]> git.sur5r.net Git - openldap/blobdiff - doc/guide/admin/tuning.sdf
tidy.
[openldap] / doc / guide / admin / tuning.sdf
index a7c133ff581980249bb09db6c5af25cacd98f0cc..28baa9624f60405ce18476607b585a7828970f22 100644 (file)
@@ -56,14 +56,99 @@ Discussion.
 
 H2: Indexes
 
-http://www.openldap.org/faq/data/cache/42.html
-http://www.connexitor.com/blog/pivot/entry.php?id=103#body
-http://groups.google.com/group/comp.mail.sendmail/browse_frm/thread/17c5c0b94ad1fc58/f870758659375718?lnk=gst&q=hyc&rnum=12&hl=en#f870758659375718
+H3: Understanding how a search works
 
+If you're searching on a filter that has been indexed, then the search reads 
+the index and pulls exactly the entries that are referenced by the index. 
+If the filter term has not been indexed, then the search must read every single
+ entry in the target scope and test to see if each entry matches the filter. 
+Obviously indexing can save a lot of work when it's used correctly.
 
-H2: Tuning Logging
+H3: What to index
 
-http://www.openldap.org/faq/data/cache/80.html
+You should create indices to match the actual filter terms used in
+search queries. 
+
+>        index cn,sn,givenname,mail eq
+
+Each attribute index can be tuned further by selecting the set of index types to generate. For example, substring and approximate search for organizations (o) may make little sense (and isn't like done very often). And searching for {{userPassword}} likely makes no sense what so ever.
+
+General rule: don't go overboard with indexes. Unused indexes must be maintained and hence can only slow things down. 
+
+See {{slapd.conf}}(8) and {{slapdindex}}(8) for more information
+
+
+H3: Presence indexing
+
+If your client application uses presence filters and if the
+target attribute exists on the majority of entries in your target scope, then
+all of those entries are going to be read anyway, because they are valid
+members of the result set. In a subtree where 100% of the
+entries are going to contain the same attributes, the presence index does
+absolutely NOTHING to benefit the search, because 100% of the entries match
+that presence filter. 
+
+So the resource cost of generating the index is a
+complete waste of CPU time, disk, and memory. Don't do it unless you know
+that it will be used, and that the attribute in question occurs very
+infrequently in the target data. 
+
+Almost no applications use presence filters in their search queries. Presence
+indexing is pointless when the target attribute exists on the majority of
+entries in the database. In most LDAP deployments, presence indexing should
+not be done, it's just wasted overhead.
+
+See the {{Logging}} section below on what to watch our for if you have a frequently searched
+for attribute that is unindexed.
+
+
+H2: Logging
+
+H3: What log level to use
+
+The default of {{loglevel 256}} is really the best bet. There's a corollary to 
+this when problems *do* arise, don't try to trace them using syslog. 
+Use the debug flag instead, and capture slapd's stderr output. syslog is too 
+slow for debug tracing, and it's inherently lossy - it will throw away messages when it
+can't keep up.
+
+Contrary to popular belief, {{loglevel 0}} is not ideal for production as you 
+won't be able to track when problems first arise.
+
+H3: What to watch out for
+
+The most common message you'll see that you should pay attention to is:
+
+>  "<= bdb_equality_candidates: (foo) index_param failed (18)"
+
+That means that some application tried to use an equality filter ({{foo=<somevalue>}}) 
+and attribute {{foo}} does not have an equality index. If you see a lot of these
+messages, you should add the index. If you see one every month or so, it may
+be acceptable to ignore it.
+
+The default syslog level is 256 which logs the basic parameters of each
+request; it usually produces 1-3 lines of output. On Solaris and systems that
+only provide synchronous syslog, you may want to turn it off completely, but
+usually you want to leave it enabled so that you'll be able to see index
+messages whenever they arise. On Linux you can configure syslogd to run
+asynchronously, in which case the performance hit for moderate syslog traffic
+pretty much disappears.
+
+H3: Improving throughput
+
+You can improve logging performance on some systems by configuring syslog not 
+to sync the file system with every write ({{man syslogd/syslog.conf}}). In Linux, 
+you can prepend the log file name with a "-" in {{syslog.conf}}. For example, 
+if you are using the default LOCAL4 logging you could try:
+
+>   # LDAP logs
+>   LOCAL4.*         -/var/log/ldap
+
+For syslog-ng, add or modify the following line in {{syslog-ng.conf}}:
+
+>   options { sync(n); };
+
+where n is the number of lines which will be buffered before a write.
 
 
 H2: BDB/HDB Database Caching
@@ -71,49 +156,137 @@ H2: BDB/HDB Database Caching
 We all know what caching is, don't we? 
 
 In brief, "A cache is a block of memory for temporary storage of data likely 
-to be used again" - http://en.wikipedia.org/wiki/Cache
+to be used again" - {{URL:http://en.wikipedia.org/wiki/Cache}}
+
+There are 3 types of caches, BerkeleyDB's own cache, {{slapd}}(8) 
+entry cache and {{TERM:IDL}} (IDL) cache.
+
+
+H3: Berkeley DB Cache
+
+BerkeleyDB's own data cache operates on page-sized blocks of raw data.
+
+Note that while the {{TERM:BDB}} cache is just raw chunks of memory and 
+configured as a memory size, the {{slapd}}(8) entry cache holds parsed entries, 
+and the size of each entry is variable. 
+
+There is also an IDL cache which is used for Index Data Lookups. 
+If you can fit all of your database into slapd's entry cache, and all of your 
+index lookups fit in the IDL cache, that will provide the maximum throughput. 
+
+If not, but you can fit the entire database into the BDB cache, then you 
+should do that and shrink the slapd entry cache as appropriate. 
+
+Failing that, you should balance the BDB cache against the entry cache.
+
+It is worth noting that it is not absolutely necessary to configure a BerkeleyDB 
+cache equal in size to your entire database. All that you need is a cache 
+that's large enough for your "working set." 
+
+That means, large enough to hold all of the most frequently accessed data, 
+plus a few less-frequently accessed items.
 
-Caching - memory is good, more is better. If the entire database fits in RAM, that's ideal. There are multiple caches involved - first is BerkeleyDB's own data cache which operates on page-sized blocks of raw data. Then there's the slapd entry cache which operates on decoded entries. Note that while the BDB cache is just raw chunks of memory and configured as a memory size, the slapd entry cache holds parsed entries, and the size of each entry is variable. There is also an IDL cache which is used for Index Data Lookups. If you can fit all of your database into slapd's entry cache, and all of your index lookups fit in the IDL cache, that will provide the maximum throughput. If not, but you can fit the entire database into the BDB cache, then you should do that and shrink the slapd entry cache as appropriate. Failing that, you should balance the BDB cache against the entry cache.
+ORACLE LINKS HERE
 
-The rationale - entries in the entry cache can be used directly, giving the fastest response. If an entry isn't in the entry cache but can be extracted from the BDB page cache, that will avoid an I/O but it will still require parsing, so this will be slower. If the entry is in neither cache then BDB will have to flush some of its current cached pages and bring in the needed pages, resulting in a couple of expensive I/Os as well as parsing.
+H4: Calculating Cachesize
 
-As far as balancing the entry cache vs the BDB cache - parsed entries in memory are generally about twice as large as they are on disk. 
+The back-bdb database lives in two main files, {{F:dn2id.bdb}} and {{F:id2entry.bdb}}. 
+These are B-tree databases. We have never documented the back-bdb internal 
+layout before, because it didn't seem like something anyone should have to worry 
+about, nor was it necessarily cast in stone. But here's how it works today, 
+in OpenLDAP 2.4.
 
-Not having a proper database cache size will cause performance issues. 
+A B-tree is a balanced tree; it stores data in its leaf nodes and bookkeeping 
+data in its interior nodes (If you don't know what tree data structures look
+ like in general, Google for some references, because that's getting far too 
+elementary for the purposes of this discussion).
 
-These issues are not an indication of corruption occurring in the database. It is merely the fact that the cache is thrashing itself that causes performance/response time to slowdown. If you take the time to read and understand the Berkeley DB documentation, measure the library performance using db_stat, and tune your settings, you will avoid these problems.
+For decent performance, you need enough cache memory to contain all the nodes 
+along the path from the root of the tree down to the particular data item 
+you're accessing. That's enough cache for a single search. For the general case, 
+you want enough cache to contain all the internal nodes in the database. 
 
-It is not absolutely necessary to configure a BerkeleyDB cache equal in size to your entire database. All that you need is a cache that's large enough for your "working set." That means, large enough to hold all of the most frequently accessed data, plus a few less-frequently accessed items.
+>   db_stat -d
 
-You should really read the BDB documentation referenced above, but let me spell out what that really means here, in detail. The discussion here is focused on back-bdb and back-hdb, but most of it also applies to back-ldbm when using BerkeleyDB as the underlying database engine.
+will tell you how many internal pages are present in a database. You should 
+check this number for both dn2id and id2entry.
 
-Start with the most obvious - the back-bdb database lives in two main files, dn2id.bdb and id2entry.bdb. These are B-tree databases. We have never documented the back-bdb internal layout before, because it didn't seem like something anyone should have to worry about, nor was it necessarily cast in stone. But here's how it works today, in OpenLDAP 2.1 and 2.2. (All of the database files in back-ldbm are B-trees by default.)
+Also note that {{id2entry}} always uses 16KB per "page", while {{dn2id}} uses whatever 
+the underlying filesystem uses, typically 4 or 8KB. To avoid thrashing the, 
+your cache must be at least as large as the number of internal pages in both 
+the {{dn2id}} and {{id2entry}} databases, plus some extra space to accommodate the actual 
+leaf data pages.
 
-A B-tree is a balanced tree; it stores data in its leaf nodes and bookkeeping data in its interior nodes. (If you don't know what tree data structures look like in general, Google for some references, because that's getting far too elementary for the purposes of this discussion.)
+For example, in my OpenLDAP 2.4 test database, I have an input LDIF file that's 
+about 360MB. With the back-hdb backend this creates a {{dn2id.bdb}} that's 68MB, 
+and an {{id2entry}} that's 800MB. db_stat tells me that {{dn2id}} uses 4KB pages, has 
+433 internal pages, and 6378 leaf pages. The id2entry uses 16KB pages, has 52 
+internal pages, and 45912 leaf pages. In order to efficiently retrieve any 
+single entry in this database, the cache should be at least
 
-For decent performance, you need enough cache memory to contain all the nodes along the path from the root of the tree down to the particular data item you're accessing. That's enough cache for a single search. For the general case, you want enough cache to contain all the internal nodes in the database. "db_stat -d" will tell you how many internal pages are present in a database. You should check this number for both dn2id and id2entry.
+>   (433+1) * 4KB + (52+1) * 16KB in size: 1736KB + 848KB =~ 2.5MB.
 
-Also note that id2entry always uses 16KB per "page", while dn2id uses whatever the underlying filesystem uses, typically 4 or 8KB. To avoid thrashing the cache and triggering these infinite hang bugs in BDB 4.1.25, your cache must be at least as large as the number of internal pages in both the dn2id and id2entry databases, plus some extra space to accomodate the actual leaf data pages.
+This doesn't take into account other library overhead, so this is even lower 
+than the barest minimum. The default cache size, when nothing is configured, 
+is only 256KB. 
 
-For example, in my OpenLDAP 2.2 test database, I have an input LDIF file that's about 360MB. With the back-hdb backend this creates a dn2id.bdb that's 68MB, and an id2entry that's 800MB. db_stat tells me that dn2id uses 4KB pages, has 433 internal pages, and 6378 leaf pages. The id2entry uses 16KB pages, has 52 internal pages, and 45912 leaf pages. In order to efficiently retrieve any single entry in this database, the cache should be at least
+This 2.5MB number also doesn't take indexing into account. Each indexed attribute 
+uses another database file of its own, using a Hash structure. 
 
-(433+1) * 4KB + (52+1) * 16KB in size: 1736KB + 848KB =~ 2.5MB.
+Unlike the B-trees, where you only need to touch one data page to find an entry 
+of interest, doing an index lookup generally touches multiple keys, and the 
+point of a hash structure is that the keys are evenly distributed across the 
+data space. That means there's no convenient compact subset of the database that 
+you can keep in the cache to insure quick operation, you can pretty much expect 
+references to be scattered across the whole thing. My strategy here would be to 
+provide enough cache for at least 50% of all of the hash data. 
 
-This doesn't take into account other library overhead, so this is even lower than the barest minimum. The default cache size, when nothing is configured, is only 256KB. If you tried to do much of anything with this database and only default settings, BDB 4.1.25 would lock up in an infinite loop.
+>   (Number of hash buckets + number of overflow pages + number of duplicate pages) * page size / 2.
 
-This 2.5MB number also doesn't take indexing into account. Each indexed attribute uses another database file of its own, using a Hash structure. (Again, in back-ldbm, the indexes also use B-trees by default, so this part of the discussion doesn't apply unless back-ldbm was explicitly compiled to use Hashes instead. Also, in OpenLDAP 2.2 onward, all of the indexes use B-trees, there are no more Hash database files. So just use the B-tree information above and ignore this Hash discussion.)
+The objectClass index for my example database is 5.9MB and uses 3 hash buckets 
+and 656 duplicate pages. So:
 
-Unlike the B-trees, where you only need to touch one data page to find an entry of interest, doing an index lookup generally touches multiple keys, and the point of a hash structure is that the keys are evenly distributed across the data space. That means there's no convenient compact subset of the database that you can keep in the cache to insure quick operation, you can pretty much expect references to be scattered across the whole thing. My strategy here would be to provide enough cache for at least 50% of all of the hash data. (Number of hash buckets + number of overflow pages + number of duplicate pages) * page size / 2.
+>   ( 3 + 656 ) * 4KB / 2 =~ 1.3MB.
 
-The objectClass index for my example database is 5.9MB and uses 3 hash buckets and 656 duplicate pages. So ( 3 + 656 ) * 4KB / 2 =~ 1.3MB.
+With only this index enabled, I'd figure at least a 4MB cache for this backend. 
+(Of course you're using a single cache shared among all of the database files, 
+so the cache pages will most likely get used for something other than what you 
+accounted for, but this gives you a fighting chance.)
 
-With only this index enabled, I'd figure at least a 4MB cache for this backend. (Of course you're using a single cache shared among all of the database files, so the cache pages will most likely get used for something other than what you accounted for, but this gives you a fighting chance.)
+With this 4MB cache I can slapcat this entire database on my 1.3GHz PIII in 
+1 minute, 40 seconds. With the cache doubled to 8MB, it still takes the same 1:40s. 
+Once you've got enough cache to fit the B-tree internal pages, increasing it 
+further won't have any effect until the cache really is large enough to hold 
+100% of the data pages. I don't have enough free RAM to hold all the 800MB 
+id2entry data, so 4MB is good enough.
+
+With back-bdb and back-hdb you can use "db_stat -m" to check how well the 
+database cache is performing. 
+
+
+H3: {{slapd}}(8) Entry Cache
+
+The {{slapd}}(8) entry cache operates on decoded entries. The rationale - entries 
+in the entry cache can be used directly, giving the fastest response. If an entry 
+isn't in the entry cache but can be extracted from the BDB page cache, that will 
+avoid an I/O but it will still require parsing, so this will be slower. 
+
+If the entry is in neither cache then BDB will have to flush some of its current 
+cached pages and bring in the needed pages, resulting in a couple of expensive 
+I/Os as well as parsing.
+
+As far as balancing the entry cache vs the BDB cache - parsed entries in memory 
+are generally about twice as large as they are on disk. 
+
+As we have already mentioned, not having a proper database cache size will 
+cause performance issues. These issues are not an indication of corruption 
+occurring in the database. It is merely the fact that the cache is thrashing 
+itself that causes performance/response time to slowdown. 
+
+
+MOVE BELOW AROUND:
 
-With this 4MB cache I can slapcat this entire database on my 1.3GHz PIII in 1 minute, 40 seconds. With the cache doubled to 8MB, it still takes the same 1:40s. Once you've got enough cache to fit the B-tree internal pages, increasing it further won't have any effect until the cache really is large enough to hold 100% of the data pages. I don't have enough free RAM to hold all the 800MB id2entry data, so 4MB is good enough.
 
-With back-bdb and back-hdb you can use "db_stat -m" to check how well the database cache is performing. Unfortunately you can't do this with back-ldbm, as the statistics are not accessible when slapd is running, nor are they saved anywhere when slapd is stopped. (Yet another reason not to use back-ldbm.)
-hyc@openldap.org, Kurt@OpenLDAP.org
-NOTE: This is unrelated to the entry cache. See also: (Xref) Can I tune the BDB entry cache?
 If you want to setup the cache size, please read:
 
  (Xref) How do I configure the BDB backend?
@@ -127,13 +300,13 @@ A default config can be found in the answer:
 just change the set_lg_dir to point to your .log directory or comment that line.
 
 Quick guide:
-- Create a DB_CONFIG file in your ldap home directory (/var/lib/ldap/DB_CONFIG) with the correct "set_cachesize" value
-- stop your ldap server and run db_recover -h /var/lib/ldap
-- start your ldap server and check the new cache size with:
+* Create a DB_CONFIG file in your ldap home directory (/var/lib/ldap/DB_CONFIG) with the correct "set_cachesize" value
+* stop your ldap server and run db_recover -h /var/lib/ldap
+* start your ldap server and check the new cache size with:
 
   db_stat -h /var/lib/ldap -m | head -n 2
 
-- this procedure is only needed if you use OpenLDAP 2.2 with the BDB or HDB backends; In OpenLDAP 2.3 DB recovery is performed automatically whenever the DB_CONFIG file is changed or when an unclean shutdown is detected.
+* this procedure is only needed if you use OpenLDAP 2.2 with the BDB or HDB backends; In OpenLDAP 2.3 DB recovery is performed automatically whenever the DB_CONFIG file is changed or when an unclean shutdown is detected.
 
 
 --On Tuesday, February 22, 2005 12:15 PM -0500 Dusty Doris <openldap@mail.doris.cc> wrote:
@@ -161,9 +334,12 @@ It will consume the memory resources of your system, and likely cause issues.
 
 I try to cache the most actively used entries. Unless you expect all 400,000 entries of your DB to be accessed regularly, there is no need to cache that many entries. My entry cache is set to 20,000 (out of a little over 400,000 entries).
 
-The idl cache has to do with how many unique result sets of searches you want to store in memory. Setting up this cache will allow your most frequently placed searches to get results much faster, but I doubt you want to try and cache the results of every search that hits your system. ;)
+The idlcache has to do with how many unique result sets of searches you want to store in memory. Setting up this cache will allow your most frequently placed searches to get results much faster, but I doubt you want to try and cache the results of every search that hits your system. ;)
 
 --Quanah
 
 
+H3: {{TERM:IDL}} Cache
+
+
 http://www.openldap.org/faq/data/cache/1076.html