                 free(samples);
3146                                 return retval;
3147                         }
3148                 } else
3149                 {
3150                         command_print(CMD_CTX, "Target not halted or running");
3151                         retval = ERROR_OK;
3152                         break;
3153                 }
3154                 if (retval != ERROR_OK)
3155                 {
3156                         break;
3157                 }
3158
3159                 gettimeofday(&now, NULL);
3160                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3161                 {
3162                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3163                         if ((retval = target_poll(target)) != ERROR_OK)
3164                         {
3165                                 free(samples);
3166                                 return retval;
3167                         }
3168                         if (target->state == TARGET_HALTED)
3169                         {
3170                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3171                         }
3172                         if ((retval = target_poll(target)) != ERROR_OK)
3173                         {
3174                                 free(samples);
3175                                 return retval;
3176                         }
3177                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3178                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3179                         break;
3180                 }
3181         }
3182         free(samples);
3183
3184         return ERROR_OK;
3185 }
3186
3187 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3188 {
3189         char *namebuf;
3190         Jim_Obj *nameObjPtr, *valObjPtr;
3191         int result;
3192
3193         namebuf = alloc_printf("%s(%d)", varname, idx);
3194         if (!namebuf)
3195                 return JIM_ERR;
3196
3197         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3198         valObjPtr = Jim_NewIntObj(interp, val);
3199         if (!nameObjPtr || !valObjPtr)
3200         {
3201                 free(namebuf);
3202                 return JIM_ERR;
3203         }
3204
3205         Jim_IncrRefCount(nameObjPtr);
3206         Jim_IncrRefCount(valObjPtr);
3207         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3208         Jim_DecrRefCount(interp, nameObjPtr);
3209         Jim_DecrRefCount(interp, valObjPtr);
3210         free(namebuf);
3211         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3212         return result;
3213 }
3214
3215 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3216 {
3217         struct command_context *context;
3218         struct target *target;
3219
3220         context = Jim_GetAssocData(interp, "context");
3221         if (context == NULL)
3222         {
3223                 LOG_ERROR("mem2array: no command context");
3224                 return JIM_ERR;
3225         }
3226         target = get_current_target(context);
3227         if (target == NULL)
3228         {
3229                 LOG_ERROR("mem2array: no current target");
3230                 return JIM_ERR;
3231         }
3232
3233         return  target_mem2array(interp, target, argc-1, argv + 1);
3234 }
3235
3236 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3237 {
3238         long l;
3239         uint32_t width;
3240         int len;
3241         uint32_t addr;
3242         uint32_t count;
3243         uint32_t v;
3244         const char *varname;
3245         int  n, e, retval;
3246         uint32_t i;
3247
3248         /* argv[1] = name of array to receive the data
3249          * argv[2] = desired width
3250          * argv[3] = memory address
3251          * argv[4] = count of times to read
3252          */
3253         if (argc != 4) {
3254                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3255                 return JIM_ERR;
3256         }
3257         varname = Jim_GetString(argv[0], &len);
3258         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3259
3260         e = Jim_GetLong(interp, argv[1], &l);
3261         width = l;
3262         if (e != JIM_OK) {
3263                 return e;
3264         }
3265
3266         e = Jim_GetLong(interp, argv[2], &l);
3267         addr = l;
3268         if (e != JIM_OK) {
3269                 return e;
3270         }
3271         e = Jim_GetLong(interp, argv[3], &l);
3272         len = l;
3273         if (e != JIM_OK) {
3274                 return e;
3275         }
3276         switch (width) {
3277                 case 8:
3278                         width = 1;
3279                         break;
3280                 case 16:
3281                         width = 2;
3282                         break;
3283                 case 32:
3284                         width = 4;
3285                         break;
3286                 default:
3287                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3288                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3289                         return JIM_ERR;
3290         }
3291         if (len == 0) {
3292                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3293                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3294                 return JIM_ERR;
3295         }
3296         if ((addr + (len * width)) < addr) {
3297                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3298                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3299                 return JIM_ERR;
3300         }
3301         /* absurd transfer size? */
3302         if (len > 65536) {
3303                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3304                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3305                 return JIM_ERR;
3306         }
3307
3308         if ((width == 1) ||
3309                 ((width == 2) && ((addr & 1) == 0)) ||
3310                 ((width == 4) && ((addr & 3) == 0))) {
3311                 /* all is well */
3312         } else {
3313                 char buf[100];
3314                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3315                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3316                                 addr,
3317                                 width);
3318                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3319                 return JIM_ERR;
3320         }
3321
3322         /* Transfer loop */
3323
3324         /* index counter */
3325         n = 0;
3326
3327         size_t buffersize = 4096;
3328         uint8_t *buffer = malloc(buffersize);
3329         if (buffer == NULL)
3330                 return JIM_ERR;
3331
3332         /* assume ok */
3333         e = JIM_OK;
3334         while (len) {
3335                 /* Slurp... in buffer size chunks */
3336
3337                 count = len; /* in objects.. */
3338                 if (count > (buffersize/width)) {
3339                         count = (buffersize/width);
3340                 }
3341
3342                 retval = target_read_memory(target, addr, width, count, buffer);
3343                 if (retval != ERROR_OK) {
3344                         /* BOO !*/
3345                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3346                                           (unsigned int)addr,
3347                                           (int)width,
3348                                           (int)count);
3349                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3350                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3351                         e = JIM_ERR;
3352                         len = 0;
3353                 } else {
3354                         v = 0; /* shut up gcc */
3355                         for (i = 0 ;i < count ;i++, n++) {
3356                                 switch (width) {
3357                                         case 4:
3358                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3359                                                 break;
3360                                         case 2:
3361                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3362                                                 break;
3363                                         case 1:
3364                                                 v = buffer[i] & 0x0ff;
3365                                                 break;
3366                                 }
3367                                 new_int_array_element(interp, varname, n, v);
3368                         }
3369                         len -= count;
3370                 }
3371         }
3372
3373         free(buffer);
3374
3375         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3376
3377         return JIM_OK;
3378 }
3379
3380 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3381 {
3382         char *namebuf;
3383         Jim_Obj *nameObjPtr, *valObjPtr;
3384         int result;
3385         long l;
3386
3387         namebuf = alloc_printf("%s(%d)", varname, idx);
3388         if (!namebuf)
3389                 return JIM_ERR;
3390
3391         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3392         if (!nameObjPtr)
3393         {
3394                 free(namebuf);
3395                 return JIM_ERR;
3396         }
3397
3398         Jim_IncrRefCount(nameObjPtr);
3399         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3400         Jim_DecrRefCount(interp, nameObjPtr);
3401         free(namebuf);
3402         if (valObjPtr == NULL)
3403                 return JIM_ERR;
3404
3405         result = Jim_GetLong(interp, valObjPtr, &l);
3406         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3407         *val = l;
3408         return result;
3409 }
3410
3411 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3412 {
3413         struct command_context *context;
3414         struct target *target;
3415
3416         context = Jim_GetAssocData(interp, "context");
3417         if (context == NULL) {
3418                 LOG_ERROR("array2mem: no command context");
3419                 return JIM_ERR;
3420         }
3421         target = get_current_target(context);
3422         if (target == NULL) {
3423                 LOG_ERROR("array2mem: no current target");
3424                 return JIM_ERR;
3425         }
3426
3427         return target_array2mem(interp,target, argc-1, argv + 1);
3428 }
3429
3430 static int target_array2mem(Jim_Interp *interp, struct target *target,
3431                 int argc, Jim_Obj *const *argv)
3432 {
3433         long l;
3434         uint32_t width;
3435         int len;
3436         uint32_t addr;
3437         uint32_t count;
3438         uint32_t v;
3439         const char *varname;
3440         int  n, e, retval;
3441         uint32_t i;
3442
3443         /* argv[1] = name of array to get the data
3444          * argv[2] = desired width
3445          * argv[3] = memory address
3446          * argv[4] = count to write
3447          */
3448         if (argc != 4) {
3449                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3450                 return JIM_ERR;
3451         }
3452         varname = Jim_GetString(argv[0], &len);
3453         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3454
3455         e = Jim_GetLong(interp, argv[1], &l);
3456         width = l;
3457         if (e != JIM_OK) {
3458                 return e;
3459         }
3460
3461         e = Jim_GetLong(interp, argv[2], &l);
3462         addr = l;
3463         if (e != JIM_OK) {
3464                 return e;
3465         }
3466         e = Jim_GetLong(interp, argv[3], &l);
3467         len = l;
3468         if (e != JIM_OK) {
3469                 return e;
3470         }
3471         switch (width) {
3472                 case 8:
3473                         width = 1;
3474                         break;
3475                 case 16:
3476                         width = 2;
3477                         break;
3478                 case 32:
3479                         width = 4;
3480                         break;
3481                 default:
3482                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3483                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3484                         return JIM_ERR;
3485         }
3486         if (len == 0) {
3487                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3488                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3489                 return JIM_ERR;
3490         }
3491         if ((addr + (len * width)) < addr) {
3492                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3493                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3494                 return JIM_ERR;
3495         }
3496         /* absurd transfer size? */
3497         if (len > 65536) {
3498                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3499                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3500                 return JIM_ERR;
3501         }
3502
3503         if ((width == 1) ||
3504                 ((width == 2) && ((addr & 1) == 0)) ||
3505                 ((width == 4) && ((addr & 3) == 0))) {
3506                 /* all is well */
3507         } else {
3508                 char buf[100];
3509                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3510                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3511                                 (unsigned int)addr,
3512                                 (int)width);
3513                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3514                 return JIM_ERR;
3515         }
3516
3517         /* Transfer loop */
3518
3519         /* index counter */
3520         n = 0;
3521         /* assume ok */
3522         e = JIM_OK;
3523
3524         size_t buffersize = 4096;
3525         uint8_t *buffer = malloc(buffersize);
3526         if (buffer == NULL)
3527                 return JIM_ERR;
3528
3529         while (len) {
3530                 /* Slurp... in buffer size chunks */
3531
3532                 count = len; /* in objects.. */
3533                 if (count > (buffersize/width)) {
3534                         count = (buffersize/width);
3535                 }
3536
3537                 v = 0; /* shut up gcc */
3538                 for (i = 0 ;i < count ;i++, n++) {
3539                         get_int_array_element(interp, varname, n, &v);
3540                         switch (width) {
3541                         case 4:
3542                                 target_buffer_set_u32(target, &buffer[i*width], v);
3543                                 break;
3544                         case 2:
3545                                 target_buffer_set_u16(target, &buffer[i*width], v);
3546                                 break;
3547                         case 1:
3548                                 buffer[i] = v & 0x0ff;
3549                                 break;
3550                         }
3551                 }
3552                 len -= count;
3553
3554                 retval = target_write_memory(target, addr, width, count, buffer);
3555                 if (retval != ERROR_OK) {
3556                         /* BOO !*/
3557                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3558                                           (unsigned int)addr,
3559                                           (int)width,
3560                                           (int)count);
3561                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3562                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3563                         e = JIM_ERR;
3564                         len = 0;
3565                 }
3566         }
3567
3568         free(buffer);
3569
3570         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3571
3572         return JIM_OK;
3573 }
3574
3575 void target_all_handle_event(enum target_event e)
3576 {
3577         struct target *target;
3578
3579         LOG_DEBUG("**all*targets: event: %d, %s",
3580                            (int)e,
3581                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3582
3583         target = all_targets;
3584         while (target) {
3585                 target_handle_event(target, e);
3586                 target = target->next;
3587         }
3588 }
3589
3590
3591 /* FIX? should we propagate errors here rather than printing them
3592  * and continuing?
3593  */
3594 void target_handle_event(struct target *target, enum target_event e)
3595 {
3596         struct target_event_action *teap;
3597
3598         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3599                 if (teap->event == e) {
3600                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3601                                            target->target_number,
3602                                            target_name(target),
3603                                            target_type_name(target),
3604                                            e,
3605                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3606                                            Jim_GetString(teap->body, NULL));
3607                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3608                         {
3609                                 Jim_PrintErrorMessage(teap->interp);
3610                         }
3611                 }
3612         }
3613 }
3614
3615 /**
3616  * Returns true only if the target has a handler for the specified event.
3617  */
3618 bool target_has_event_action(struct target *target, enum target_event event)
3619 {
3620         struct target_event_action *teap;
3621
3622         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3623                 if (teap->event == event)
3624                         return true;
3625         }
3626         return false;
3627 }
3628
3629 enum target_cfg_param {
3630         TCFG_TYPE,
3631         TCFG_EVENT,
3632         TCFG_WORK_AREA_VIRT,
3633         TCFG_WORK_AREA_PHYS,
3634         TCFG_WORK_AREA_SIZE,
3635         TCFG_WORK_AREA_BACKUP,
3636         TCFG_ENDIAN,
3637         TCFG_VARIANT,
3638         TCFG_CHAIN_POSITION,
3639 };
3640
3641 static Jim_Nvp nvp_config_opts[] = {
3642         { .name = "-type",             .value = TCFG_TYPE },
3643         { .name = "-event",            .value = TCFG_EVENT },
3644         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3645         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3646         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3647         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3648         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3649         { .name = "-variant",          .value = TCFG_VARIANT },
3650         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3651
3652         { .name = NULL, .value = -1 }
3653 };
3654
3655 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3656 {
3657         Jim_Nvp *n;
3658         Jim_Obj *o;
3659         jim_wide w;
3660         char *cp;
3661         int e;
3662
3663         /* parse config or cget options ... */
3664         while (goi->argc > 0) {
3665                 Jim_SetEmptyResult(goi->interp);
3666                 /* Jim_GetOpt_Debug(goi); */
3667
3668                 if (target->type->target_jim_configure) {
3669                         /* target defines a configure function */
3670                         /* target gets first dibs on parameters */
3671                         e = (*(target->type->target_jim_configure))(target, goi);
3672                         if (e == JIM_OK) {
3673                                 /* more? */
3674                                 continue;
3675                         }
3676                         if (e == JIM_ERR) {
3677                                 /* An error */
3678                                 return e;
3679                         }
3680                         /* otherwise we 'continue' below */
3681                 }
3682                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3683                 if (e != JIM_OK) {
3684                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3685                         return e;
3686                 }
3687                 switch (n->value) {
3688                 case TCFG_TYPE:
3689                         /* not setable */
3690                         if (goi->isconfigure) {
3691                                 Jim_SetResult_sprintf(goi->interp,
3692                                                 "not settable: %s", n->name);
3693                                 return JIM_ERR;
3694                         } else {
3695                         no_params:
3696                                 if (goi->argc != 0) {
3697                                         Jim_WrongNumArgs(goi->interp,
3698                                                         goi->argc, goi->argv,
3699                                                         "NO PARAMS");
3700                                         return JIM_ERR;
3701                                 }
3702                         }
3703                         Jim_SetResultString(goi->interp,
3704                                         target_type_name(target), -1);
3705                         /* loop for more */
3706                         break;
3707                 case TCFG_EVENT:
3708                         if (goi->argc == 0) {
3709                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3710                                 return JIM_ERR;
3711                         }
3712
3713                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3714                         if (e != JIM_OK) {
3715                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3716                                 return e;
3717                         }
3718
3719                         if (goi->isconfigure) {
3720                                 if (goi->argc != 1) {
3721                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3722                                         return JIM_ERR;
3723                                 }
3724                         } else {
3725                                 if (goi->argc != 0) {
3726                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3727                                         return JIM_ERR;
3728                                 }
3729                         }
3730
3731                         {
3732                                 struct target_event_action *teap;
3733
3734                                 teap = target->event_action;
3735                                 /* replace existing? */
3736                                 while (teap) {
3737                                         if (teap->event == (enum target_event)n->value) {
3738                                                 break;
3739                                         }
3740                                         teap = teap->next;
3741                                 }
3742
3743                                 if (goi->isconfigure) {
3744                                         bool replace = true;
3745                                         if (teap == NULL) {
3746                                                 /* create new */
3747                                                 teap = calloc(1, sizeof(*teap));
3748                                                 replace = false;
3749                                         }
3750                                         teap->event = n->value;
3751                                         teap->interp = goi->interp;
3752                                         Jim_GetOpt_Obj(goi, &o);
3753                                         if (teap->body) {
3754                                                 Jim_DecrRefCount(teap->interp, teap->body);
3755                                         }
3756                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3757                                         /*
3758                                          * FIXME:
3759                                          *     Tcl/TK - "tk events" have a nice feature.
3760                                          *     See the "BIND" command.
3761                                          *    We should support that here.
3762                                          *     You can specify %X and %Y in the event code.
3763                                          *     The idea is: %T - target name.
3764                                          *     The idea is: %N - target number
3765                                          *     The idea is: %E - event name.
3766                                          */
3767                                         Jim_IncrRefCount(teap->body);
3768
3769                                         if (!replace)
3770                                         {
3771                                                 /* add to head of event list */
3772                                                 teap->next = target->event_action;
3773                                                 target->event_action = teap;
3774                                         }
3775                                         Jim_SetEmptyResult(goi->interp);
3776                                 } else {
3777                                         /* get */
3778                                         if (teap == NULL) {
3779                                                 Jim_SetEmptyResult(goi->interp);
3780                                         } else {
3781                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3782                                         }
3783                                 }
3784                         }
3785                         /* loop for more */
3786                         break;
3787
3788                 case TCFG_WORK_AREA_VIRT:
3789                         if (goi->isconfigure) {
3790                                 target_free_all_working_areas(target);
3791                                 e = Jim_GetOpt_Wide(goi, &w);
3792                                 if (e != JIM_OK) {
3793                                         return e;
3794                                 }
3795                                 target->working_area_virt = w;
3796                                 target->working_area_virt_spec = true;
3797                         } else {
3798                                 if (goi->argc != 0) {
3799                                         goto no_params;
3800                                 }
3801                         }
3802                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3803                         /* loop for more */
3804                         break;
3805
3806                 case TCFG_WORK_AREA_PHYS:
3807                         if (goi->isconfigure) {
3808                                 target_free_all_working_areas(target);
3809                                 e = Jim_GetOpt_Wide(goi, &w);
3810                                 if (e != JIM_OK) {
3811                                         return e;
3812                                 }
3813                                 target->working_area_phys = w;
3814                                 target->working_area_phys_spec = true;
3815                         } else {
3816                                 if (goi->argc != 0) {
3817                                         goto no_params;
3818                                 }
3819                         }
3820                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3821                         /* loop for more */
3822                         break;
3823
3824                 case TCFG_WORK_AREA_SIZE:
3825                         if (goi->isconfigure) {
3826                                 target_free_all_working_areas(target);
3827                                 e = Jim_GetOpt_Wide(goi, &w);
3828                                 if (e != JIM_OK) {
3829                                         return e;
3830                                 }
3831                                 target->working_area_size = w;
3832                         } else {
3833                                 if (goi->argc != 0) {
3834                                         goto no_params;
3835                                 }
3836                         }
3837                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3838                         /* loop for more */
3839                         break;
3840
3841                 case TCFG_WORK_AREA_BACKUP:
3842                         if (goi->isconfigure) {
3843                                 target_free_all_working_areas(target);
3844                                 e = Jim_GetOpt_Wide(goi, &w);
3845                                 if (e != JIM_OK) {
3846                                         return e;
3847                                 }
3848                                 /* make this exactly 1 or 0 */
3849                                 target->backup_working_area = (!!w);
3850                         } else {
3851                                 if (goi->argc != 0) {
3852                                         goto no_params;
3853                                 }
3854                         }
3855                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3856                         /* loop for more e*/
3857                         break;
3858
3859                 case TCFG_ENDIAN:
3860                         if (goi->isconfigure) {
3861                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3862                                 if (e != JIM_OK) {
3863                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3864                                         return e;
3865                                 }
3866                                 target->endianness = n->value;
3867                         } else {
3868                                 if (goi->argc != 0) {
3869                                         goto no_params;
3870                                 }
3871                         }
3872                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3873                         if (n->name == NULL) {
3874                                 target->endianness = TARGET_LITTLE_ENDIAN;
3875                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3876                         }
3877                         Jim_SetResultString(goi->interp, n->name, -1);
3878                         /* loop for more */
3879                         break;
3880
3881                 case TCFG_VARIANT:
3882                         if (goi->isconfigure) {
3883                                 if (goi->argc < 1) {
3884                                         Jim_SetResult_sprintf(goi->interp,
3885                                                                                    "%s ?STRING?",
3886                                                                                    n->name);
3887                                         return JIM_ERR;
3888                                 }
3889                                 if (target->variant) {
3890                                         free((void *)(target->variant));
3891                                 }
3892                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3893                                 target->variant = strdup(cp);
3894                         } else {
3895                                 if (goi->argc != 0) {
3896                                         goto no_params;
3897                                 }
3898                         }
3899                         Jim_SetResultString(goi->interp, target->variant,-1);
3900                         /* loop for more */
3901                         break;
3902                 case TCFG_CHAIN_POSITION:
3903                         if (goi->isconfigure) {
3904                                 Jim_Obj *o;
3905                                 struct jtag_tap *tap;
3906                                 target_free_all_working_areas(target);
3907                                 e = Jim_GetOpt_Obj(goi, &o);
3908                                 if (e != JIM_OK) {
3909                                         return e;
3910                                 }
3911                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3912                                 if (tap == NULL) {
3913                                         return JIM_ERR;
3914                                 }
3915                                 /* make this exactly 1 or 0 */
3916                                 target->tap = tap;
3917                         } else {
3918                                 if (goi->argc != 0) {
3919                                         goto no_params;
3920                                 }
3921                         }
3922                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3923                         /* loop for more e*/
3924                         break;
3925                 }
3926         } /* while (goi->argc) */
3927
3928
3929                 /* done - we return */
3930         return JIM_OK;
3931 }
3932
3933 static int
3934 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3935 {
3936         Jim_GetOptInfo goi;
3937
3938         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3939         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3940         int need_args = 1 + goi.isconfigure;
3941         if (goi.argc < need_args)
3942         {
3943                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3944                         goi.isconfigure
3945                                 ? "missing: -option VALUE ..."
3946                                 : "missing: -option ...");
3947                 return JIM_ERR;
3948         }
3949         struct target *target = Jim_CmdPrivData(goi.interp);
3950         return target_configure(&goi, target);
3951 }
3952
3953 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3954 {
3955         const char *cmd_name = Jim_GetString(argv[0], NULL);
3956
3957         Jim_GetOptInfo goi;
3958         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3959
3960         /* danger! goi.argc will be modified below! */
3961         argc = goi.argc;
3962
3963         if (argc != 2 && argc != 3)
3964         {
3965                 Jim_SetResult_sprintf(goi.interp,
3966                                 "usage: %s <address> <data> [<count>]", cmd_name);
3967                 return JIM_ERR;
3968         }
3969
3970
3971         jim_wide a;
3972         int e = Jim_GetOpt_Wide(&goi, &a);
3973         if (e != JIM_OK)
3974                 return e;
3975
3976         jim_wide b;
3977         e = Jim_GetOpt_Wide(&goi, &b);
3978         if (e != JIM_OK)
3979                 return e;
3980
3981         jim_wide c = 1;
3982         if (argc == 3)
3983         {
3984                 e = Jim_GetOpt_Wide(&goi, &c);
3985                 if (e != JIM_OK)
3986                         return e;
3987         }
3988
3989         struct target *target = Jim_CmdPrivData(goi.interp);
3990         unsigned data_size;
3991         if (strcasecmp(cmd_name, "mww") == 0) {
3992                 data_size = 4;
3993         }
3994         else if (strcasecmp(cmd_name, "mwh") == 0) {
3995                 data_size = 2;
3996         }
3997         else if (strcasecmp(cmd_name, "mwb") == 0) {
3998                 data_size = 1;
3999         } else {
4000                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4001                 return JIM_ERR;
4002         }
4003
4004         return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4005 }
4006
4007 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4008 {
4009         const char *cmd_name = Jim_GetString(argv[0], NULL);
4010
4011         Jim_GetOptInfo goi;
4012         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4013
4014         /* danger! goi.argc will be modified below! */
4015         argc = goi.argc;
4016
4017         if ((argc != 1) && (argc != 2))
4018         {
4019                 Jim_SetResult_sprintf(goi.interp,
4020                                 "usage: %s <address> [<count>]", cmd_name);
4021                 return JIM_ERR;
4022         }
4023
4024         jim_wide a;
4025         int e = Jim_GetOpt_Wide(&goi, &a);
4026         if (e != JIM_OK) {
4027                 return JIM_ERR;
4028         }
4029         jim_wide c;
4030         if (argc == 2) {
4031                 e = Jim_GetOpt_Wide(&goi, &c);
4032                 if (e != JIM_OK) {
4033                         return JIM_ERR;
4034                 }
4035         } else {
4036                 c = 1;
4037         }
4038         jim_wide b = 1; /* shut up gcc */
4039         if (strcasecmp(cmd_name, "mdw") == 0)
4040                 b = 4;
4041         else if (strcasecmp(cmd_name, "mdh") == 0)
4042                 b = 2;
4043         else if (strcasecmp(cmd_name, "mdb") == 0)
4044                 b = 1;
4045         else {
4046                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4047                 return JIM_ERR;
4048         }
4049
4050         /* convert count to "bytes" */
4051         c = c * b;
4052
4053         struct target *target = Jim_CmdPrivData(goi.interp);
4054         uint8_t  target_buf[32];
4055         jim_wide x, y, z;
4056         while (c > 0) {
4057                 y = c;
4058                 if (y > 16) {
4059                         y = 16;
4060                 }
4061                 e = target_read_memory(target, a, b, y / b, target_buf);
4062                 if (e != ERROR_OK) {
4063                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4064                         return JIM_ERR;
4065                 }
4066
4067                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4068                 switch (b) {
4069                 case 4:
4070                         for (x = 0; x < 16 && x < y; x += 4)
4071                         {
4072                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4073                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4074                         }
4075                         for (; (x < 16) ; x += 4) {
4076                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4077                         }
4078                         break;
4079                 case 2:
4080                         for (x = 0; x < 16 && x < y; x += 2)
4081                         {
4082                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4083                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4084                         }
4085                         for (; (x < 16) ; x += 2) {
4086                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4087                         }
4088                         break;
4089                 case 1:
4090                 default:
4091                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4092                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4093                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4094                         }
4095                         for (; (x < 16) ; x += 1) {
4096                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4097                         }
4098                         break;
4099                 }
4100                 /* ascii-ify the bytes */
4101                 for (x = 0 ; x < y ; x++) {
4102                         if ((target_buf[x] >= 0x20) &&
4103                                 (target_buf[x] <= 0x7e)) {
4104                                 /* good */
4105                         } else {
4106                                 /* smack it */
4107                                 target_buf[x] = '.';
4108                         }
4109                 }
4110                 /* space pad  */
4111                 while (x < 16) {
4112                         target_buf[x] = ' ';
4113                         x++;
4114                 }
4115                 /* terminate */
4116                 target_buf[16] = 0;
4117                 /* print - with a newline */
4118                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4119                 /* NEXT... */
4120                 c -= 16;
4121                 a += 16;
4122         }
4123         return JIM_OK;
4124 }
4125
4126 static int jim_target_mem2array(Jim_Interp *interp,
4127                 int argc, Jim_Obj *const *argv)
4128 {
4129         struct target *target = Jim_CmdPrivData(interp);
4130         return target_mem2array(interp, target, argc - 1, argv + 1);
4131 }
4132
4133 static int jim_target_array2mem(Jim_Interp *interp,
4134                 int argc, Jim_Obj *const *argv)
4135 {
4136         struct target *target = Jim_CmdPrivData(interp);
4137         return target_array2mem(interp, target, argc - 1, argv + 1);
4138 }
4139
4140 static int jim_target_tap_disabled(Jim_Interp *interp)
4141 {
4142         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4143         return JIM_ERR;
4144 }
4145
4146 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4147 {
4148         if (argc != 1)
4149         {
4150                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4151                 return JIM_ERR;
4152         }
4153         struct target *target = Jim_CmdPrivData(interp);
4154         if (!target->tap->enabled)
4155                 return jim_target_tap_disabled(interp);
4156
4157         int e = target->type->examine(target);
4158         if (e != ERROR_OK)
4159         {
4160                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4161                 return JIM_ERR;
4162         }
4163         return JIM_OK;
4164 }
4165
4166 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4167 {
4168         if (argc != 1)
4169         {
4170                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4171                 return JIM_ERR;
4172         }
4173         struct target *target = Jim_CmdPrivData(interp);
4174
4175         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4176                 return JIM_ERR;
4177
4178         return JIM_OK;
4179 }
4180
4181 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4182 {
4183         if (argc != 1)
4184         {
4185                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4186                 return JIM_ERR;
4187         }
4188         struct target *target = Jim_CmdPrivData(interp);
4189         if (!target->tap->enabled)
4190                 return jim_target_tap_disabled(interp);
4191
4192         int e;
4193         if (!(target_was_examined(target))) {
4194                 e = ERROR_TARGET_NOT_EXAMINED;
4195         } else {
4196                 e = target->type->poll(target);
4197         }
4198         if (e != ERROR_OK)
4199         {
4200                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4201                 return JIM_ERR;
4202         }
4203         return JIM_OK;
4204 }
4205
4206 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4207 {
4208         Jim_GetOptInfo goi;
4209         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4210
4211         if (goi.argc != 2)
4212         {
4213                 Jim_WrongNumArgs(interp, 0, argv,
4214                                 "([tT]|[fF]|assert|deassert) BOOL");
4215                 return JIM_ERR;
4216         }
4217
4218         Jim_Nvp *n;
4219         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4220         if (e != JIM_OK)
4221         {
4222                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4223                 return e;
4224         }
4225         /* the halt or not param */
4226         jim_wide a;
4227         e = Jim_GetOpt_Wide(&goi, &a);
4228         if (e != JIM_OK)
4229                 return e;
4230
4231         struct target *target = Jim_CmdPrivData(goi.interp);
4232         if (!target->tap->enabled)
4233                 return jim_target_tap_disabled(interp);
4234         if (!(target_was_examined(target)))
4235         {
4236                 LOG_ERROR("Target not examined yet");
4237                 return ERROR_TARGET_NOT_EXAMINED;
4238         }
4239         if (!target->type->assert_reset || !target->type->deassert_reset)
4240         {
4241                 Jim_SetResult_sprintf(interp,
4242                                 "No target-specific reset for %s",
4243                                 target_name(target));
4244                 return JIM_ERR;
4245         }
4246         /* determine if we should halt or not. */
4247         target->reset_halt = !!a;
4248         /* When this happens - all workareas are invalid. */
4249         target_free_all_working_areas_restore(target, 0);
4250
4251         /* do the assert */
4252         if (n->value == NVP_ASSERT) {
4253                 e = target->type->assert_reset(target);
4254         } else {
4255                 e = target->type->deassert_reset(target);
4256         }
4257         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4258 }
4259
4260 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4261 {
4262         if (argc != 1) {
4263                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4264                 return JIM_ERR;
4265         }
4266         struct target *target = Jim_CmdPrivData(interp);
4267         if (!target->tap->enabled)
4268                 return jim_target_tap_disabled(interp);
4269         int e = target->type->halt(target);
4270         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4271 }
4272
4273 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4274 {
4275         Jim_GetOptInfo goi;
4276         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4277
4278         /* params:  <name>  statename timeoutmsecs */
4279         if (goi.argc != 2)
4280         {
4281                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4282                 Jim_SetResult_sprintf(goi.interp,
4283                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4284                 return JIM_ERR;
4285         }
4286
4287         Jim_Nvp *n;
4288         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4289         if (e != JIM_OK) {
4290                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4291                 return e;
4292         }
4293         jim_wide a;
4294         e = Jim_GetOpt_Wide(&goi, &a);
4295         if (e != JIM_OK) {
4296                 return e;
4297         }
4298         struct target *target = Jim_CmdPrivData(interp);
4299         if (!target->tap->enabled)
4300                 return jim_target_tap_disabled(interp);
4301
4302         e = target_wait_state(target, n->value, a);
4303         if (e != ERROR_OK)
4304         {
4305                 Jim_SetResult_sprintf(goi.interp,
4306                                 "target: %s wait %s fails (%d) %s",
4307                                 target_name(target), n->name,
4308                                 e, target_strerror_safe(e));
4309                 return JIM_ERR;
4310         }
4311         return JIM_OK;
4312 }
4313 /* List for human, Events defined for this target.
4314  * scripts/programs should use 'name cget -event NAME'
4315  */
4316 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4317 {
4318         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4319         struct target *target = Jim_CmdPrivData(interp);
4320         struct target_event_action *teap = target->event_action;
4321         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4322                                    target->target_number,
4323                                    target_name(target));
4324         command_print(cmd_ctx, "%-25s | Body", "Event");
4325         command_print(cmd_ctx, "------------------------- | "
4326                         "----------------------------------------");
4327         while (teap)
4328         {
4329                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4330                 command_print(cmd_ctx, "%-25s | %s",
4331                                 opt->name, Jim_GetString(teap->body, NULL));
4332                 teap = teap->next;
4333         }
4334         command_print(cmd_ctx, "***END***");
4335         return JIM_OK;
4336 }
4337 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4338 {
4339         if (argc != 1)
4340         {
4341                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4342                 return JIM_ERR;
4343         }
4344         struct target *target = Jim_CmdPrivData(interp);
4345         Jim_SetResultString(interp, target_state_name(target), -1);
4346         return JIM_OK;
4347 }
4348 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4349 {
4350         Jim_GetOptInfo goi;
4351         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4352         if (goi.argc != 1)
4353         {
4354                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4355                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4356                 return JIM_ERR;
4357         }
4358         Jim_Nvp *n;
4359         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4360         if (e != JIM_OK)
4361         {
4362                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4363                 return e;
4364         }
4365         struct target *target = Jim_CmdPrivData(interp);
4366         target_handle_event(target, n->value);
4367         return JIM_OK;
4368 }
4369
4370 static const struct command_registration target_instance_command_handlers[] = {
4371         {
4372                 .name = "configure",
4373                 .mode = COMMAND_CONFIG,
4374                 .jim_handler = jim_target_configure,
4375                 .help  = "configure a new target for use",
4376                 .usage = "[target_attribute ...]",
4377         },
4378         {
4379                 .name = "cget",
4380                 .mode = COMMAND_ANY,
4381                 .jim_handler = jim_target_configure,
4382                 .help  = "returns the specified target attribute",
4383                 .usage = "target_attribute",
4384         },
4385         {
4386                 .name = "mww",
4387                 .mode = COMMAND_EXEC,
4388                 .jim_handler = jim_target_mw,
4389                 .help = "Write 32-bit word(s) to target memory",
4390                 .usage = "address data [count]",
4391         },
4392         {
4393                 .name = "mwh",
4394                 .mode = COMMAND_EXEC,
4395                 .jim_handler = jim_target_mw,
4396                 .help = "Write 16-bit half-word(s) to target memory",
4397                 .usage = "address data [count]",
4398         },
4399         {
4400                 .name = "mwb",
4401                 .mode = COMMAND_EXEC,
4402                 .jim_handler = jim_target_mw,
4403                 .help = "Write byte(s) to target memory",
4404                 .usage = "address data [count]",
4405         },
4406         {
4407                 .name = "mdw",
4408                 .mode = COMMAND_EXEC,
4409                 .jim_handler = jim_target_md,
4410                 .help = "Display target memory as 32-bit words",
4411                 .usage = "address [count]",
4412         },
4413         {
4414                 .name = "mdh",
4415                 .mode = COMMAND_EXEC,
4416                 .jim_handler = jim_target_md,
4417                 .help = "Display target memory as 16-bit half-words",
4418                 .usage = "address [count]",
4419         },
4420         {
4421                 .name = "mdb",
4422                 .mode = COMMAND_EXEC,
4423                 .jim_handler = jim_target_md,
4424                 .help = "Display target memory as 8-bit bytes",
4425                 .usage = "address [count]",
4426         },
4427         {
4428                 .name = "array2mem",
4429                 .mode = COMMAND_EXEC,
4430                 .jim_handler = jim_target_array2mem,
4431                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4432                         "to target memory",
4433                 .usage = "arrayname bitwidth address count",
4434         },
4435         {
4436                 .name = "mem2array",
4437                 .mode = COMMAND_EXEC,
4438                 .jim_handler = jim_target_mem2array,
4439                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4440                         "from target memory",
4441                 .usage = "arrayname bitwidth address count",
4442         },
4443         {
4444                 .name = "eventlist",
4445                 .mode = COMMAND_EXEC,
4446                 .jim_handler = jim_target_event_list,
4447                 .help = "displays a table of events defined for this target",
4448         },
4449         {
4450                 .name = "curstate",
4451                 .mode = COMMAND_EXEC,
4452                 .jim_handler = jim_target_current_state,
4453                 .help = "displays the current state of this target",
4454         },
4455         {
4456                 .name = "arp_examine",
4457                 .mode = COMMAND_EXEC,
4458                 .jim_handler = jim_target_examine,
4459                 .help = "used internally for reset processing",
4460         },
4461         {
4462                 .name = "arp_halt_gdb",
4463                 .mode = COMMAND_EXEC,
4464                 .jim_handler = jim_target_halt_gdb,
4465                 .help = "used internally for reset processing to halt GDB",
4466         },
4467         {
4468                 .name = "arp_poll",
4469                 .mode = COMMAND_EXEC,
4470                 .jim_handler = jim_target_poll,
4471                 .help = "used internally for reset processing",
4472         },
4473         {
4474                 .name = "arp_reset",
4475                 .mode = COMMAND_EXEC,
4476                 .jim_handler = jim_target_reset,
4477                 .help = "used internally for reset processing",
4478         },
4479         {
4480                 .name = "arp_halt",
4481                 .mode = COMMAND_EXEC,
4482                 .jim_handler = jim_target_halt,
4483                 .help = "used internally for reset processing",
4484         },
4485         {
4486                 .name = "arp_waitstate",
4487                 .mode = COMMAND_EXEC,
4488                 .jim_handler = jim_target_wait_state,
4489                 .help = "used internally for reset processing",
4490         },
4491         {
4492                 .name = "invoke-event",
4493                 .mode = COMMAND_EXEC,
4494                 .jim_handler = jim_target_invoke_event,
4495                 .help = "invoke handler for specified event",
4496                 .usage = "event_name",
4497         },
4498         COMMAND_REGISTRATION_DONE
4499 };
4500
4501 static int target_create(Jim_GetOptInfo *goi)
4502 {
4503         Jim_Obj *new_cmd;
4504         Jim_Cmd *cmd;
4505         const char *cp;
4506         char *cp2;
4507         int e;
4508         int x;
4509         struct target *target;
4510         struct command_context *cmd_ctx;
4511
4512         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4513         if (goi->argc < 3) {
4514                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4515                 return JIM_ERR;
4516         }
4517
4518         /* COMMAND */
4519         Jim_GetOpt_Obj(goi, &new_cmd);
4520         /* does this command exist? */
4521         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4522         if (cmd) {
4523                 cp = Jim_GetString(new_cmd, NULL);
4524                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4525                 return JIM_ERR;
4526         }
4527
4528         /* TYPE */
4529         e = Jim_GetOpt_String(goi, &cp2, NULL);
4530         cp = cp2;
4531         /* now does target type exist */
4532         for (x = 0 ; target_types[x] ; x++) {
4533                 if (0 == strcmp(cp, target_types[x]->name)) {
4534                         /* found */
4535                         break;
4536                 }
4537         }
4538         if (target_types[x] == NULL) {
4539                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4540                 for (x = 0 ; target_types[x] ; x++) {
4541                         if (target_types[x + 1]) {
4542                                 Jim_AppendStrings(goi->interp,
4543                                                                    Jim_GetResult(goi->interp),
4544                                                                    target_types[x]->name,
4545                                                                    ", ", NULL);
4546                         } else {
4547                                 Jim_AppendStrings(goi->interp,
4548                                                                    Jim_GetResult(goi->interp),
4549                                                                    " or ",
4550                                                                    target_types[x]->name,NULL);
4551                         }
4552                 }
4553                 return JIM_ERR;
4554         }
4555
4556         /* Create it */
4557         target = calloc(1,sizeof(struct target));
4558         /* set target number */
4559         target->target_number = new_target_number();
4560
4561         /* allocate memory for each unique target type */
4562         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4563
4564         memcpy(target->type, target_types[x], sizeof(struct target_type));
4565
4566         /* will be set by "-endian" */
4567         target->endianness = TARGET_ENDIAN_UNKNOWN;
4568
4569         target->working_area        = 0x0;
4570         target->working_area_size   = 0x0;
4571         target->working_areas       = NULL;
4572         target->backup_working_area = 0;
4573
4574         target->state               = TARGET_UNKNOWN;
4575         target->debug_reason        = DBG_REASON_UNDEFINED;
4576         target->reg_cache           = NULL;
4577         target->breakpoints         = NULL;
4578         target->watchpoints         = NULL;
4579         target->next                = NULL;
4580         target->arch_info           = NULL;
4581
4582         target->display             = 1;
4583
4584         target->halt_issued                     = false;
4585
4586         /* initialize trace information */
4587         target->trace_info = malloc(sizeof(struct trace));
4588         target->trace_info->num_trace_points         = 0;
4589         target->trace_info->trace_points_size        = 0;
4590         target->trace_info->trace_points             = NULL;
4591         target->trace_info->trace_history_size       = 0;
4592         target->trace_info->trace_history            = NULL;
4593         target->trace_info->trace_history_pos        = 0;
4594         target->trace_info->trace_history_overflowed = 0;
4595
4596         target->dbgmsg          = NULL;
4597         target->dbg_msg_enabled = 0;
4598
4599         target->endianness = TARGET_ENDIAN_UNKNOWN;
4600
4601         /* Do the rest as "configure" options */
4602         goi->isconfigure = 1;
4603         e = target_configure(goi, target);
4604
4605         if (target->tap == NULL)
4606         {
4607                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4608                 e = JIM_ERR;
4609         }
4610
4611         if (e != JIM_OK) {
4612                 free(target->type);
4613                 free(target);
4614                 return e;
4615         }
4616
4617         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4618                 /* default endian to little if not specified */
4619                 target->endianness = TARGET_LITTLE_ENDIAN;
4620         }
4621
4622         /* incase variant is not set */
4623         if (!target->variant)
4624                 target->variant = strdup("");
4625
4626         cp = Jim_GetString(new_cmd, NULL);
4627         target->cmd_name = strdup(cp);
4628
4629         /* create the target specific commands */
4630         if (target->type->commands) {
4631                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4632                 if (ERROR_OK != e)
4633                         LOG_ERROR("unable to register '%s' commands", cp);
4634         }
4635         if (target->type->target_create) {
4636                 (*(target->type->target_create))(target, goi->interp);
4637         }
4638
4639         /* append to end of list */
4640         {
4641                 struct target **tpp;
4642                 tpp = &(all_targets);
4643                 while (*tpp) {
4644                         tpp = &((*tpp)->next);
4645                 }
4646                 *tpp = target;
4647         }
4648
4649         /* now - create the new target name command */
4650         const const struct command_registration target_subcommands[] = {
4651                 {
4652                         .chain = target_instance_command_handlers,
4653                 },
4654                 {
4655                         .chain = target->type->commands,
4656                 },
4657                 COMMAND_REGISTRATION_DONE
4658         };
4659         const const struct command_registration target_commands[] = {
4660                 {
4661                         .name = cp,
4662                         .mode = COMMAND_ANY,
4663                         .help = "target command group",
4664                         .chain = target_subcommands,
4665                 },
4666                 COMMAND_REGISTRATION_DONE
4667         };
4668         e = register_commands(cmd_ctx, NULL, target_commands);
4669         if (ERROR_OK != e)
4670                 return JIM_ERR;
4671
4672         struct command *c = command_find_in_context(cmd_ctx, cp);
4673         assert(c);
4674         command_set_handler_data(c, target);
4675
4676         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4677 }
4678
4679 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4680 {
4681         if (argc != 1)
4682         {
4683                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4684                 return JIM_ERR;
4685         }
4686         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4687         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4688         return JIM_OK;
4689 }
4690
4691 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4692 {
4693         if (argc != 1)
4694         {
4695                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4696                 return JIM_ERR;
4697         }
4698         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4699         for (unsigned x = 0; NULL != target_types[x]; x++)
4700         {
4701                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4702                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4703         }
4704         return JIM_OK;
4705 }
4706
4707 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4708 {
4709         if (argc != 1)
4710         {
4711                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4712                 return JIM_ERR;
4713         }
4714         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4715         struct target *target = all_targets;
4716         while (target)
4717         {
4718                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4719                         Jim_NewStringObj(interp, target_name(target), -1));
4720                 target = target->next;
4721         }
4722         return JIM_OK;
4723 }
4724
4725 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4726 {
4727         Jim_GetOptInfo goi;
4728         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4729         if (goi.argc < 3)
4730         {
4731                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4732                         "<name> <target_type> [<target_options> ...]");
4733                 return JIM_ERR;
4734         }
4735         return target_create(&goi);
4736 }
4737
4738 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4739 {
4740         Jim_GetOptInfo goi;
4741         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4742
4743         /* It's OK to remove this mechanism sometime after August 2010 or so */
4744         LOG_WARNING("don't use numbers as target identifiers; use names");
4745         if (goi.argc != 1)
4746         {
4747                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4748                 return JIM_ERR;
4749         }
4750         jim_wide w;
4751         int e = Jim_GetOpt_Wide(&goi, &w);
4752         if (e != JIM_OK)
4753                 return JIM_ERR;
4754
4755         struct target *target;
4756         for (target = all_targets; NULL != target; target = target->next)
4757         {
4758                 if (target->target_number != w)
4759                         continue;
4760
4761                 Jim_SetResultString(goi.interp, target_name(target), -1);
4762                 return JIM_OK;
4763         }
4764         Jim_SetResult_sprintf(goi.interp,
4765                         "Target: number %d does not exist", (int)(w));
4766         return JIM_ERR;
4767 }
4768
4769 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4770 {
4771         if (argc != 1)
4772         {
4773                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4774                 return JIM_ERR;
4775         }
4776         unsigned count = 0;
4777         struct target *target = all_targets;
4778         while (NULL != target)
4779         {
4780                 target = target->next;
4781                 count++;
4782         }
4783         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4784         return JIM_OK;
4785 }
4786
4787 static const struct command_registration target_subcommand_handlers[] = {
4788         {
4789                 .name = "init",
4790                 .mode = COMMAND_CONFIG,
4791                 .handler = handle_target_init_command,
4792                 .help = "initialize targets",
4793         },
4794         {
4795                 .name = "create",
4796                 /* REVISIT this should be COMMAND_CONFIG ... */
4797                 .mode = COMMAND_ANY,
4798                 .jim_handler = jim_target_create,
4799                 .usage = "name type '-chain-position' name [options ...]",
4800                 .help = "Creates and selects a new target",
4801         },
4802         {
4803                 .name = "current",
4804                 .mode = COMMAND_ANY,
4805                 .jim_handler = jim_target_current,
4806                 .help = "Returns the currently selected target",
4807         },
4808         {
4809                 .name = "types",
4810                 .mode = COMMAND_ANY,
4811                 .jim_handler = jim_target_types,
4812                 .help = "Returns the available target types as "
4813                                 "a list of strings",
4814         },
4815         {
4816                 .name = "names",
4817                 .mode = COMMAND_ANY,
4818                 .jim_handler = jim_target_names,
4819                 .help = "Returns the names of all targets as a list of strings",
4820         },
4821         {
4822                 .name = "number",
4823                 .mode = COMMAND_ANY,
4824                 .jim_handler = jim_target_number,
4825                 .usage = "number",
4826                 .help = "Returns the name of the numbered target "
4827                         "(DEPRECATED)",
4828         },
4829         {
4830                 .name = "count",
4831                 .mode = COMMAND_ANY,
4832                 .jim_handler = jim_target_count,
4833                 .help = "Returns the number of targets as an integer "
4834                         "(DEPRECATED)",
4835         },
4836         COMMAND_REGISTRATION_DONE
4837 };
4838
4839 struct FastLoad
4840 {
4841         uint32_t address;
4842         uint8_t *data;
4843         int length;
4844
4845 };
4846
4847 static int fastload_num;
4848 static struct FastLoad *fastload;
4849
4850 static void free_fastload(void)
4851 {
4852         if (fastload != NULL)
4853         {
4854                 int i;
4855                 for (i = 0; i < fastload_num; i++)
4856                 {
4857                         if (fastload[i].data)
4858                                 free(fastload[i].data);
4859                 }
4860                 free(fastload);
4861                 fastload = NULL;
4862         }
4863 }
4864
4865
4866
4867
4868 COMMAND_HANDLER(handle_fast_load_image_command)
4869 {
4870         uint8_t *buffer;
4871         size_t buf_cnt;
4872         uint32_t image_size;
4873         uint32_t min_address = 0;
4874         uint32_t max_address = 0xffffffff;
4875         int i;
4876
4877         struct image image;
4878
4879         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4880                         &image, &min_address, &max_address);
4881         if (ERROR_OK != retval)
4882                 return retval;
4883
4884         struct duration bench;
4885         duration_start(&bench);
4886
4887         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4888         {
4889                 return ERROR_OK;
4890         }
4891
4892         image_size = 0x0;
4893         retval = ERROR_OK;
4894         fastload_num = image.num_sections;
4895         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4896         if (fastload == NULL)
4897         {
4898                 image_close(&image);
4899                 return ERROR_FAIL;
4900         }
4901         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4902         for (i = 0; i < image.num_sections; i++)
4903         {
4904                 buffer = malloc(image.sections[i].size);
4905                 if (buffer == NULL)
4906                 {
4907                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4908                                                   (int)(image.sections[i].size));
4909                         break;
4910                 }
4911
4912                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4913                 {
4914                         free(buffer);
4915                         break;
4916                 }
4917
4918                 uint32_t offset = 0;
4919                 uint32_t length = buf_cnt;
4920
4921
4922                 /* DANGER!!! beware of unsigned comparision here!!! */
4923
4924                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4925                                 (image.sections[i].base_address < max_address))
4926                 {
4927                         if (image.sections[i].base_address < min_address)
4928                         {
4929                                 /* clip addresses below */
4930                                 offset += min_address-image.sections[i].base_address;
4931                                 length -= offset;
4932                         }
4933
4934                         if (image.sections[i].base_address + buf_cnt > max_address)
4935                         {
4936                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4937                         }
4938
4939                         fastload[i].address = image.sections[i].base_address + offset;
4940                         fastload[i].data = malloc(length);
4941                         if (fastload[i].data == NULL)
4942                         {
4943                                 free(buffer);
4944                                 break;
4945                         }
4946                         memcpy(fastload[i].data, buffer + offset, length);
4947                         fastload[i].length = length;
4948
4949                         image_size += length;
4950                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4951                                                   (unsigned int)length,
4952                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4953                 }
4954
4955                 free(buffer);
4956         }
4957
4958         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4959         {
4960                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4961                                 "in %fs (%0.3f kb/s)", image_size, 
4962                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4963
4964                 command_print(CMD_CTX,
4965                                 "WARNING: image has not been loaded to target!"
4966                                 "You can issue a 'fast_load' to finish loading.");
4967         }
4968
4969         image_close(&image);
4970
4971         if (retval != ERROR_OK)
4972         {
4973                 free_fastload();
4974         }
4975
4976         return retval;
4977 }
4978
4979 COMMAND_HANDLER(handle_fast_load_command)
4980 {
4981         if (CMD_ARGC > 0)
4982                 return ERROR_COMMAND_SYNTAX_ERROR;
4983         if (fastload == NULL)
4984         {
4985                 LOG_ERROR("No image in memory");
4986                 return ERROR_FAIL;
4987         }
4988         int i;
4989         int ms = timeval_ms();
4990         int size = 0;
4991         int retval = ERROR_OK;
4992         for (i = 0; i < fastload_num;i++)
4993         {
4994                 struct target *target = get_current_target(CMD_CTX);
4995                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4996                                           (unsigned int)(fastload[i].address),
4997                                           (unsigned int)(fastload[i].length));
4998                 if (retval == ERROR_OK)
4999                 {
5000                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5001                 }
5002                 size += fastload[i].length;
5003         }
5004         int after = timeval_ms();
5005         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5006         return retval;
5007 }
5008
5009 static const struct command_registration target_command_handlers[] = {
5010         {
5011                 .name = "targets",
5012                 .handler = handle_targets_command,
5013                 .mode = COMMAND_ANY,
5014                 .help = "change current default target (one parameter) "
5015                         "or prints table of all targets (no parameters)",
5016                 .usage = "[target]",
5017         },
5018         {
5019                 .name = "target",
5020                 .mode = COMMAND_CONFIG,
5021                 .help = "configure target",
5022
5023                 .chain = target_subcommand_handlers,
5024         },
5025         COMMAND_REGISTRATION_DONE
5026 };
5027
5028 int target_register_commands(struct command_context *cmd_ctx)
5029 {
5030         return register_commands(cmd_ctx, NULL, target_command_handlers);
5031 }
5032
5033 static bool target_reset_nag = true;
5034
5035 bool get_target_reset_nag(void)
5036 {
5037         return target_reset_nag;
5038 }
5039
5040 COMMAND_HANDLER(handle_target_reset_nag)
5041 {
5042         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5043                         &target_reset_nag, "Nag after each reset about options to improve "
5044                         "performance");
5045 }
5046
5047 static const struct command_registration target_exec_command_handlers[] = {
5048         {
5049                 .name = "fast_load_image",
5050                 .handler = handle_fast_load_image_command,
5051                 .mode = COMMAND_ANY,
5052                 .help = "Load image into server memory for later use by "
5053                         "fast_load; primarily for profiling",
5054                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5055                         "[min_address [max_length]]",
5056         },
5057         {
5058                 .name = "fast_load",
5059                 .handler = handle_fast_load_command,
5060                 .mode = COMMAND_EXEC,
5061                 .help = "loads active fast load image to current target "
5062                         "- mainly for profiling purposes",
5063         },
5064         {
5065                 .name = "profile",
5066                 .handler = handle_profile_command,
5067                 .mode = COMMAND_EXEC,
5068                 .help = "profiling samples the CPU PC",
5069         },
5070         /** @todo don't register virt2phys() unless target supports it */
5071         {
5072                 .name = "virt2phys",
5073                 .handler = handle_virt2phys_command,
5074                 .mode = COMMAND_ANY,
5075                 .help = "translate a virtual address into a physical address",
5076                 .usage = "virtual_address",
5077         },
5078         {
5079                 .name = "reg",
5080                 .handler = handle_reg_command,
5081                 .mode = COMMAND_EXEC,
5082                 .help = "display or set a register; with no arguments, "
5083                         "displays all registers and their values",
5084                 .usage = "[(register_name|register_number) [value]]",
5085         },
5086         {
5087                 .name = "poll",
5088                 .handler = handle_poll_command,
5089                 .mode = COMMAND_EXEC,
5090                 .help = "poll target state; or reconfigure background polling",
5091                 .usage = "['on'|'off']",
5092         },
5093         {
5094                 .name = "wait_halt",
5095                 .handler = handle_wait_halt_command,
5096                 .mode = COMMAND_EXEC,
5097                 .help = "wait up to the specified number of milliseconds "
5098                         "(default 5) for a previously requested halt",
5099                 .usage = "[milliseconds]",
5100         },
5101         {
5102                 .name = "halt",
5103                 .handler = handle_halt_command,
5104                 .mode = COMMAND_EXEC,
5105                 .help = "request target to halt, then wait up to the specified"
5106                         "number of milliseconds (default 5) for it to complete",
5107                 .usage = "[milliseconds]",
5108         },
5109         {
5110                 .name = "resume",
5111                 .handler = handle_resume_command,
5112                 .mode = COMMAND_EXEC,
5113                 .help = "resume target execution from current PC or address",
5114                 .usage = "[address]",
5115         },
5116         {
5117                 .name = "reset",
5118                 .handler = handle_reset_command,
5119                 .mode = COMMAND_EXEC,
5120                 .usage = "[run|halt|init]",
5121                 .help = "Reset all targets into the specified mode."
5122                         "Default reset mode is run, if not given.",
5123         },
5124         {
5125                 .name = "soft_reset_halt",
5126                 .handler = handle_soft_reset_halt_command,
5127                 .mode = COMMAND_EXEC,
5128                 .help = "halt the target and do a soft reset",
5129         },
5130         {
5131                 .name = "step",
5132                 .handler = handle_step_command,
5133                 .mode = COMMAND_EXEC,
5134                 .help = "step one instruction from current PC or address",
5135                 .usage = "[address]",
5136         },
5137         {
5138                 .name = "mdw",
5139                 .handler = handle_md_command,
5140                 .mode = COMMAND_EXEC,
5141                 .help = "display memory words",
5142                 .usage = "['phys'] address [count]",
5143         },
5144         {
5145                 .name = "mdh",
5146                 .handler = handle_md_command,
5147                 .mode = COMMAND_EXEC,
5148                 .help = "display memory half-words",
5149                 .usage = "['phys'] address [count]",
5150         },
5151         {
5152                 .name = "mdb",
5153                 .handler = handle_md_command,
5154                 .mode = COMMAND_EXEC,
5155                 .help = "display memory bytes",
5156                 .usage = "['phys'] address [count]",
5157         },
5158         {
5159                 .name = "mww",
5160                 .handler = handle_mw_command,
5161                 .mode = COMMAND_EXEC,
5162                 .help = "write memory word",
5163                 .usage = "['phys'] address value [count]",
5164         },
5165         {
5166                 .name = "mwh",
5167                 .handler = handle_mw_command,
5168                 .mode = COMMAND_EXEC,
5169                 .help = "write memory half-word",
5170                 .usage = "['phys'] address value [count]",
5171         },
5172         {
5173                 .name = "mwb",
5174                 .handler = handle_mw_command,
5175                 .mode = COMMAND_EXEC,
5176                 .help = "write memory byte",
5177                 .usage = "['phys'] address value [count]",
5178         },
5179         {
5180                 .name = "bp",
5181                 .handler = handle_bp_command,
5182                 .mode = COMMAND_EXEC,
5183                 .help = "list or set hardware or software breakpoint",
5184                 .usage = "[address length ['hw']]",
5185         },
5186         {
5187                 .name = "rbp",
5188                 .handler = handle_rbp_command,
5189                 .mode = COMMAND_EXEC,
5190                 .help = "remove breakpoint",
5191                 .usage = "address",
5192         },
5193         {
5194                 .name = "wp",
5195                 .handler = handle_wp_command,
5196                 .mode = COMMAND_EXEC,
5197                 .help = "list (no params) or create watchpoints",
5198                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5199         },
5200         {
5201                 .name = "rwp",
5202                 .handler = handle_rwp_command,
5203                 .mode = COMMAND_EXEC,
5204                 .help = "remove watchpoint",
5205                 .usage = "address",
5206         },
5207         {
5208                 .name = "load_image",
5209                 .handler = handle_load_image_command,
5210                 .mode = COMMAND_EXEC,
5211                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5212                         "[min_address] [max_length]",
5213         },
5214         {
5215                 .name = "dump_image",
5216                 .handler = handle_dump_image_command,
5217                 .mode = COMMAND_EXEC,
5218                 .usage = "filename address size",
5219         },
5220         {
5221                 .name = "verify_image",
5222                 .handler = handle_verify_image_command,
5223                 .mode = COMMAND_EXEC,
5224                 .usage = "filename [offset [type]]",
5225         },
5226         {
5227                 .name = "test_image",
5228                 .handler = handle_test_image_command,
5229                 .mode = COMMAND_EXEC,
5230                 .usage = "filename [offset [type]]",
5231         },
5232         {
5233                 .name = "ocd_mem2array",
5234                 .mode = COMMAND_EXEC,
5235                 .jim_handler = jim_mem2array,
5236                 .help = "read 8/16/32 bit memory and return as a TCL array "
5237                         "for script processing",
5238                 .usage = "arrayname bitwidth address count",
5239         },
5240         {
5241                 .name = "ocd_array2mem",
5242                 .mode = COMMAND_EXEC,
5243                 .jim_handler = jim_array2mem,
5244                 .help = "convert a TCL array to memory locations "
5245                         "and write the 8/16/32 bit values",
5246                 .usage = "arrayname bitwidth address count",
5247         },
5248         {
5249                 .name = "reset_nag",
5250                 .handler = handle_target_reset_nag,
5251                 .mode = COMMAND_ANY,
5252                 .help = "Nag after each reset about options that could have been "
5253                                 "enabled to improve performance. ",
5254                 .usage = "['enable'|'disable']",
5255         },
5256         COMMAND_REGISTRATION_DONE
5257 };
5258 int target_register_user_commands(struct command_context *cmd_ctx)
5259 {
5260         int retval = ERROR_OK;
5261         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5262                 return retval;
5263
5264         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5265                 return retval;
5266
5267
5268         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5269 }