]> git.sur5r.net Git - openocd/blob - src/target/target.c
dd16c2bdfa137c9d0009625912746f06f0d4a016
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57
58 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
78 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
79
80
81 /* targets */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         struct command_context_s *cmd_ctx = priv;
224         
225         if (event == TARGET_EVENT_HALTED)
226         {
227                 target_unregister_event_callback(target_init_handler, priv);
228                 target_invoke_script(cmd_ctx, target, "post_reset");
229                 jtag_execute_queue();
230         }
231         
232         return ERROR_OK;
233 }
234
235 int target_run_and_halt_handler(void *priv)
236 {
237         target_t *target = priv;
238         
239         target_halt(target);
240         
241         return ERROR_OK;
242 }
243
244 int target_poll(struct target_s *target)
245 {
246         /* We can't poll until after examine */
247         if (!target->type->examined)
248         {
249                 /* Fail silently lest we pollute the log */
250                 return ERROR_FAIL;
251         }
252         return target->type->poll(target);
253 }
254
255 int target_halt(struct target_s *target)
256 {
257         /* We can't poll until after examine */
258         if (!target->type->examined)
259         {
260                 LOG_ERROR("Target not examined yet");
261                 return ERROR_FAIL;
262         }
263         return target->type->halt(target);
264 }
265
266 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
267 {
268         int retval;
269         
270         /* We can't poll until after examine */
271         if (!target->type->examined)
272         {
273                 LOG_ERROR("Target not examined yet");
274                 return ERROR_FAIL;
275         }
276         
277         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
278          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
279          * the application.
280          */
281         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
282                 return retval;
283         
284         return retval;
285 }
286
287 int target_process_reset(struct command_context_s *cmd_ctx)
288 {
289         int retval = ERROR_OK;
290         target_t *target;
291         struct timeval timeout, now;
292
293         jtag->speed(jtag_speed);
294
295         target = targets;
296         while (target)
297         {
298                 target_invoke_script(cmd_ctx, target, "pre_reset");
299                 target = target->next;
300         }
301         
302         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
303                 return retval;
304         
305         /* First time this is executed after launching OpenOCD, it will read out 
306          * the type of CPU, etc. and init Embedded ICE registers in host
307          * memory. 
308          * 
309          * It will also set up ICE registers in the target.
310          * 
311          * However, if we assert TRST later, we need to set up the registers again. 
312          * 
313          * For the "reset halt/init" case we must only set up the registers here.
314          */
315         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
316                 return retval;
317         
318         /* prepare reset_halt where necessary */
319         target = targets;
320         while (target)
321         {
322                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
323                 {
324                         switch (target->reset_mode)
325                         {
326                                 case RESET_HALT:
327                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
328                                         target->reset_mode = RESET_RUN_AND_HALT;
329                                         break;
330                                 case RESET_INIT:
331                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
332                                         target->reset_mode = RESET_RUN_AND_INIT;
333                                         break;
334                                 default:
335                                         break;
336                         } 
337                 }
338                 target = target->next;
339         }
340         
341         target = targets;
342         while (target)
343         {
344                 /* we have no idea what state the target is in, so we
345                  * have to drop working areas
346                  */
347                 target_free_all_working_areas_restore(target, 0);
348                 target->type->assert_reset(target);
349                 target = target->next;
350         }
351         if ((retval = jtag_execute_queue()) != ERROR_OK)
352         {
353                 LOG_WARNING("JTAG communication failed asserting reset.");
354                 retval = ERROR_OK;
355         }
356         
357         /* request target halt if necessary, and schedule further action */
358         target = targets;
359         while (target)
360         {
361                 switch (target->reset_mode)
362                 {
363                         case RESET_RUN:
364                                 /* nothing to do if target just wants to be run */
365                                 break;
366                         case RESET_RUN_AND_HALT:
367                                 /* schedule halt */
368                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
369                                 break;
370                         case RESET_RUN_AND_INIT:
371                                 /* schedule halt */
372                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
373                                 target_register_event_callback(target_init_handler, cmd_ctx);
374                                 break;
375                         case RESET_HALT:
376                                 target_halt(target);
377                                 break;
378                         case RESET_INIT:
379                                 target_halt(target);
380                                 target_register_event_callback(target_init_handler, cmd_ctx);
381                                 break;
382                         default:
383                                 LOG_ERROR("BUG: unknown target->reset_mode");
384                 }
385                 target = target->next;
386         }
387         
388         if ((retval = jtag_execute_queue()) != ERROR_OK)
389         {
390                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
391                 retval = ERROR_OK;              
392         }
393         
394         target = targets;
395         while (target)
396         {
397                 target->type->deassert_reset(target);
398                 target = target->next;
399         }
400         
401         if ((retval = jtag_execute_queue()) != ERROR_OK)
402         {
403                 LOG_WARNING("JTAG communication failed while deasserting reset.");
404                 retval = ERROR_OK;
405         }
406
407         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
408         {
409                 /* If TRST was asserted we need to set up registers again */
410                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
411                         return retval;
412         }               
413         
414         /* post reset scripts can be quite long, increase speed now. If post
415          * reset scripts needs a different speed, they can set the speed to
416          * whatever they need.
417          */
418         jtag->speed(jtag_speed_post_reset);
419         
420         LOG_DEBUG("Waiting for halted stated as approperiate");
421         
422         /* Wait for reset to complete, maximum 5 seconds. */    
423         gettimeofday(&timeout, NULL);
424         timeval_add_time(&timeout, 5, 0);
425         for(;;)
426         {
427                 gettimeofday(&now, NULL);
428                 
429                 target_call_timer_callbacks_now();
430                 
431                 target = targets;
432                 while (target)
433                 {
434                         LOG_DEBUG("Polling target");
435                         target_poll(target);
436                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
437                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
438                                         (target->reset_mode == RESET_HALT) ||
439                                         (target->reset_mode == RESET_INIT))
440                         {
441                                 if (target->state != TARGET_HALTED)
442                                 {
443                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
444                                         {
445                                                 LOG_USER("Timed out waiting for halt after reset");
446                                                 goto done;
447                                         }
448                                         /* this will send alive messages on e.g. GDB remote protocol. */
449                                         usleep(500*1000); 
450                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
451                                         goto again;
452                                 }
453                         }
454                         target = target->next;
455                 }
456                 /* All targets we're waiting for are halted */
457                 break;
458                 
459                 again:;
460         }
461         done:
462         
463         
464         /* We want any events to be processed before the prompt */
465         target_call_timer_callbacks_now();
466
467         /* if we timed out we need to unregister these handlers */
468         target = targets;
469         while (target)
470         {
471                 target_unregister_timer_callback(target_run_and_halt_handler, target);
472                 target = target->next;
473         }
474         target_unregister_event_callback(target_init_handler, cmd_ctx);
475         
476         
477         return retval;
478 }
479
480 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
481 {
482         *physical = virtual;
483         return ERROR_OK;
484 }
485
486 static int default_mmu(struct target_s *target, int *enabled)
487 {
488         *enabled = 0;
489         return ERROR_OK;
490 }
491
492 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
493 {
494         target->type->examined = 1;
495         return ERROR_OK;
496 }
497
498
499 /* Targets that correctly implement init+examine, i.e.
500  * no communication with target during init:
501  * 
502  * XScale 
503  */
504 int target_examine(struct command_context_s *cmd_ctx)
505 {
506         int retval = ERROR_OK;
507         target_t *target = targets;
508         while (target)
509         {
510                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
511                         return retval;
512                 target = target->next;
513         }
514         return retval;
515 }
516
517 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
518 {
519         if (!target->type->examined)
520         {
521                 LOG_ERROR("Target not examined yet");
522                 return ERROR_FAIL;
523         }
524         return target->type->write_memory_imp(target, address, size, count, buffer);
525 }
526
527 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
528 {
529         if (!target->type->examined)
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->read_memory_imp(target, address, size, count, buffer);
535 }
536
537 static int target_soft_reset_halt_imp(struct target_s *target)
538 {
539         if (!target->type->examined)
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->soft_reset_halt_imp(target);
545 }
546
547 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
548 {
549         if (!target->type->examined)
550         {
551                 LOG_ERROR("Target not examined yet");
552                 return ERROR_FAIL;
553         }
554         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
555 }
556
557 int target_init(struct command_context_s *cmd_ctx)
558 {
559         target_t *target = targets;
560         
561         while (target)
562         {
563                 target->type->examined = 0;
564                 if (target->type->examine == NULL)
565                 {
566                         target->type->examine = default_examine;
567                 }
568                 
569                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
570                 {
571                         LOG_ERROR("target '%s' init failed", target->type->name);
572                         exit(-1);
573                 }
574                 
575                 /* Set up default functions if none are provided by target */
576                 if (target->type->virt2phys == NULL)
577                 {
578                         target->type->virt2phys = default_virt2phys;
579                 }
580                 target->type->virt2phys = default_virt2phys;
581                 /* a non-invasive way(in terms of patches) to add some code that
582                  * runs before the type->write/read_memory implementation
583                  */
584                 target->type->write_memory_imp = target->type->write_memory;
585                 target->type->write_memory = target_write_memory_imp;
586                 target->type->read_memory_imp = target->type->read_memory;
587                 target->type->read_memory = target_read_memory_imp;
588                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
589                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
590                 target->type->run_algorithm_imp = target->type->run_algorithm;
591                 target->type->run_algorithm = target_run_algorithm_imp;
592
593                 
594                 if (target->type->mmu == NULL)
595                 {
596                         target->type->mmu = default_mmu;
597                 }
598                 target = target->next;
599         }
600         
601         if (targets)
602         {
603                 target_register_user_commands(cmd_ctx);
604                 target_register_timer_callback(handle_target, 100, 1, NULL);
605         }
606                 
607         return ERROR_OK;
608 }
609
610 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
611 {
612         target_event_callback_t **callbacks_p = &target_event_callbacks;
613         
614         if (callback == NULL)
615         {
616                 return ERROR_INVALID_ARGUMENTS;
617         }
618         
619         if (*callbacks_p)
620         {
621                 while ((*callbacks_p)->next)
622                         callbacks_p = &((*callbacks_p)->next);
623                 callbacks_p = &((*callbacks_p)->next);
624         }
625         
626         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
627         (*callbacks_p)->callback = callback;
628         (*callbacks_p)->priv = priv;
629         (*callbacks_p)->next = NULL;
630         
631         return ERROR_OK;
632 }
633
634 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
635 {
636         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
637         struct timeval now;
638         
639         if (callback == NULL)
640         {
641                 return ERROR_INVALID_ARGUMENTS;
642         }
643         
644         if (*callbacks_p)
645         {
646                 while ((*callbacks_p)->next)
647                         callbacks_p = &((*callbacks_p)->next);
648                 callbacks_p = &((*callbacks_p)->next);
649         }
650         
651         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
652         (*callbacks_p)->callback = callback;
653         (*callbacks_p)->periodic = periodic;
654         (*callbacks_p)->time_ms = time_ms;
655         
656         gettimeofday(&now, NULL);
657         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
658         time_ms -= (time_ms % 1000);
659         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
660         if ((*callbacks_p)->when.tv_usec > 1000000)
661         {
662                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
663                 (*callbacks_p)->when.tv_sec += 1;
664         }
665         
666         (*callbacks_p)->priv = priv;
667         (*callbacks_p)->next = NULL;
668         
669         return ERROR_OK;
670 }
671
672 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
673 {
674         target_event_callback_t **p = &target_event_callbacks;
675         target_event_callback_t *c = target_event_callbacks;
676         
677         if (callback == NULL)
678         {
679                 return ERROR_INVALID_ARGUMENTS;
680         }
681                 
682         while (c)
683         {
684                 target_event_callback_t *next = c->next;
685                 if ((c->callback == callback) && (c->priv == priv))
686                 {
687                         *p = next;
688                         free(c);
689                         return ERROR_OK;
690                 }
691                 else
692                         p = &(c->next);
693                 c = next;
694         }
695         
696         return ERROR_OK;
697 }
698
699 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
700 {
701         target_timer_callback_t **p = &target_timer_callbacks;
702         target_timer_callback_t *c = target_timer_callbacks;
703         
704         if (callback == NULL)
705         {
706                 return ERROR_INVALID_ARGUMENTS;
707         }
708                 
709         while (c)
710         {
711                 target_timer_callback_t *next = c->next;
712                 if ((c->callback == callback) && (c->priv == priv))
713                 {
714                         *p = next;
715                         free(c);
716                         return ERROR_OK;
717                 }
718                 else
719                         p = &(c->next);
720                 c = next;
721         }
722         
723         return ERROR_OK;
724 }
725
726 int target_call_event_callbacks(target_t *target, enum target_event event)
727 {
728         target_event_callback_t *callback = target_event_callbacks;
729         target_event_callback_t *next_callback;
730         
731         LOG_DEBUG("target event %i", event);
732         
733         while (callback)
734         {
735                 next_callback = callback->next;
736                 callback->callback(target, event, callback->priv);
737                 callback = next_callback;
738         }
739         
740         return ERROR_OK;
741 }
742
743 static int target_call_timer_callbacks_check_time(int checktime)
744 {
745         target_timer_callback_t *callback = target_timer_callbacks;
746         target_timer_callback_t *next_callback;
747         struct timeval now;
748
749         keep_alive();
750         
751         gettimeofday(&now, NULL);
752         
753         while (callback)
754         {
755                 next_callback = callback->next;
756                 
757                 if ((!checktime&&callback->periodic)||
758                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
759                                                 || (now.tv_sec > callback->when.tv_sec)))
760                 {
761                         if(callback->callback != NULL)
762                         {
763                                 callback->callback(callback->priv);
764                                 if (callback->periodic)
765                                 {
766                                         int time_ms = callback->time_ms;
767                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
768                                         time_ms -= (time_ms % 1000);
769                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
770                                         if (callback->when.tv_usec > 1000000)
771                                         {
772                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
773                                                 callback->when.tv_sec += 1;
774                                         }
775                                 }
776                                 else
777                                         target_unregister_timer_callback(callback->callback, callback->priv);
778                         }
779                 }
780                         
781                 callback = next_callback;
782         }
783         
784         return ERROR_OK;
785 }
786
787 int target_call_timer_callbacks()
788 {
789         return target_call_timer_callbacks_check_time(1);
790 }
791
792 /* invoke periodic callbacks immediately */
793 int target_call_timer_callbacks_now()
794 {
795         return target_call_timer_callbacks(0);
796 }
797
798 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
799 {
800         working_area_t *c = target->working_areas;
801         working_area_t *new_wa = NULL;
802         
803         /* Reevaluate working area address based on MMU state*/
804         if (target->working_areas == NULL)
805         {
806                 int retval;
807                 int enabled;
808                 retval = target->type->mmu(target, &enabled);
809                 if (retval != ERROR_OK)
810                 {
811                         return retval;
812                 }
813                 if (enabled)
814                 {
815                         target->working_area = target->working_area_virt;
816                 }
817                 else
818                 {
819                         target->working_area = target->working_area_phys;
820                 }
821         }
822         
823         /* only allocate multiples of 4 byte */
824         if (size % 4)
825         {
826                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
827                 size = CEIL(size, 4);
828         }
829         
830         /* see if there's already a matching working area */
831         while (c)
832         {
833                 if ((c->free) && (c->size == size))
834                 {
835                         new_wa = c;
836                         break;
837                 }
838                 c = c->next;
839         }
840         
841         /* if not, allocate a new one */
842         if (!new_wa)
843         {
844                 working_area_t **p = &target->working_areas;
845                 u32 first_free = target->working_area;
846                 u32 free_size = target->working_area_size;
847                 
848                 LOG_DEBUG("allocating new working area");
849                 
850                 c = target->working_areas;
851                 while (c)
852                 {
853                         first_free += c->size;
854                         free_size -= c->size;
855                         p = &c->next;
856                         c = c->next;
857                 }
858                 
859                 if (free_size < size)
860                 {
861                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
862                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
863                 }
864                 
865                 new_wa = malloc(sizeof(working_area_t));
866                 new_wa->next = NULL;
867                 new_wa->size = size;
868                 new_wa->address = first_free;
869                 
870                 if (target->backup_working_area)
871                 {
872                         new_wa->backup = malloc(new_wa->size);
873                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
874                 }
875                 else
876                 {
877                         new_wa->backup = NULL;
878                 }
879                 
880                 /* put new entry in list */
881                 *p = new_wa;
882         }
883         
884         /* mark as used, and return the new (reused) area */
885         new_wa->free = 0;
886         *area = new_wa;
887         
888         /* user pointer */
889         new_wa->user = area;
890         
891         return ERROR_OK;
892 }
893
894 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
895 {
896         if (area->free)
897                 return ERROR_OK;
898         
899         if (restore&&target->backup_working_area)
900                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
901         
902         area->free = 1;
903         
904         /* mark user pointer invalid */
905         *area->user = NULL;
906         area->user = NULL;
907         
908         return ERROR_OK;
909 }
910
911 int target_free_working_area(struct target_s *target, working_area_t *area)
912 {
913         return target_free_working_area_restore(target, area, 1);
914 }
915
916 int target_free_all_working_areas_restore(struct target_s *target, int restore)
917 {
918         working_area_t *c = target->working_areas;
919
920         while (c)
921         {
922                 working_area_t *next = c->next;
923                 target_free_working_area_restore(target, c, restore);
924                 
925                 if (c->backup)
926                         free(c->backup);
927                 
928                 free(c);
929                 
930                 c = next;
931         }
932         
933         target->working_areas = NULL;
934         
935         return ERROR_OK;
936 }
937
938 int target_free_all_working_areas(struct target_s *target)
939 {
940         return target_free_all_working_areas_restore(target, 1); 
941 }
942
943 int target_register_commands(struct command_context_s *cmd_ctx)
944 {
945         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
946         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
947         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
948         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
949         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
950         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
951
952
953         /* script procedures */
954         register_jim(cmd_ctx, "openocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
955         register_jim(cmd_ctx, "openocd_array2mem", jim_mem2array, "convert a TCL array to memory locations and write the values");
956         return ERROR_OK;
957 }
958
959 int target_arch_state(struct target_s *target)
960 {
961         int retval;
962         if (target==NULL)
963         {
964                 LOG_USER("No target has been configured");
965                 return ERROR_OK;
966         }
967         
968         LOG_USER("target state: %s", target_state_strings[target->state]);
969         
970         if (target->state!=TARGET_HALTED)
971                 return ERROR_OK;
972         
973         retval=target->type->arch_state(target);
974         return retval;
975 }
976
977 /* Single aligned words are guaranteed to use 16 or 32 bit access 
978  * mode respectively, otherwise data is handled as quickly as 
979  * possible
980  */
981 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
982 {
983         int retval;
984         if (!target->type->examined)
985         {
986                 LOG_ERROR("Target not examined yet");
987                 return ERROR_FAIL;
988         }
989         
990         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
991         
992         if (((address % 2) == 0) && (size == 2))
993         {
994                 return target->type->write_memory(target, address, 2, 1, buffer);
995         }
996         
997         /* handle unaligned head bytes */
998         if (address % 4)
999         {
1000                 int unaligned = 4 - (address % 4);
1001                 
1002                 if (unaligned > size)
1003                         unaligned = size;
1004
1005                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1006                         return retval;
1007                 
1008                 buffer += unaligned;
1009                 address += unaligned;
1010                 size -= unaligned;
1011         }
1012                 
1013         /* handle aligned words */
1014         if (size >= 4)
1015         {
1016                 int aligned = size - (size % 4);
1017         
1018                 /* use bulk writes above a certain limit. This may have to be changed */
1019                 if (aligned > 128)
1020                 {
1021                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1022                                 return retval;
1023                 }
1024                 else
1025                 {
1026                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1027                                 return retval;
1028                 }
1029                 
1030                 buffer += aligned;
1031                 address += aligned;
1032                 size -= aligned;
1033         }
1034         
1035         /* handle tail writes of less than 4 bytes */
1036         if (size > 0)
1037         {
1038                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1039                         return retval;
1040         }
1041         
1042         return ERROR_OK;
1043 }
1044
1045
1046 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1047  * mode respectively, otherwise data is handled as quickly as 
1048  * possible
1049  */
1050 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1051 {
1052         int retval;
1053         if (!target->type->examined)
1054         {
1055                 LOG_ERROR("Target not examined yet");
1056                 return ERROR_FAIL;
1057         }
1058
1059         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1060         
1061         if (((address % 2) == 0) && (size == 2))
1062         {
1063                 return target->type->read_memory(target, address, 2, 1, buffer);
1064         }
1065         
1066         /* handle unaligned head bytes */
1067         if (address % 4)
1068         {
1069                 int unaligned = 4 - (address % 4);
1070                 
1071                 if (unaligned > size)
1072                         unaligned = size;
1073
1074                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1075                         return retval;
1076                 
1077                 buffer += unaligned;
1078                 address += unaligned;
1079                 size -= unaligned;
1080         }
1081                 
1082         /* handle aligned words */
1083         if (size >= 4)
1084         {
1085                 int aligned = size - (size % 4);
1086         
1087                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1088                         return retval;
1089                 
1090                 buffer += aligned;
1091                 address += aligned;
1092                 size -= aligned;
1093         }
1094         
1095         /* handle tail writes of less than 4 bytes */
1096         if (size > 0)
1097         {
1098                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1099                         return retval;
1100         }
1101         
1102         return ERROR_OK;
1103 }
1104
1105 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1106 {
1107         u8 *buffer;
1108         int retval;
1109         int i;
1110         u32 checksum = 0;
1111         if (!target->type->examined)
1112         {
1113                 LOG_ERROR("Target not examined yet");
1114                 return ERROR_FAIL;
1115         }
1116         
1117         if ((retval = target->type->checksum_memory(target, address,
1118                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1119         {
1120                 buffer = malloc(size);
1121                 if (buffer == NULL)
1122                 {
1123                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1124                         return ERROR_INVALID_ARGUMENTS;
1125                 }
1126                 retval = target_read_buffer(target, address, size, buffer);
1127                 if (retval != ERROR_OK)
1128                 {
1129                         free(buffer);
1130                         return retval;
1131                 }
1132
1133                 /* convert to target endianess */
1134                 for (i = 0; i < (size/sizeof(u32)); i++)
1135                 {
1136                         u32 target_data;
1137                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1138                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1139                 }
1140
1141                 retval = image_calculate_checksum( buffer, size, &checksum );
1142                 free(buffer);
1143         }
1144         
1145         *crc = checksum;
1146         
1147         return retval;
1148 }
1149
1150 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1151 {
1152         int retval;
1153         if (!target->type->examined)
1154         {
1155                 LOG_ERROR("Target not examined yet");
1156                 return ERROR_FAIL;
1157         }
1158         
1159         if (target->type->blank_check_memory == 0)
1160                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1161         
1162         retval = target->type->blank_check_memory(target, address, size, blank);
1163                         
1164         return retval;
1165 }
1166
1167 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1168 {
1169         u8 value_buf[4];
1170         if (!target->type->examined)
1171         {
1172                 LOG_ERROR("Target not examined yet");
1173                 return ERROR_FAIL;
1174         }
1175
1176         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1177         
1178         if (retval == ERROR_OK)
1179         {
1180                 *value = target_buffer_get_u32(target, value_buf);
1181                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1182         }
1183         else
1184         {
1185                 *value = 0x0;
1186                 LOG_DEBUG("address: 0x%8.8x failed", address);
1187         }
1188         
1189         return retval;
1190 }
1191
1192 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1193 {
1194         u8 value_buf[2];
1195         if (!target->type->examined)
1196         {
1197                 LOG_ERROR("Target not examined yet");
1198                 return ERROR_FAIL;
1199         }
1200
1201         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1202         
1203         if (retval == ERROR_OK)
1204         {
1205                 *value = target_buffer_get_u16(target, value_buf);
1206                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1207         }
1208         else
1209         {
1210                 *value = 0x0;
1211                 LOG_DEBUG("address: 0x%8.8x failed", address);
1212         }
1213         
1214         return retval;
1215 }
1216
1217 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1218 {
1219         int retval = target->type->read_memory(target, address, 1, 1, value);
1220         if (!target->type->examined)
1221         {
1222                 LOG_ERROR("Target not examined yet");
1223                 return ERROR_FAIL;
1224         }
1225
1226         if (retval == ERROR_OK)
1227         {
1228                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1229         }
1230         else
1231         {
1232                 *value = 0x0;
1233                 LOG_DEBUG("address: 0x%8.8x failed", address);
1234         }
1235         
1236         return retval;
1237 }
1238
1239 int target_write_u32(struct target_s *target, u32 address, u32 value)
1240 {
1241         int retval;
1242         u8 value_buf[4];
1243         if (!target->type->examined)
1244         {
1245                 LOG_ERROR("Target not examined yet");
1246                 return ERROR_FAIL;
1247         }
1248
1249         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1250
1251         target_buffer_set_u32(target, value_buf, value);        
1252         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1253         {
1254                 LOG_DEBUG("failed: %i", retval);
1255         }
1256         
1257         return retval;
1258 }
1259
1260 int target_write_u16(struct target_s *target, u32 address, u16 value)
1261 {
1262         int retval;
1263         u8 value_buf[2];
1264         if (!target->type->examined)
1265         {
1266                 LOG_ERROR("Target not examined yet");
1267                 return ERROR_FAIL;
1268         }
1269
1270         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1271
1272         target_buffer_set_u16(target, value_buf, value);        
1273         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1274         {
1275                 LOG_DEBUG("failed: %i", retval);
1276         }
1277         
1278         return retval;
1279 }
1280
1281 int target_write_u8(struct target_s *target, u32 address, u8 value)
1282 {
1283         int retval;
1284         if (!target->type->examined)
1285         {
1286                 LOG_ERROR("Target not examined yet");
1287                 return ERROR_FAIL;
1288         }
1289
1290         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1291
1292         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1293         {
1294                 LOG_DEBUG("failed: %i", retval);
1295         }
1296         
1297         return retval;
1298 }
1299
1300 int target_register_user_commands(struct command_context_s *cmd_ctx)
1301 {
1302         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1303         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1304         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1305         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1306         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1307         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1308         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1309         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1310
1311         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1312         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1313         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1314         
1315         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1316         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1317         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1318         
1319         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1320         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1321         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1322         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1323         
1324         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1325         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1326         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1327         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1328         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1329         
1330         target_request_register_commands(cmd_ctx);
1331         trace_register_commands(cmd_ctx);
1332         
1333         return ERROR_OK;
1334 }
1335
1336 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1337 {
1338         target_t *target = targets;
1339         int count = 0;
1340         
1341         if (argc == 1)
1342         {
1343                 int num = strtoul(args[0], NULL, 0);
1344                 
1345                 while (target)
1346                 {
1347                         count++;
1348                         target = target->next;
1349                 }
1350                 
1351                 if (num < count)
1352                         cmd_ctx->current_target = num;
1353                 else
1354                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1355                         
1356                 return ERROR_OK;
1357         }
1358                 
1359         while (target)
1360         {
1361                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1362                 target = target->next;
1363         }
1364         
1365         return ERROR_OK;
1366 }
1367
1368 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1369 {
1370         int i;
1371         int found = 0;
1372         
1373         if (argc < 3)
1374         {
1375                 return ERROR_COMMAND_SYNTAX_ERROR;
1376         }
1377         
1378         /* search for the specified target */
1379         if (args[0] && (args[0][0] != 0))
1380         {
1381                 for (i = 0; target_types[i]; i++)
1382                 {
1383                         if (strcmp(args[0], target_types[i]->name) == 0)
1384                         {
1385                                 target_t **last_target_p = &targets;
1386                                 
1387                                 /* register target specific commands */
1388                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1389                                 {
1390                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1391                                         exit(-1);
1392                                 }
1393
1394                                 if (*last_target_p)
1395                                 {
1396                                         while ((*last_target_p)->next)
1397                                                 last_target_p = &((*last_target_p)->next);
1398                                         last_target_p = &((*last_target_p)->next);
1399                                 }
1400
1401                                 *last_target_p = malloc(sizeof(target_t));
1402                                 
1403                                 /* allocate memory for each unique target type */
1404                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1405                                 *((*last_target_p)->type) = *target_types[i]; 
1406                                 
1407                                 if (strcmp(args[1], "big") == 0)
1408                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1409                                 else if (strcmp(args[1], "little") == 0)
1410                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1411                                 else
1412                                 {
1413                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1414                                         return ERROR_COMMAND_SYNTAX_ERROR;
1415                                 }
1416                                 
1417                                 /* what to do on a target reset */
1418                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1419                                 if (strcmp(args[2], "reset_halt") == 0)
1420                                         (*last_target_p)->reset_mode = RESET_HALT;
1421                                 else if (strcmp(args[2], "reset_run") == 0)
1422                                         (*last_target_p)->reset_mode = RESET_RUN;
1423                                 else if (strcmp(args[2], "reset_init") == 0)
1424                                         (*last_target_p)->reset_mode = RESET_INIT;
1425                                 else if (strcmp(args[2], "run_and_halt") == 0)
1426                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1427                                 else if (strcmp(args[2], "run_and_init") == 0)
1428                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1429                                 else
1430                                 {
1431                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1432                                         args--;
1433                                         argc++;
1434                                 }
1435                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1436                                 
1437                                 (*last_target_p)->working_area = 0x0;
1438                                 (*last_target_p)->working_area_size = 0x0;
1439                                 (*last_target_p)->working_areas = NULL;
1440                                 (*last_target_p)->backup_working_area = 0;
1441                                 
1442                                 (*last_target_p)->state = TARGET_UNKNOWN;
1443                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1444                                 (*last_target_p)->reg_cache = NULL;
1445                                 (*last_target_p)->breakpoints = NULL;
1446                                 (*last_target_p)->watchpoints = NULL;
1447                                 (*last_target_p)->next = NULL;
1448                                 (*last_target_p)->arch_info = NULL;
1449                                 
1450                                 /* initialize trace information */
1451                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1452                                 (*last_target_p)->trace_info->num_trace_points = 0;
1453                                 (*last_target_p)->trace_info->trace_points_size = 0;
1454                                 (*last_target_p)->trace_info->trace_points = NULL;
1455                                 (*last_target_p)->trace_info->trace_history_size = 0;
1456                                 (*last_target_p)->trace_info->trace_history = NULL;
1457                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1458                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1459                                 
1460                                 (*last_target_p)->dbgmsg = NULL;
1461                                 (*last_target_p)->dbg_msg_enabled = 0;
1462                                                                 
1463                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1464                                 
1465                                 found = 1;
1466                                 break;
1467                         }
1468                 }
1469         }
1470         
1471         /* no matching target found */
1472         if (!found)
1473         {
1474                 LOG_ERROR("target '%s' not found", args[0]);
1475                 return ERROR_COMMAND_SYNTAX_ERROR;
1476         }
1477
1478         return ERROR_OK;
1479 }
1480
1481 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1482 {
1483         return command_run_linef(cmd_ctx, " if {[catch {info body target_%s_%d} t]==0} {target_%s_%d}", 
1484         name, get_num_by_target(target),
1485         name, get_num_by_target(target));
1486 }
1487
1488 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1489 {
1490         target_t *target = NULL;
1491         
1492         if (argc < 2)
1493         {
1494                 return ERROR_COMMAND_SYNTAX_ERROR;
1495         }
1496         
1497         target = get_target_by_num(strtoul(args[0], NULL, 0));
1498         if (!target)
1499         {
1500                 return ERROR_COMMAND_SYNTAX_ERROR;
1501         }
1502         
1503         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1504         
1505         return ERROR_OK;
1506 }
1507
1508 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1509 {
1510         target_t *target = NULL;
1511         
1512         if ((argc < 4) || (argc > 5))
1513         {
1514                 return ERROR_COMMAND_SYNTAX_ERROR;
1515         }
1516         
1517         target = get_target_by_num(strtoul(args[0], NULL, 0));
1518         if (!target)
1519         {
1520                 return ERROR_COMMAND_SYNTAX_ERROR;
1521         }
1522         target_free_all_working_areas(target);
1523         
1524         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1525         if (argc == 5)
1526         {
1527                 target->working_area_virt = strtoul(args[4], NULL, 0);
1528         }
1529         target->working_area_size = strtoul(args[2], NULL, 0);
1530         
1531         if (strcmp(args[3], "backup") == 0)
1532         {
1533                 target->backup_working_area = 1;
1534         }
1535         else if (strcmp(args[3], "nobackup") == 0)
1536         {
1537                 target->backup_working_area = 0;
1538         }
1539         else
1540         {
1541                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1542                 return ERROR_COMMAND_SYNTAX_ERROR;
1543         }
1544         
1545         return ERROR_OK;
1546 }
1547
1548
1549 /* process target state changes */
1550 int handle_target(void *priv)
1551 {
1552         target_t *target = targets;
1553         
1554         while (target)
1555         {
1556                 if (target_continous_poll)
1557                 {
1558                         /* polling may fail silently until the target has been examined */
1559                         target_poll(target);
1560                 }
1561         
1562                 target = target->next;
1563         }
1564         
1565         return ERROR_OK;
1566 }
1567
1568 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1569 {
1570         target_t *target;
1571         reg_t *reg = NULL;
1572         int count = 0;
1573         char *value;
1574         
1575         LOG_DEBUG("-");
1576         
1577         target = get_current_target(cmd_ctx);
1578         
1579         /* list all available registers for the current target */
1580         if (argc == 0)
1581         {
1582                 reg_cache_t *cache = target->reg_cache;
1583                 
1584                 count = 0;
1585                 while(cache)
1586                 {
1587                         int i;
1588                         for (i = 0; i < cache->num_regs; i++)
1589                         {
1590                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1591                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1592                                 free(value);
1593                         }
1594                         cache = cache->next;
1595                 }
1596                 
1597                 return ERROR_OK;
1598         }
1599         
1600         /* access a single register by its ordinal number */
1601         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1602         {
1603                 int num = strtoul(args[0], NULL, 0);
1604                 reg_cache_t *cache = target->reg_cache;
1605                 
1606                 count = 0;
1607                 while(cache)
1608                 {
1609                         int i;
1610                         for (i = 0; i < cache->num_regs; i++)
1611                         {
1612                                 if (count++ == num)
1613                                 {
1614                                         reg = &cache->reg_list[i];
1615                                         break;
1616                                 }
1617                         }
1618                         if (reg)
1619                                 break;
1620                         cache = cache->next;
1621                 }
1622                 
1623                 if (!reg)
1624                 {
1625                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1626                         return ERROR_OK;
1627                 }
1628         } else /* access a single register by its name */
1629         {
1630                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1631                 
1632                 if (!reg)
1633                 {
1634                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1635                         return ERROR_OK;
1636                 }
1637         }
1638
1639         /* display a register */
1640         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1641         {
1642                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1643                         reg->valid = 0;
1644                 
1645                 if (reg->valid == 0)
1646                 {
1647                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1648                         if (arch_type == NULL)
1649                         {
1650                                 LOG_ERROR("BUG: encountered unregistered arch type");
1651                                 return ERROR_OK;
1652                         }
1653                         arch_type->get(reg);
1654                 }
1655                 value = buf_to_str(reg->value, reg->size, 16);
1656                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1657                 free(value);
1658                 return ERROR_OK;
1659         }
1660         
1661         /* set register value */
1662         if (argc == 2)
1663         {
1664                 u8 *buf = malloc(CEIL(reg->size, 8));
1665                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1666
1667                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1668                 if (arch_type == NULL)
1669                 {
1670                         LOG_ERROR("BUG: encountered unregistered arch type");
1671                         return ERROR_OK;
1672                 }
1673                 
1674                 arch_type->set(reg, buf);
1675                 
1676                 value = buf_to_str(reg->value, reg->size, 16);
1677                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1678                 free(value);
1679                 
1680                 free(buf);
1681                 
1682                 return ERROR_OK;
1683         }
1684         
1685         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1686         
1687         return ERROR_OK;
1688 }
1689
1690 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1691
1692 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1693 {
1694         target_t *target = get_current_target(cmd_ctx);
1695
1696         if (argc == 0)
1697         {
1698                 target_poll(target);
1699                 target_arch_state(target);
1700         }
1701         else
1702         {
1703                 if (strcmp(args[0], "on") == 0)
1704                 {
1705                         target_continous_poll = 1;
1706                 }
1707                 else if (strcmp(args[0], "off") == 0)
1708                 {
1709                         target_continous_poll = 0;
1710                 }
1711                 else
1712                 {
1713                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1714                 }
1715         }
1716         
1717         
1718         return ERROR_OK;
1719 }
1720
1721 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1722 {
1723         int ms = 5000;
1724         
1725         if (argc > 0)
1726         {
1727                 char *end;
1728
1729                 ms = strtoul(args[0], &end, 0) * 1000;
1730                 if (*end)
1731                 {
1732                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1733                         return ERROR_OK;
1734                 }
1735         }
1736
1737         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1738 }
1739
1740 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1741 {
1742         int retval;
1743         struct timeval timeout, now;
1744         int once=1;
1745         gettimeofday(&timeout, NULL);
1746         timeval_add_time(&timeout, 0, ms * 1000);
1747         
1748         target_t *target = get_current_target(cmd_ctx);
1749         for (;;)
1750         {
1751                 if ((retval=target_poll(target))!=ERROR_OK)
1752                         return retval;
1753                 target_call_timer_callbacks_now();
1754                 if (target->state == state)
1755                 {
1756                         break;
1757                 }
1758                 if (once)
1759                 {
1760                         once=0;
1761                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1762                 }
1763                 
1764                 gettimeofday(&now, NULL);
1765                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1766                 {
1767                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1768                         break;
1769                 }
1770         }
1771         
1772         return ERROR_OK;
1773 }
1774
1775 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1776 {
1777         int retval;
1778         target_t *target = get_current_target(cmd_ctx);
1779
1780         LOG_DEBUG("-");
1781
1782         if ((retval = target_halt(target)) != ERROR_OK)
1783         {
1784                 return retval;
1785         }
1786         
1787         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1788 }
1789
1790 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1791 {
1792         target_t *target = get_current_target(cmd_ctx);
1793         
1794         LOG_USER("requesting target halt and executing a soft reset");
1795         
1796         target->type->soft_reset_halt(target);
1797         
1798         return ERROR_OK;
1799 }
1800
1801 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1802 {
1803         target_t *target = get_current_target(cmd_ctx);
1804         enum target_reset_mode reset_mode = target->reset_mode;
1805         enum target_reset_mode save = target->reset_mode;
1806         
1807         LOG_DEBUG("-");
1808         
1809         if (argc >= 1)
1810         {
1811                 if (strcmp("run", args[0]) == 0)
1812                         reset_mode = RESET_RUN;
1813                 else if (strcmp("halt", args[0]) == 0)
1814                         reset_mode = RESET_HALT;
1815                 else if (strcmp("init", args[0]) == 0)
1816                         reset_mode = RESET_INIT;
1817                 else if (strcmp("run_and_halt", args[0]) == 0)
1818                 {
1819                         reset_mode = RESET_RUN_AND_HALT;
1820                         if (argc >= 2)
1821                         {
1822                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1823                         }
1824                 }
1825                 else if (strcmp("run_and_init", args[0]) == 0)
1826                 {
1827                         reset_mode = RESET_RUN_AND_INIT;
1828                         if (argc >= 2)
1829                         {
1830                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1831                         }
1832                 }
1833                 else
1834                 {
1835                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1836                         return ERROR_OK;
1837                 }
1838         }
1839         
1840         /* temporarily modify mode of current reset target */
1841         target->reset_mode = reset_mode;
1842
1843         /* reset *all* targets */
1844         target_process_reset(cmd_ctx);
1845         
1846         /* Restore default reset mode for this target */
1847     target->reset_mode = save;
1848         
1849         return ERROR_OK;
1850 }
1851
1852 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1853 {
1854         int retval;
1855         target_t *target = get_current_target(cmd_ctx);
1856         
1857         target_invoke_script(cmd_ctx, target, "pre_resume");
1858         
1859         if (argc == 0)
1860                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1861         else if (argc == 1)
1862                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1863         else
1864         {
1865                 return ERROR_COMMAND_SYNTAX_ERROR;
1866         }
1867         
1868         return retval;
1869 }
1870
1871 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1872 {
1873         target_t *target = get_current_target(cmd_ctx);
1874         
1875         LOG_DEBUG("-");
1876         
1877         if (argc == 0)
1878                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1879
1880         if (argc == 1)
1881                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1882         
1883         return ERROR_OK;
1884 }
1885
1886 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1887 {
1888         const int line_bytecnt = 32;
1889         int count = 1;
1890         int size = 4;
1891         u32 address = 0;
1892         int line_modulo;
1893         int i;
1894
1895         char output[128];
1896         int output_len;
1897
1898         int retval;
1899
1900         u8 *buffer;
1901         target_t *target = get_current_target(cmd_ctx);
1902
1903         if (argc < 1)
1904                 return ERROR_OK;
1905
1906         if (argc == 2)
1907                 count = strtoul(args[1], NULL, 0);
1908
1909         address = strtoul(args[0], NULL, 0);
1910         
1911
1912         switch (cmd[2])
1913         {
1914                 case 'w':
1915                         size = 4; line_modulo = line_bytecnt / 4;
1916                         break;
1917                 case 'h':
1918                         size = 2; line_modulo = line_bytecnt / 2;
1919                         break;
1920                 case 'b':
1921                         size = 1; line_modulo = line_bytecnt / 1;
1922                         break;
1923                 default:
1924                         return ERROR_OK;
1925         }
1926
1927         buffer = calloc(count, size);
1928         retval  = target->type->read_memory(target, address, size, count, buffer);
1929         if (retval == ERROR_OK)
1930         {
1931                 output_len = 0;
1932         
1933                 for (i = 0; i < count; i++)
1934                 {
1935                         if (i%line_modulo == 0)
1936                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1937                         
1938                         switch (size)
1939                         {
1940                                 case 4:
1941                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1942                                         break;
1943                                 case 2:
1944                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1945                                         break;
1946                                 case 1:
1947                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1948                                         break;
1949                         }
1950         
1951                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1952                         {
1953                                 command_print(cmd_ctx, output);
1954                                 output_len = 0;
1955                         }
1956                 }
1957         }
1958
1959         free(buffer);
1960         
1961         return retval;
1962 }
1963
1964 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1965 {
1966         u32 address = 0;
1967         u32 value = 0;
1968         int count = 1;
1969         int i;
1970         int wordsize;
1971         target_t *target = get_current_target(cmd_ctx);
1972         u8 value_buf[4];
1973
1974          if ((argc < 2) || (argc > 3))
1975                 return ERROR_COMMAND_SYNTAX_ERROR;
1976
1977         address = strtoul(args[0], NULL, 0);
1978         value = strtoul(args[1], NULL, 0);
1979         if (argc == 3)
1980                 count = strtoul(args[2], NULL, 0);
1981         
1982         switch (cmd[2])
1983         {
1984                 case 'w':
1985                         wordsize = 4;
1986                         target_buffer_set_u32(target, value_buf, value);
1987                         break;
1988                 case 'h':
1989                         wordsize = 2;
1990                         target_buffer_set_u16(target, value_buf, value);
1991                         break;
1992                 case 'b':
1993                         wordsize = 1;
1994                         value_buf[0] = value;
1995                         break;
1996                 default:
1997                         return ERROR_COMMAND_SYNTAX_ERROR;
1998         }
1999         for (i=0; i<count; i++)
2000         {
2001                 int retval;
2002                 switch (wordsize)
2003                 {
2004                         case 4:
2005                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2006                                 break;
2007                         case 2:
2008                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2009                                 break;
2010                         case 1:
2011                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2012                         break;
2013                         default:
2014                         return ERROR_OK;
2015                 }
2016                 if (retval!=ERROR_OK)
2017                 {
2018                         return retval;
2019                 }
2020         }
2021
2022         return ERROR_OK;
2023
2024 }
2025
2026 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2027 {
2028         u8 *buffer;
2029         u32 buf_cnt;
2030         u32 image_size;
2031         int i;
2032         int retval;
2033
2034         image_t image;  
2035         
2036         duration_t duration;
2037         char *duration_text;
2038         
2039         target_t *target = get_current_target(cmd_ctx);
2040
2041         if (argc < 1)
2042         {
2043                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2044                 return ERROR_OK;
2045         }
2046         
2047         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2048         if (argc >= 2)
2049         {
2050                 image.base_address_set = 1;
2051                 image.base_address = strtoul(args[1], NULL, 0);
2052         }
2053         else
2054         {
2055                 image.base_address_set = 0;
2056         }
2057         
2058         image.start_address_set = 0;
2059
2060         duration_start_measure(&duration);
2061         
2062         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2063         {
2064                 return ERROR_OK;
2065         }
2066         
2067         image_size = 0x0;
2068         retval = ERROR_OK;
2069         for (i = 0; i < image.num_sections; i++)
2070         {
2071                 buffer = malloc(image.sections[i].size);
2072                 if (buffer == NULL)
2073                 {
2074                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2075                         break;
2076                 }
2077                 
2078                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2079                 {
2080                         free(buffer);
2081                         break;
2082                 }
2083                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2084                 {
2085                         free(buffer);
2086                         break;
2087                 }
2088                 image_size += buf_cnt;
2089                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2090                 
2091                 free(buffer);
2092         }
2093
2094         duration_stop_measure(&duration, &duration_text);
2095         if (retval==ERROR_OK)
2096         {
2097                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2098         }
2099         free(duration_text);
2100         
2101         image_close(&image);
2102
2103         return retval;
2104
2105 }
2106
2107 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2108 {
2109         fileio_t fileio;
2110         
2111         u32 address;
2112         u32 size;
2113         u8 buffer[560];
2114         int retval=ERROR_OK;
2115         
2116         duration_t duration;
2117         char *duration_text;
2118         
2119         target_t *target = get_current_target(cmd_ctx);
2120
2121         if (argc != 3)
2122         {
2123                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2124                 return ERROR_OK;
2125         }
2126
2127         address = strtoul(args[1], NULL, 0);
2128         size = strtoul(args[2], NULL, 0);
2129
2130         if ((address & 3) || (size & 3))
2131         {
2132                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2133                 return ERROR_OK;
2134         }
2135         
2136         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2137         {
2138                 return ERROR_OK;
2139         }
2140         
2141         duration_start_measure(&duration);
2142         
2143         while (size > 0)
2144         {
2145                 u32 size_written;
2146                 u32 this_run_size = (size > 560) ? 560 : size;
2147                 
2148                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2149                 if (retval != ERROR_OK)
2150                 {
2151                         break;
2152                 }
2153                 
2154                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2155                 if (retval != ERROR_OK)
2156                 {
2157                         break;
2158                 }
2159                 
2160                 size -= this_run_size;
2161                 address += this_run_size;
2162         }
2163
2164         fileio_close(&fileio);
2165
2166         duration_stop_measure(&duration, &duration_text);
2167         if (retval==ERROR_OK)
2168         {
2169                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2170         }
2171         free(duration_text);
2172         
2173         return ERROR_OK;
2174 }
2175
2176 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2177 {
2178         u8 *buffer;
2179         u32 buf_cnt;
2180         u32 image_size;
2181         int i;
2182         int retval;
2183         u32 checksum = 0;
2184         u32 mem_checksum = 0;
2185
2186         image_t image;  
2187         
2188         duration_t duration;
2189         char *duration_text;
2190         
2191         target_t *target = get_current_target(cmd_ctx);
2192         
2193         if (argc < 1)
2194         {
2195                 return ERROR_COMMAND_SYNTAX_ERROR;
2196         }
2197         
2198         if (!target)
2199         {
2200                 LOG_ERROR("no target selected");
2201                 return ERROR_FAIL;
2202         }
2203         
2204         duration_start_measure(&duration);
2205         
2206         if (argc >= 2)
2207         {
2208                 image.base_address_set = 1;
2209                 image.base_address = strtoul(args[1], NULL, 0);
2210         }
2211         else
2212         {
2213                 image.base_address_set = 0;
2214                 image.base_address = 0x0;
2215         }
2216
2217         image.start_address_set = 0;
2218
2219         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2220         {
2221                 return retval;
2222         }
2223         
2224         image_size = 0x0;
2225         retval=ERROR_OK;
2226         for (i = 0; i < image.num_sections; i++)
2227         {
2228                 buffer = malloc(image.sections[i].size);
2229                 if (buffer == NULL)
2230                 {
2231                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2232                         break;
2233                 }
2234                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2235                 {
2236                         free(buffer);
2237                         break;
2238                 }
2239                 
2240                 /* calculate checksum of image */
2241                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2242                 
2243                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2244                 if( retval != ERROR_OK )
2245                 {
2246                         free(buffer);
2247                         break;
2248                 }
2249                 
2250                 if( checksum != mem_checksum )
2251                 {
2252                         /* failed crc checksum, fall back to a binary compare */
2253                         u8 *data;
2254                         
2255                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2256                         
2257                         data = (u8*)malloc(buf_cnt);
2258                         
2259                         /* Can we use 32bit word accesses? */
2260                         int size = 1;
2261                         int count = buf_cnt;
2262                         if ((count % 4) == 0)
2263                         {
2264                                 size *= 4;
2265                                 count /= 4;
2266                         }
2267                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2268                         if (retval == ERROR_OK)
2269                         {
2270                                 int t;
2271                                 for (t = 0; t < buf_cnt; t++)
2272                                 {
2273                                         if (data[t] != buffer[t])
2274                                         {
2275                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2276                                                 free(data);
2277                                                 free(buffer);
2278                                                 retval=ERROR_FAIL;
2279                                                 goto done;
2280                                         }
2281                                 }
2282                         }
2283                         
2284                         free(data);
2285                 }
2286                 
2287                 free(buffer);
2288                 image_size += buf_cnt;
2289         }
2290 done:   
2291         duration_stop_measure(&duration, &duration_text);
2292         if (retval==ERROR_OK)
2293         {
2294                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2295         }
2296         free(duration_text);
2297         
2298         image_close(&image);
2299         
2300         return retval;
2301 }
2302
2303 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2304 {
2305         int retval;
2306         target_t *target = get_current_target(cmd_ctx);
2307
2308         if (argc == 0)
2309         {
2310                 breakpoint_t *breakpoint = target->breakpoints;
2311
2312                 while (breakpoint)
2313                 {
2314                         if (breakpoint->type == BKPT_SOFT)
2315                         {
2316                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2317                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2318                                 free(buf);
2319                         }
2320                         else
2321                         {
2322                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2323                         }
2324                         breakpoint = breakpoint->next;
2325                 }
2326         }
2327         else if (argc >= 2)
2328         {
2329                 int hw = BKPT_SOFT;
2330                 u32 length = 0;
2331
2332                 length = strtoul(args[1], NULL, 0);
2333                 
2334                 if (argc >= 3)
2335                         if (strcmp(args[2], "hw") == 0)
2336                                 hw = BKPT_HARD;
2337
2338                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2339                 {
2340                         LOG_ERROR("Failure setting breakpoints");
2341                 }
2342                 else
2343                 {
2344                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2345                 }
2346         }
2347         else
2348         {
2349                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2350         }
2351
2352         return ERROR_OK;
2353 }
2354
2355 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2356 {
2357         target_t *target = get_current_target(cmd_ctx);
2358
2359         if (argc > 0)
2360                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2361
2362         return ERROR_OK;
2363 }
2364
2365 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2366 {
2367         target_t *target = get_current_target(cmd_ctx);
2368         int retval;
2369
2370         if (argc == 0)
2371         {
2372                 watchpoint_t *watchpoint = target->watchpoints;
2373
2374                 while (watchpoint)
2375                 {
2376                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2377                         watchpoint = watchpoint->next;
2378                 }
2379         } 
2380         else if (argc >= 2)
2381         {
2382                 enum watchpoint_rw type = WPT_ACCESS;
2383                 u32 data_value = 0x0;
2384                 u32 data_mask = 0xffffffff;
2385                 
2386                 if (argc >= 3)
2387                 {
2388                         switch(args[2][0])
2389                         {
2390                                 case 'r':
2391                                         type = WPT_READ;
2392                                         break;
2393                                 case 'w':
2394                                         type = WPT_WRITE;
2395                                         break;
2396                                 case 'a':
2397                                         type = WPT_ACCESS;
2398                                         break;
2399                                 default:
2400                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2401                                         return ERROR_OK;
2402                         }
2403                 }
2404                 if (argc >= 4)
2405                 {
2406                         data_value = strtoul(args[3], NULL, 0);
2407                 }
2408                 if (argc >= 5)
2409                 {
2410                         data_mask = strtoul(args[4], NULL, 0);
2411                 }
2412                 
2413                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2414                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2415                 {
2416                         LOG_ERROR("Failure setting breakpoints");
2417                 }
2418         }
2419         else
2420         {
2421                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2422         }
2423                 
2424         return ERROR_OK;
2425 }
2426
2427 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2428 {
2429         target_t *target = get_current_target(cmd_ctx);
2430
2431         if (argc > 0)
2432                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2433         
2434         return ERROR_OK;
2435 }
2436
2437 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2438 {
2439         int retval;
2440         target_t *target = get_current_target(cmd_ctx);
2441         u32 va;
2442         u32 pa;
2443
2444         if (argc != 1)
2445         {
2446                 return ERROR_COMMAND_SYNTAX_ERROR;
2447         }
2448         va = strtoul(args[0], NULL, 0);
2449
2450         retval = target->type->virt2phys(target, va, &pa);
2451         if (retval == ERROR_OK)
2452         {
2453                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2454         }
2455         else
2456         {
2457                 /* lower levels will have logged a detailed error which is 
2458                  * forwarded to telnet/GDB session.  
2459                  */
2460         }
2461         return retval;
2462 }
2463 static void writeLong(FILE *f, int l)
2464 {
2465         int i;
2466         for (i=0; i<4; i++)
2467         {
2468                 char c=(l>>(i*8))&0xff;
2469                 fwrite(&c, 1, 1, f); 
2470         }
2471         
2472 }
2473 static void writeString(FILE *f, char *s)
2474 {
2475         fwrite(s, 1, strlen(s), f); 
2476 }
2477
2478
2479
2480 // Dump a gmon.out histogram file.
2481 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2482 {
2483         int i;
2484         FILE *f=fopen(filename, "w");
2485         if (f==NULL)
2486                 return;
2487         fwrite("gmon", 1, 4, f);
2488         writeLong(f, 0x00000001); // Version
2489         writeLong(f, 0); // padding
2490         writeLong(f, 0); // padding
2491         writeLong(f, 0); // padding
2492                                 
2493         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2494
2495         // figure out bucket size
2496         u32 min=samples[0];
2497         u32 max=samples[0];
2498         for (i=0; i<sampleNum; i++)
2499         {
2500                 if (min>samples[i])
2501                 {
2502                         min=samples[i];
2503                 }
2504                 if (max<samples[i])
2505                 {
2506                         max=samples[i];
2507                 }
2508         }
2509
2510         int addressSpace=(max-min+1);
2511         
2512         static int const maxBuckets=256*1024; // maximum buckets.
2513         int length=addressSpace;
2514         if (length > maxBuckets)
2515         {
2516                 length=maxBuckets; 
2517         }
2518         int *buckets=malloc(sizeof(int)*length);
2519         if (buckets==NULL)
2520         {
2521                 fclose(f);
2522                 return;
2523         }
2524         memset(buckets, 0, sizeof(int)*length);
2525         for (i=0; i<sampleNum;i++)
2526         {
2527                 u32 address=samples[i];
2528                 long long a=address-min;
2529                 long long b=length-1;
2530                 long long c=addressSpace-1;
2531                 int index=(a*b)/c; // danger!!!! int32 overflows 
2532                 buckets[index]++;
2533         }
2534         
2535         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2536         writeLong(f, min);                                      // low_pc
2537         writeLong(f, max);              // high_pc
2538         writeLong(f, length);           // # of samples
2539         writeLong(f, 64000000);                         // 64MHz
2540         writeString(f, "seconds");
2541         for (i=0; i<(15-strlen("seconds")); i++)
2542         {
2543                 fwrite("", 1, 1, f);  // padding
2544         }
2545         writeString(f, "s");
2546                 
2547 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2548         
2549         char *data=malloc(2*length);
2550         if (data!=NULL)
2551         {
2552                 for (i=0; i<length;i++)
2553                 {
2554                         int val;
2555                         val=buckets[i];
2556                         if (val>65535)
2557                         {
2558                                 val=65535;
2559                         }
2560                         data[i*2]=val&0xff;
2561                         data[i*2+1]=(val>>8)&0xff;
2562                 }
2563                 free(buckets);
2564                 fwrite(data, 1, length*2, f);
2565                 free(data);
2566         } else
2567         {
2568                 free(buckets);
2569         }
2570
2571         fclose(f);
2572 }
2573
2574 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2575 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2576 {
2577         target_t *target = get_current_target(cmd_ctx);
2578         struct timeval timeout, now;
2579         
2580         gettimeofday(&timeout, NULL);
2581         if (argc!=2)
2582         {
2583                 return ERROR_COMMAND_SYNTAX_ERROR;
2584         }
2585         char *end;
2586         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2587         if (*end) 
2588         {
2589                 return ERROR_OK;
2590         }
2591         
2592         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2593
2594         static const int maxSample=10000;
2595         u32 *samples=malloc(sizeof(u32)*maxSample);
2596         if (samples==NULL)
2597                 return ERROR_OK;
2598         
2599         int numSamples=0;
2600         int retval=ERROR_OK;
2601         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2602         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2603         
2604         for (;;)
2605         {
2606                 target_poll(target);
2607                 if (target->state == TARGET_HALTED)
2608                 {
2609                         u32 t=*((u32 *)reg->value);
2610                         samples[numSamples++]=t;
2611                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2612                         target_poll(target);
2613                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2614                 } else if (target->state == TARGET_RUNNING)
2615                 {
2616                         // We want to quickly sample the PC.
2617                         target_halt(target);
2618                 } else
2619                 {
2620                         command_print(cmd_ctx, "Target not halted or running");
2621                         retval=ERROR_OK;
2622                         break;
2623                 }
2624                 if (retval!=ERROR_OK)
2625                 {
2626                         break;
2627                 }
2628                 
2629                 gettimeofday(&now, NULL);
2630                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2631                 {
2632                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2633                         target_poll(target);
2634                         if (target->state == TARGET_HALTED)
2635                         {
2636                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2637                         }
2638                         target_poll(target);
2639                         writeGmon(samples, numSamples, args[1]);
2640                         command_print(cmd_ctx, "Wrote %s", args[1]);
2641                         break;
2642                 }
2643         }
2644         free(samples);
2645         
2646         return ERROR_OK;
2647 }
2648
2649 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2650 {
2651         char *namebuf;
2652         Jim_Obj *nameObjPtr, *valObjPtr;
2653         int result;
2654
2655         namebuf = alloc_printf("%s(%d)", varname, idx);
2656         if (!namebuf)
2657                 return JIM_ERR;
2658         
2659         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2660         valObjPtr = Jim_NewIntObj(interp, val);
2661         if (!nameObjPtr || !valObjPtr)
2662         {
2663                 free(namebuf);
2664                 return JIM_ERR;
2665         }
2666
2667         Jim_IncrRefCount(nameObjPtr);
2668         Jim_IncrRefCount(valObjPtr);
2669         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2670         Jim_DecrRefCount(interp, nameObjPtr);
2671         Jim_DecrRefCount(interp, valObjPtr);
2672         free(namebuf);
2673         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2674         return result;
2675 }
2676
2677 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2678 {
2679         target_t *target;
2680         command_context_t *context;
2681         long l;
2682         u32 width;
2683         u32 len;
2684         u32 addr;
2685         u32 count;
2686         u32 v;
2687         const char *varname;
2688         u8 buffer[4096];
2689         int  i, n, e, retval;
2690
2691         /* argv[1] = name of array to receive the data
2692          * argv[2] = desired width
2693          * argv[3] = memory address 
2694          * argv[4] = count of times to read
2695          */
2696         if (argc != 5) {
2697                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2698                 return JIM_ERR;
2699         }
2700         varname = Jim_GetString(argv[1], &len);
2701         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2702
2703         e = Jim_GetLong(interp, argv[2], &l);
2704         width = l;
2705         if (e != JIM_OK) {
2706                 return e;
2707         }
2708         
2709         e = Jim_GetLong(interp, argv[3], &l);
2710         addr = l;
2711         if (e != JIM_OK) {
2712                 return e;
2713         }
2714         e = Jim_GetLong(interp, argv[4], &l);
2715         len = l;
2716         if (e != JIM_OK) {
2717                 return e;
2718         }
2719         switch (width) {
2720                 case 8:
2721                         width = 1;
2722                         break;
2723                 case 16:
2724                         width = 2;
2725                         break;
2726                 case 32:
2727                         width = 4;
2728                         break;
2729                 default:
2730                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2731                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2732                         return JIM_ERR;
2733         }
2734         if (len == 0) {
2735                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2736                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2737                 return JIM_ERR;
2738         }
2739         if ((addr + (len * width)) < addr) {
2740                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2741                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2742                 return JIM_ERR;
2743         }
2744         /* absurd transfer size? */
2745         if (len > 65536) {
2746                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2747                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2748                 return JIM_ERR;
2749         }               
2750                 
2751         if ((width == 1) ||
2752                 ((width == 2) && ((addr & 1) == 0)) ||
2753                 ((width == 4) && ((addr & 3) == 0))) {
2754                 /* all is well */
2755         } else {
2756                 char buf[100];
2757                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2758                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width); 
2759                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2760                 return JIM_ERR;
2761         }
2762
2763         context = Jim_GetAssocData(interp, "context");
2764         if (context == NULL)
2765         {
2766                 LOG_ERROR("mem2array: no command context");
2767                 return JIM_ERR;
2768         }
2769         target = get_current_target(context);
2770         if (target == NULL)
2771         {
2772                 LOG_ERROR("mem2array: no current target");
2773                 return JIM_ERR;
2774         }
2775         
2776         /* Transfer loop */
2777
2778         /* index counter */
2779         n = 0;
2780         /* assume ok */
2781         e = JIM_OK;
2782         while (len) {
2783                 /* Slurp... in buffer size chunks */
2784                 
2785                 count = len; /* in objects.. */
2786                 if (count > (sizeof(buffer)/width)) {
2787                         count = (sizeof(buffer)/width);
2788                 }
2789                 
2790                 retval = target->type->read_memory( target, addr, width, count, buffer );
2791                 if (retval != ERROR_OK) {
2792                         /* BOO !*/
2793                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2794                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2795                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2796                         e = JIM_ERR;
2797                         len = 0;
2798                 } else {
2799                         v = 0; /* shut up gcc */
2800                         for (i = 0 ;i < count ;i++, n++) {
2801                                 switch (width) {
2802                                         case 4:
2803                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2804                                                 break;
2805                                         case 2:
2806                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2807                                                 break;
2808                                         case 1:
2809                                                 v = buffer[i] & 0x0ff;
2810                                                 break;
2811                                 }
2812                                 new_int_array_element(interp, varname, n, v);
2813                         }
2814                         len -= count;
2815                 }
2816         }
2817         
2818         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2819
2820         return JIM_OK;
2821 }
2822
2823 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2824 {
2825         char *namebuf;
2826         Jim_Obj *nameObjPtr, *valObjPtr;
2827         int result;
2828         long l;
2829
2830         namebuf = alloc_printf("%s(%d)", varname, idx);
2831         if (!namebuf)
2832                 return JIM_ERR;
2833
2834         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2835         if (!nameObjPtr)
2836         {
2837                 free(namebuf);
2838                 return JIM_ERR;
2839         }
2840
2841         Jim_IncrRefCount(nameObjPtr);
2842         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2843         Jim_DecrRefCount(interp, nameObjPtr);
2844         free(namebuf);
2845         if (valObjPtr == NULL)
2846                 return JIM_ERR;
2847
2848         result = Jim_GetLong(interp, valObjPtr, &l);
2849         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2850         *val = l;
2851         return result;
2852 }
2853
2854 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2855 {
2856         target_t *target;
2857         command_context_t *context;
2858         long l;
2859         u32 width;
2860         u32 len;
2861         u32 addr;
2862         u32 count;
2863         u32 v;
2864         const char *varname;
2865         u8 buffer[4096];
2866         int  i, n, e, retval;
2867
2868         /* argv[1] = name of array to get the data
2869          * argv[2] = desired width
2870          * argv[3] = memory address 
2871          * argv[4] = count to write
2872          */
2873         if (argc != 5) {
2874                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2875                 return JIM_ERR;
2876         }
2877         varname = Jim_GetString(argv[1], &len);
2878         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2879
2880         e = Jim_GetLong(interp, argv[2], &l);
2881         width = l;
2882         if (e != JIM_OK) {
2883                 return e;
2884         }
2885         
2886         e = Jim_GetLong(interp, argv[3], &l);
2887         addr = l;
2888         if (e != JIM_OK) {
2889                 return e;
2890         }
2891         e = Jim_GetLong(interp, argv[4], &l);
2892         len = l;
2893         if (e != JIM_OK) {
2894                 return e;
2895         }
2896         switch (width) {
2897                 case 8:
2898                         width = 1;
2899                         break;
2900                 case 16:
2901                         width = 2;
2902                         break;
2903                 case 32:
2904                         width = 4;
2905                         break;
2906                 default:
2907                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2908                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2909                         return JIM_ERR;
2910         }
2911         if (len == 0) {
2912                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2913                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2914                 return JIM_ERR;
2915         }
2916         if ((addr + (len * width)) < addr) {
2917                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2918                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2919                 return JIM_ERR;
2920         }
2921         /* absurd transfer size? */
2922         if (len > 65536) {
2923                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2924                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2925                 return JIM_ERR;
2926         }               
2927                 
2928         if ((width == 1) ||
2929                 ((width == 2) && ((addr & 1) == 0)) ||
2930                 ((width == 4) && ((addr & 3) == 0))) {
2931                 /* all is well */
2932         } else {
2933                 char buf[100];
2934                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2935                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width); 
2936                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2937                 return JIM_ERR;
2938         }
2939
2940         context = Jim_GetAssocData(interp, "context");
2941         if (context == NULL)
2942         {
2943                 LOG_ERROR("array2mem: no command context");
2944                 return JIM_ERR;
2945         }
2946         target = get_current_target(context);
2947         if (target == NULL)
2948         {
2949                 LOG_ERROR("array2mem: no current target");
2950                 return JIM_ERR;
2951         }
2952         
2953         /* Transfer loop */
2954
2955         /* index counter */
2956         n = 0;
2957         /* assume ok */
2958         e = JIM_OK;
2959         while (len) {
2960                 /* Slurp... in buffer size chunks */
2961                 
2962                 count = len; /* in objects.. */
2963                 if (count > (sizeof(buffer)/width)) {
2964                         count = (sizeof(buffer)/width);
2965                 }
2966
2967                 v = 0; /* shut up gcc */
2968                 for (i = 0 ;i < count ;i++, n++) {
2969                         get_int_array_element(interp, varname, n, &v);
2970                         switch (width) {
2971                         case 4:
2972                                 target_buffer_set_u32(target, &buffer[i*width], v);
2973                                 break;
2974                         case 2:
2975                                 target_buffer_set_u16(target, &buffer[i*width], v);
2976                                 break;
2977                         case 1:
2978                                 buffer[i] = v & 0x0ff;
2979                                 break;
2980                         }
2981                 }
2982                 len -= count;
2983
2984                 retval = target->type->write_memory(target, addr, width, count, buffer);
2985                 if (retval != ERROR_OK) {
2986                         /* BOO !*/
2987                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2988                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2989                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2990                         e = JIM_ERR;
2991                         len = 0;
2992                 }
2993         }
2994         
2995         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2996
2997         return JIM_OK;
2998 }