2 FreeRTOS V8.2.3 - Copyright (C) 2015 Real Time Engineers Ltd.
\r
5 VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
\r
7 This file is part of the FreeRTOS distribution.
\r
9 FreeRTOS is free software; you can redistribute it and/or modify it under
\r
10 the terms of the GNU General Public License (version 2) as published by the
\r
11 Free Software Foundation >>>> AND MODIFIED BY <<<< the FreeRTOS exception.
\r
13 ***************************************************************************
\r
14 >>! NOTE: The modification to the GPL is included to allow you to !<<
\r
15 >>! distribute a combined work that includes FreeRTOS without being !<<
\r
16 >>! obliged to provide the source code for proprietary components !<<
\r
17 >>! outside of the FreeRTOS kernel. !<<
\r
18 ***************************************************************************
\r
20 FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
\r
21 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
\r
22 FOR A PARTICULAR PURPOSE. Full license text is available on the following
\r
23 link: http://www.freertos.org/a00114.html
\r
25 ***************************************************************************
\r
27 * FreeRTOS provides completely free yet professionally developed, *
\r
28 * robust, strictly quality controlled, supported, and cross *
\r
29 * platform software that is more than just the market leader, it *
\r
30 * is the industry's de facto standard. *
\r
32 * Help yourself get started quickly while simultaneously helping *
\r
33 * to support the FreeRTOS project by purchasing a FreeRTOS *
\r
34 * tutorial book, reference manual, or both: *
\r
35 * http://www.FreeRTOS.org/Documentation *
\r
37 ***************************************************************************
\r
39 http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
\r
40 the FAQ page "My application does not run, what could be wrong?". Have you
\r
41 defined configASSERT()?
\r
43 http://www.FreeRTOS.org/support - In return for receiving this top quality
\r
44 embedded software for free we request you assist our global community by
\r
45 participating in the support forum.
\r
47 http://www.FreeRTOS.org/training - Investing in training allows your team to
\r
48 be as productive as possible as early as possible. Now you can receive
\r
49 FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
\r
50 Ltd, and the world's leading authority on the world's leading RTOS.
\r
52 http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
\r
53 including FreeRTOS+Trace - an indispensable productivity tool, a DOS
\r
54 compatible FAT file system, and our tiny thread aware UDP/IP stack.
\r
56 http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
\r
57 Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
\r
59 http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
\r
60 Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
\r
61 licenses offer ticketed support, indemnification and commercial middleware.
\r
63 http://www.SafeRTOS.com - High Integrity Systems also provide a safety
\r
64 engineered and independently SIL3 certified version for use in safety and
\r
65 mission critical applications that require provable dependability.
\r
70 /* FreeRTOS includes. */
\r
71 #include "FreeRTOS.h"
\r
74 /* SiLabs library includes. */
\r
77 #include "em_burtc.h"
\r
82 #define lpINCLUDE_TEST_TIMER 1
\r
84 /* SEE THE COMMENTS ABOVE THE DEFINITION OF configCREATE_LOW_POWER_DEMO IN
\r
86 This file contains functions that will override the default implementations
\r
87 in the RTOS port layer. Therefore only build this file if the low power demo
\r
89 #if( configCREATE_LOW_POWER_DEMO == 2 )
\r
91 #define mainTIMER_FREQUENCY_HZ ( 4096UL ) /* 32768 clock divided by 8. */
\r
94 * The low power demo does not use the SysTick, so override the
\r
95 * vPortSetupTickInterrupt() function with an implementation that configures
\r
96 * a low power clock source. NOTE: This function name must not be changed as
\r
97 * it is called from the RTOS portable layer.
\r
99 void vPortSetupTimerInterrupt( void );
\r
102 * Override the default definition of vPortSuppressTicksAndSleep() that is
\r
103 * weakly defined in the FreeRTOS Cortex-M port layer with a version that
\r
104 * manages the RTC clock, as the tick is generated from the low power RTC
\r
105 * and not the SysTick as would normally be the case on a Cortex-M.
\r
107 void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
\r
109 /* If lpINCLUDE_TEST_TIMER is defined then the BURTC is used to generate
\r
110 interrupts that will wake the processor prior to the expected idle time
\r
111 completing. The timer interval can be altered to test different
\r
113 #if( lpINCLUDE_TEST_TIMER == 1 )
\r
114 static void prvSetupTestTimer( void );
\r
117 /*-----------------------------------------------------------*/
\r
119 /* Calculate how many clock increments make up a single tick period. */
\r
120 static const uint32_t ulReloadValueForOneTick = ( mainTIMER_FREQUENCY_HZ / configTICK_RATE_HZ );
\r
122 /* Will hold the maximum number of ticks that can be suppressed. */
\r
123 static uint32_t xMaximumPossibleSuppressedTicks = 0;
\r
125 /* Flag set from the tick interrupt to allow the sleep processing to know if
\r
126 sleep mode was exited because of a timer interrupt or a different interrupt. */
\r
127 static volatile uint32_t ulTickFlag = pdFALSE;
\r
129 /* As the clock is only 32KHz, it is likely a value of 1 will be enough. */
\r
130 static const uint32_t ulStoppedTimerCompensation = 0UL;
\r
132 /*-----------------------------------------------------------*/
\r
134 void vPortSetupTimerInterrupt( void )
\r
136 RTC_Init_TypeDef xRTCInitStruct;
\r
137 const uint32_t ulMAX24BitValue = 0xffffffUL;
\r
139 xMaximumPossibleSuppressedTicks = ulMAX24BitValue / ulReloadValueForOneTick;
\r
141 /* Configure the RTC to generate the RTOS tick interrupt. */
\r
143 /* LXFO setup. For rev D use 70% boost */
\r
144 CMU->CTRL = ( CMU->CTRL & ~_CMU_CTRL_LFXOBOOST_MASK ) | CMU_CTRL_LFXOBOOST_70PCENT;
\r
145 #if defined( EMU_AUXCTRL_REDLFXOBOOST )
\r
146 EMU->AUXCTRL = (EMU->AUXCTRL & ~_EMU_AUXCTRL_REDLFXOBOOST_MASK) | EMU_AUXCTRL_REDLFXOBOOST;
\r
149 /* Ensure LE modules are accessible. */
\r
150 CMU_ClockEnable( cmuClock_CORELE, true );
\r
153 CMU_ClockSelectSet( cmuClock_LFA, cmuSelect_LFXO );
\r
155 /* Use 8x divider to reduce energy. */
\r
156 CMU_ClockDivSet( cmuClock_RTC, cmuClkDiv_8 );
\r
158 /* Enable clock to the RTC module. */
\r
159 CMU_ClockEnable( cmuClock_RTC, true );
\r
160 xRTCInitStruct.enable = false;
\r
161 xRTCInitStruct.debugRun = false;
\r
162 xRTCInitStruct.comp0Top = true;
\r
163 RTC_Init( &xRTCInitStruct );
\r
165 /* Disable RTC0 interrupt. */
\r
166 RTC_IntDisable( RTC_IFC_COMP0 );
\r
168 /* The tick interrupt must be set to the lowest priority possible. */
\r
169 NVIC_SetPriority( RTC_IRQn, configLIBRARY_LOWEST_INTERRUPT_PRIORITY );
\r
170 NVIC_ClearPendingIRQ( RTC_IRQn );
\r
171 NVIC_EnableIRQ( RTC_IRQn );
\r
172 RTC_CompareSet( 0, ulReloadValueForOneTick );
\r
173 RTC_IntClear( RTC_IFC_COMP0 );
\r
174 RTC_IntEnable( RTC_IF_COMP0 );
\r
175 RTC_Enable( true );
\r
177 /* If lpINCLUDE_TEST_TIMER is defined then the BURTC is used to generate
\r
178 interrupts that will wake the processor prior to the expected idle time
\r
179 completing. The timer interval can be altered to test different
\r
181 #if( lpINCLUDE_TEST_TIMER == 1 )
\r
182 prvSetupTestTimer();
\r
185 /*-----------------------------------------------------------*/
\r
187 void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime )
\r
189 uint32_t ulReloadValue, ulCompleteTickPeriods, ulCountBeforeSleep, ulCountAfterSleep;
\r
190 eSleepModeStatus eSleepAction;
\r
191 TickType_t xModifiableIdleTime;
\r
193 /* THIS FUNCTION IS CALLED WITH THE SCHEDULER SUSPENDED. */
\r
195 /* Make sure the RTC reload value does not overflow the counter. */
\r
196 if( xExpectedIdleTime > xMaximumPossibleSuppressedTicks )
\r
198 xExpectedIdleTime = xMaximumPossibleSuppressedTicks;
\r
201 /* Calculate the reload value required to wait xExpectedIdleTime tick
\r
203 ulReloadValue = ulReloadValueForOneTick * xExpectedIdleTime;
\r
204 if( ulReloadValue > ulStoppedTimerCompensation )
\r
206 /* Compensate for the fact that the RTC is going to be stopped
\r
208 ulReloadValue -= ulStoppedTimerCompensation;
\r
211 /* Stop the RTC momentarily. The time the RTC is stopped for is accounted
\r
212 for as best it can be, but using the tickless mode will inevitably result
\r
213 in some tiny drift of the time maintained by the kernel with respect to
\r
214 calendar time. The count is latched before stopping the timer as stopping
\r
215 the timer appears to clear the count. */
\r
216 ulCountBeforeSleep = RTC_CounterGet();
\r
217 RTC_Enable( false );
\r
219 /* If this function is re-entered before one complete tick period then the
\r
220 reload value might be to take into account a partial tick, but just reading
\r
221 the count assumes it is counting up to a full ticks worth - so add in the
\r
222 different if any. */
\r
223 ulCountBeforeSleep += ( ulReloadValueForOneTick - RTC_CompareGet( 0 ) );
\r
225 /* Enter a critical section but don't use the taskENTER_CRITICAL() method as
\r
226 that will mask interrupts that should exit sleep mode. */
\r
228 __asm volatile( "dsb" );
\r
229 __asm volatile( "isb" );
\r
231 /* The tick flag is set to false before sleeping. If it is true when sleep
\r
232 mode is exited then sleep mode was probably exited because the tick was
\r
233 suppressed for the entire xExpectedIdleTime period. */
\r
234 ulTickFlag = pdFALSE;
\r
236 /* If a context switch is pending then abandon the low power entry as the
\r
237 context switch might have been pended by an external interrupt that requires
\r
239 eSleepAction = eTaskConfirmSleepModeStatus();
\r
240 if( eSleepAction == eAbortSleep )
\r
242 /* Restart tick and count up to whatever was left of the current time
\r
244 RTC_CompareSet( 0, ( ulReloadValueForOneTick - ulCountBeforeSleep ) + ulStoppedTimerCompensation );
\r
245 RTC_Enable( true );
\r
247 /* Re-enable interrupts - see comments above the cpsid instruction()
\r
253 /* Adjust the reload value to take into account that the current time
\r
254 slice is already partially complete. */
\r
255 ulReloadValue -= ulCountBeforeSleep;
\r
256 RTC_CompareSet( 0, ulReloadValue );
\r
258 /* Restart the RTC. */
\r
259 RTC_Enable( true );
\r
261 /* Allow the application to define some pre-sleep processing. */
\r
262 xModifiableIdleTime = xExpectedIdleTime;
\r
263 configPRE_SLEEP_PROCESSING( xModifiableIdleTime );
\r
265 /* xExpectedIdleTime being set to 0 by configPRE_SLEEP_PROCESSING()
\r
266 means the application defined code has already executed the WAIT
\r
268 if( xModifiableIdleTime > 0 )
\r
270 __asm volatile( "dsb" );
\r
272 __asm volatile( "isb" );
\r
275 /* Allow the application to define some post sleep processing. */
\r
276 configPOST_SLEEP_PROCESSING( xModifiableIdleTime );
\r
278 /* Stop RTC. Again, the time the SysTick is stopped for is accounted
\r
279 for as best it can be, but using the tickless mode will inevitably
\r
280 result in some tiny drift of the time maintained by the kernel with
\r
281 respect to calendar time. The count value is latched before stopping
\r
282 the timer as stopping the timer appears to clear the count. */
\r
283 ulCountAfterSleep = RTC_CounterGet();
\r
284 RTC_Enable( false );
\r
286 /* Re-enable interrupts - see comments above the cpsid instruction()
\r
289 __asm volatile( "dsb" );
\r
290 __asm volatile( "isb" );
\r
292 if( ulTickFlag != pdFALSE )
\r
294 /* The tick interrupt has already executed, although because this
\r
295 function is called with the scheduler suspended the actual tick
\r
296 processing will not occur until after this function has exited.
\r
297 Reset the reload value with whatever remains of this tick period. */
\r
298 ulReloadValue = ulReloadValueForOneTick - ulCountAfterSleep;
\r
299 RTC_CompareSet( 0, ulReloadValue );
\r
301 /* The tick interrupt handler will already have pended the tick
\r
302 processing in the kernel. As the pending tick will be processed as
\r
303 soon as this function exits, the tick value maintained by the tick
\r
304 is stepped forward by one less than the time spent sleeping. The
\r
305 actual stepping of the tick appears later in this function. */
\r
306 ulCompleteTickPeriods = xExpectedIdleTime - 1UL;
\r
310 /* Something other than the tick interrupt ended the sleep. How
\r
311 many complete tick periods passed while the processor was
\r
312 sleeping? Add back in the adjustment that was made to the reload
\r
313 value to account for the fact that a time slice was part way through
\r
314 when this function was called. */
\r
315 ulCountAfterSleep += ulCountBeforeSleep;
\r
316 ulCompleteTickPeriods = ulCountAfterSleep / ulReloadValueForOneTick;
\r
318 /* The reload value is set to whatever fraction of a single tick
\r
320 ulCountAfterSleep -= ( ulCompleteTickPeriods * ulReloadValueForOneTick );
\r
321 ulReloadValue = ulReloadValueForOneTick - ulCountAfterSleep;
\r
323 if( ulReloadValue == 0 )
\r
325 /* There is no fraction remaining. */
\r
326 ulReloadValue = ulReloadValueForOneTick;
\r
327 ulCompleteTickPeriods++;
\r
330 RTC_CompareSet( 0, ulReloadValue );
\r
333 /* Restart the RTC so it runs up to the alarm value. The alarm value
\r
334 will get set to the value required to generate exactly one tick period
\r
335 the next time the RTC interrupt executes. */
\r
336 RTC_Enable( true );
\r
338 /* Wind the tick forward by the number of tick periods that the CPU
\r
339 remained in a low power state. */
\r
340 vTaskStepTick( ulCompleteTickPeriods );
\r
343 /*-----------------------------------------------------------*/
\r
345 void RTC_IRQHandler( void )
\r
347 ulTickFlag = pdTRUE;
\r
349 if( RTC_CompareGet( 0 ) != ulReloadValueForOneTick )
\r
351 /* Set RTC interrupt to one RTOS tick period. */
\r
352 RTC_Enable( false );
\r
353 RTC_CompareSet( 0, ulReloadValueForOneTick );
\r
354 RTC_Enable( true );
\r
357 RTC_IntClear( _RTC_IFC_MASK );
\r
359 /* Critical section which protect incrementing the tick*/
\r
360 ( void ) portSET_INTERRUPT_MASK_FROM_ISR();
\r
362 if( xTaskIncrementTick() != pdFALSE )
\r
364 /* Pend a context switch. */
\r
365 portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
\r
368 portCLEAR_INTERRUPT_MASK_FROM_ISR( 0 );
\r
370 /*-----------------------------------------------------------*/
\r
372 #if( lpINCLUDE_TEST_TIMER == 1 )
\r
374 /* If lpINCLUDE_TEST_TIMER is defined then the BURTC is used to generate
\r
375 interrupts that will wake the processor prior to the expected idle time
\r
376 completing. The timer interval can be altered to test different
\r
378 static void prvSetupTestTimer( void )
\r
380 BURTC_Init_TypeDef xBURTCInitStruct = BURTC_INIT_DEFAULT;
\r
381 const uint32_t ulBURTClockHz = 2000UL, ulInterruptFrequency = 1000UL;
\r
382 const uint32_t ulReload = ( ulBURTClockHz / ulInterruptFrequency );
\r
384 /* Ensure LE modules are accessible. */
\r
385 CMU_ClockEnable( cmuClock_CORELE, true );
\r
387 /* Enable access to BURTC registers. */
\r
388 RMU_ResetControl( rmuResetBU, false );
\r
390 /* Generate periodic interrupts from BURTC. */
\r
391 xBURTCInitStruct.mode = burtcModeEM3; /* Operational in EM3. */
\r
392 xBURTCInitStruct.clkSel = burtcClkSelULFRCO;/* ULFRCO clock. */
\r
393 xBURTCInitStruct.clkDiv = burtcClkDiv_1; /* 2kHz ULFRCO clock. */
\r
394 xBURTCInitStruct.compare0Top = true; /* Wrap on COMP0. */
\r
395 BURTC_IntDisable( BURTC_IF_COMP0 );
\r
396 BURTC_Init( &xBURTCInitStruct );
\r
398 NVIC_SetPriority( BURTC_IRQn, configLIBRARY_LOWEST_INTERRUPT_PRIORITY );
\r
399 NVIC_ClearPendingIRQ( BURTC_IRQn );
\r
400 NVIC_EnableIRQ( BURTC_IRQn );
\r
401 BURTC_CompareSet( 0, ulReload );
\r
402 BURTC_IntClear( BURTC_IF_COMP0 );
\r
403 BURTC_IntEnable( BURTC_IF_COMP0 );
\r
404 BURTC_CounterReset();
\r
408 /*-----------------------------------------------------------*/
\r
410 #if( lpINCLUDE_TEST_TIMER == 1 )
\r
412 /* If lpINCLUDE_TEST_TIMER is defined then the BURTC is used to generate
\r
413 interrupts that will wake the processor prior to the expected idle time
\r
414 completing. The timer interval can be altered to test different
\r
416 volatile uint32_t ulTestTimerCounts = 0;
\r
418 void BURTC_IRQHandler( void )
\r
420 /* Nothing to do here - just testing the code in the scenario where a
\r
421 tickless idle period is ended prior to the expected maximum idle time
\r
423 BURTC_IntClear( _RTC_IFC_MASK );
\r
424 ulTestTimerCounts++;
\r
428 /*-----------------------------------------------------------*/
\r
430 #endif /* ( configCREATE_LOW_POWER_DEMO == 2 ) */
\r