--- /dev/null
+/***************************************************************************
+ * Copyright (C) 2013 by Andrey Yurovsky *
+ * Andrey Yurovsky <yurovsky@gmail.com> *
+ * *
+ * This program is free software; you can redistribute it and/or modify *
+ * it under the terms of the GNU General Public License as published by *
+ * the Free Software Foundation; either version 2 of the License, or *
+ * (at your option) any later version. *
+ * *
+ * This program is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
+ * GNU General Public License for more details. *
+ * *
+ * You should have received a copy of the GNU General Public License *
+ * along with this program; if not, write to the *
+ * Free Software Foundation, Inc., *
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
+ ***************************************************************************/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "imp.h"
+
+#define SAMD_NUM_SECTORS 16
+
+#define SAMD_FLASH 0x00000000 /* physical Flash memory */
+#define SAMD_DSU 0x41002000 /* Device Service Unit */
+#define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
+
+#define SAMD_DSU_DID 0x18 /* Device ID register */
+
+#define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
+#define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
+#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
+#define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
+#define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
+#define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
+#define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
+
+#define SAMD_CMDEX_KEY 0xA5UL
+#define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
+
+/* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
+#define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
+#define SAMD_NVM_CMD_WP 0x04 /* Write Page */
+#define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
+#define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
+#define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
+#define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
+#define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
+#define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
+#define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
+#define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
+#define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
+
+/* Known identifiers */
+#define SAMD_PROCESSOR_M0 0x01
+#define SAMD_FAMILY_D 0x00
+#define SAMD_SERIES_20 0x00
+
+struct samd_part {
+ uint8_t id;
+ const char *name;
+ uint32_t flash_kb;
+ uint32_t ram_kb;
+};
+
+/* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
+static struct samd_part samd20_parts[] = {
+ { 0x0, "SAMD20J18A", 256, 32 },
+ { 0x1, "SAMD20J17A", 128, 16 },
+ { 0x2, "SAMD20J16A", 64, 8 },
+ { 0x3, "SAMD20J15A", 32, 4 },
+ { 0x4, "SAMD20J14A", 16, 2 },
+ { 0x5, "SAMD20G18A", 256, 32 },
+ { 0x6, "SAMD20G17A", 128, 16 },
+ { 0x7, "SAMD20G16A", 64, 8 },
+ { 0x8, "SAMD20G15A", 32, 4 },
+ { 0x9, "SAMD20G14A", 16, 2 },
+ { 0xB, "SAMD20E17A", 128, 16 },
+ { 0xC, "SAMD20E16A", 64, 8 },
+ { 0xD, "SAMD20E15A", 32, 4 },
+ { 0xE, "SAMD20E14A", 16, 2 },
+};
+
+/* Each family of parts contains a parts table in the DEVSEL field of DID. The
+ * processor ID, family ID, and series ID are used to determine which exact
+ * family this is and then we can use the corresponding table. */
+struct samd_family {
+ uint8_t processor;
+ uint8_t family;
+ uint8_t series;
+ struct samd_part *parts;
+ size_t num_parts;
+};
+
+/* Known SAMD families */
+static struct samd_family samd_families[] = {
+ { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
+ samd20_parts, ARRAY_SIZE(samd20_parts) },
+};
+
+struct samd_info {
+ uint32_t page_size;
+ int num_pages;
+ int sector_size;
+
+ bool probed;
+ struct target *target;
+ struct samd_info *next;
+};
+
+static struct samd_info *samd_chips;
+
+static struct samd_part *samd_find_part(uint32_t id)
+{
+ uint8_t processor = (id >> 28);
+ uint8_t family = (id >> 24) & 0x0F;
+ uint8_t series = (id >> 16) & 0xFF;
+ uint8_t devsel = id & 0xFF;
+
+ for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
+ if (samd_families[i].processor == processor &&
+ samd_families[i].series == series &&
+ samd_families[i].family == family) {
+ for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
+ if (samd_families[i].parts[j].id == devsel)
+ return &samd_families[i].parts[j];
+ }
+ }
+ }
+
+ return NULL;
+}
+
+static int samd_protect_check(struct flash_bank *bank)
+{
+ int res;
+ uint16_t lock;
+
+ res = target_read_u16(bank->target,
+ SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
+ if (res != ERROR_OK)
+ return res;
+
+ /* Lock bits are active-low */
+ for (int i = 0; i < bank->num_sectors; i++)
+ bank->sectors[i].is_protected = !(lock & (1<<i));
+
+ return ERROR_OK;
+}
+
+static int samd_probe(struct flash_bank *bank)
+{
+ uint32_t id, param;
+ int res;
+ struct samd_info *chip = (struct samd_info *)bank->driver_priv;
+ struct samd_part *part;
+
+ if (chip->probed)
+ return ERROR_OK;
+
+ res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Couldn't read Device ID register");
+ return res;
+ }
+
+ part = samd_find_part(id);
+ if (part == NULL) {
+ LOG_ERROR("Couldn't find part correspoding to DID %08" PRIx32, id);
+ return ERROR_FAIL;
+ }
+
+ res = target_read_u32(bank->target,
+ SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, ¶m);
+ if (res != ERROR_OK) {
+ LOG_ERROR("Couldn't read NVM Parameters register");
+ return res;
+ }
+
+ bank->size = part->flash_kb * 1024;
+
+ chip->sector_size = bank->size / SAMD_NUM_SECTORS;
+
+ /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n) so
+ * 0 is 8KB and 7 is 1024KB. */
+ chip->page_size = (8 << ((param >> 16) & 0x7));
+ /* The NVMP field (bits 15:0) indicates the total number of pages */
+ chip->num_pages = param & 0xFFFF;
+
+ /* Sanity check: the total flash size in the DSU should match the page size
+ * multiplied by the number of pages. */
+ if (bank->size != chip->num_pages * chip->page_size) {
+ LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
+ "Identified %uKB Flash but NVMCTRL reports %u %uB pages",
+ part->flash_kb, chip->num_pages, chip->page_size);
+ }
+
+ /* Allocate the sector table */
+ bank->num_sectors = SAMD_NUM_SECTORS;
+ bank->sectors = calloc(bank->num_sectors, sizeof((bank->sectors)[0]));
+ if (!bank->sectors)
+ return ERROR_FAIL;
+
+ /* Fill out the sector information: all SAMD sectors are the same size and
+ * there is always a fixed number of them. */
+ for (int i = 0; i < bank->num_sectors; i++) {
+ bank->sectors[i].size = chip->sector_size;
+ bank->sectors[i].offset = i * chip->sector_size;
+ /* mark as unknown */
+ bank->sectors[i].is_erased = -1;
+ bank->sectors[i].is_protected = -1;
+ }
+
+ samd_protect_check(bank);
+
+ /* Done */
+ chip->probed = true;
+
+ LOG_INFO("SAMD MCU: %s (%uKB Flash, %uKB RAM)", part->name,
+ part->flash_kb, part->ram_kb);
+
+ return ERROR_OK;
+}
+
+static int samd_protect(struct flash_bank *bank, int set, int first, int last)
+{
+ int res;
+ struct samd_info *chip = (struct samd_info *)bank->driver_priv;
+
+ for (int s = first; s <= last; s++) {
+ /* Load an address that is within this sector (we use offset 0) */
+ res = target_write_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
+ s * chip->sector_size);
+ if (res != ERROR_OK)
+ return res;
+
+ /* Tell the controller to lock that sector */
+ res = target_write_u16(bank->target,
+ SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
+ SAMD_NVM_CMD(SAMD_NVM_CMD_LR));
+ if (res != ERROR_OK)
+ return res;
+ }
+
+ samd_protect_check(bank);
+
+ return ERROR_OK;
+}
+
+static bool samd_check_error(struct flash_bank *bank)
+{
+ int ret;
+ bool error;
+ uint16_t status;
+
+ ret = target_read_u16(bank->target,
+ SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
+ if (ret != ERROR_OK) {
+ LOG_ERROR("Can't read NVM status");
+ return true;
+ }
+
+ if (status & 0x001C) {
+ if (status & (1 << 4)) /* NVME */
+ LOG_ERROR("SAMD: NVM Error");
+ if (status & (1 << 3)) /* LOCKE */
+ LOG_ERROR("SAMD: NVM lock error");
+ if (status & (1 << 2)) /* PROGE */
+ LOG_ERROR("SAMD: NVM programming error");
+
+ error = true;
+ } else {
+ error = false;
+ }
+
+ /* Clear the error conditions by writing a one to them */
+ ret = target_write_u16(bank->target,
+ SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
+ if (ret != ERROR_OK)
+ LOG_ERROR("Can't clear NVM error conditions");
+
+ return error;
+}
+
+static int samd_erase_row(struct flash_bank *bank, uint32_t address)
+{
+ int res;
+ bool error = false;
+
+ /* Set an address contained in the row to be erased */
+ res = target_write_u32(bank->target,
+ SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
+ if (res == ERROR_OK) {
+ /* Issue the Erase Row command to erase that row */
+ res = target_write_u16(bank->target,
+ SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA,
+ SAMD_NVM_CMD(SAMD_NVM_CMD_ER));
+
+ /* Check (and clear) error conditions */
+ error = samd_check_error(bank);
+ }
+
+ if (res != ERROR_OK || error) {
+ LOG_ERROR("Failed to erase row containing %08X" PRIx32, address);
+ return ERROR_FAIL;
+ }
+
+ return ERROR_OK;
+}
+
+static int samd_erase(struct flash_bank *bank, int first, int last)
+{
+ int res;
+ int rows_in_sector;
+ struct samd_info *chip = (struct samd_info *)bank->driver_priv;
+
+ if (bank->target->state != TARGET_HALTED) {
+ LOG_ERROR("Target not halted");
+
+ return ERROR_TARGET_NOT_HALTED;
+ }
+
+ if (!chip->probed) {
+ if (samd_probe(bank) != ERROR_OK)
+ return ERROR_FLASH_BANK_NOT_PROBED;
+ }
+
+ /* Make sure the sectors make sense. */
+ if (first >= bank->num_sectors || last >= bank->num_sectors) {
+ LOG_ERROR("Erase range %d - %d not valid (%d sectors total)",
+ first, last, bank->num_sectors);
+ return ERROR_FAIL;
+ }
+
+ /* The SAMD NVM has row erase granularity. There are four pages in a row
+ * and the number of rows in a sector depends on the sector size, which in
+ * turn depends on the Flash capacity as there is a fixed number of
+ * sectors. */
+ rows_in_sector = chip->sector_size / (chip->page_size * 4);
+
+ /* For each sector to be erased */
+ for (int s = first; s <= last; s++) {
+ /* For each row in that sector */
+ for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
+ res = samd_erase_row(bank, r * chip->page_size * 4);
+ if (res != ERROR_OK) {
+ LOG_ERROR("SAMD: failed to erase sector %d", s);
+ return res;
+ }
+ }
+
+ bank->sectors[s].is_erased = 1;
+ }
+
+ return ERROR_OK;
+}
+
+/* Write an entire row (four pages) from host buffer 'buf' to row-aligned
+ * 'address' in the Flash. */
+static int samd_write_row(struct flash_bank *bank, uint32_t address,
+ uint8_t *buf)
+{
+ int res;
+ struct samd_info *chip = (struct samd_info *)bank->driver_priv;
+
+ /* Erase the row that we'll be writing to */
+ res = samd_erase_row(bank, address);
+ if (res != ERROR_OK)
+ return res;
+
+ /* Now write the pages in this row. */
+ for (unsigned int i = 0; i < 4; i++) {
+ bool error;
+
+ /* Write the page contents to the target's page buffer. A page write
+ * is issued automatically once the last location is written in the
+ * page buffer (ie: a complete page has been written out). */
+ res = target_write_memory(bank->target, address, 4,
+ chip->page_size / 4, buf);
+ if (res != ERROR_OK) {
+ LOG_ERROR("%s: %d", __func__, __LINE__);
+ return res;
+ }
+
+ error = samd_check_error(bank);
+ if (error)
+ return ERROR_FAIL;
+
+ /* Next page */
+ address += chip->page_size;
+ buf += chip->page_size;
+ }
+
+ return res;
+}
+
+/* Write partial contents into row-aligned 'address' on the Flash from host
+ * buffer 'buf' by writing 'nb' of 'buf' at 'row_offset' into the Flash row. */
+static int samd_write_row_partial(struct flash_bank *bank, uint32_t address,
+ uint8_t *buf, uint32_t row_offset, uint32_t nb)
+{
+ int res;
+ struct samd_info *chip = (struct samd_info *)bank->driver_priv;
+ uint32_t row_size = chip->page_size * 4;
+ uint8_t *rb = malloc(row_size);
+ if (!rb)
+ return ERROR_FAIL;
+
+ assert(row_offset + nb < row_size);
+ assert((address % row_size) == 0);
+
+ /* Retrieve the full row contents from Flash */
+ res = target_read_memory(bank->target, address, 4, row_size / 4, rb);
+ if (res != ERROR_OK) {
+ free(rb);
+ return res;
+ }
+
+ /* Insert our partial row over the data from Flash */
+ memcpy(rb + (row_offset % row_size), buf, nb);
+
+ /* Write the row back out */
+ res = samd_write_row(bank, address, rb);
+ free(rb);
+
+ return res;
+}
+
+static int samd_write(struct flash_bank *bank, uint8_t *buffer,
+ uint32_t offset, uint32_t count)
+{
+ int res;
+ uint32_t address;
+ uint32_t nb = 0;
+ struct samd_info *chip = (struct samd_info *)bank->driver_priv;
+ uint32_t row_size = chip->page_size * 4;
+
+ if (bank->target->state != TARGET_HALTED) {
+ LOG_ERROR("Target not halted");
+
+ return ERROR_TARGET_NOT_HALTED;
+ }
+
+ if (!chip->probed) {
+ if (samd_probe(bank) != ERROR_OK)
+ return ERROR_FLASH_BANK_NOT_PROBED;
+ }
+
+ if (offset % row_size) {
+ /* We're starting at an unaligned offset so we'll write a partial row
+ * comprising that offset and up to the end of that row. */
+ nb = row_size - (offset % row_size);
+ if (nb > count)
+ nb = count;
+ } else if (count < row_size) {
+ /* We're writing an aligned but partial row. */
+ nb = count;
+ }
+
+ address = (offset / row_size) * row_size + bank->base;
+
+ if (nb > 0) {
+ res = samd_write_row_partial(bank, address, buffer,
+ offset % row_size, nb);
+ if (res != ERROR_OK)
+ return res;
+
+ /* We're done with the row contents */
+ count -= nb;
+ offset += nb;
+ buffer += row_size;
+ }
+
+ /* There's at least one aligned row to write out. */
+ if (count >= row_size) {
+ int nr = count / row_size + ((count % row_size) ? 1 : 0);
+ unsigned int r = 0;
+
+ for (unsigned int i = address / row_size;
+ (i < (address / row_size) + nr) && count > 0; i++) {
+ address = (i * row_size) + bank->base;
+
+ if (count >= row_size) {
+ res = samd_write_row(bank, address, buffer + (r * row_size));
+ /* Advance one row */
+ offset += row_size;
+ count -= row_size;
+ } else {
+ res = samd_write_row_partial(bank, address,
+ buffer + (r * row_size), 0, count);
+ /* We're done after this. */
+ offset += count;
+ count = 0;
+ }
+
+ r++;
+
+ if (res != ERROR_OK)
+ return res;
+ }
+ }
+
+ return ERROR_OK;
+}
+
+FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
+{
+ struct samd_info *chip = samd_chips;
+
+ while (chip) {
+ if (chip->target == bank->target)
+ break;
+ chip = chip->next;
+ }
+
+ if (!chip) {
+ /* Create a new chip */
+ chip = calloc(1, sizeof(*chip));
+ if (!chip)
+ return ERROR_FAIL;
+
+ chip->target = bank->target;
+ chip->probed = false;
+
+ bank->driver_priv = chip;
+
+ /* Insert it into the chips list (at head) */
+ chip->next = samd_chips;
+ samd_chips = chip;
+ }
+
+ if (bank->base != SAMD_FLASH) {
+ LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
+ "[at91samd series] )",
+ bank->base, SAMD_FLASH);
+ return ERROR_FAIL;
+ }
+
+ return ERROR_OK;
+}
+
+COMMAND_HANDLER(samd_handle_info_command)
+{
+ return ERROR_OK;
+}
+
+static const struct command_registration at91samd_exec_command_handlers[] = {
+ {
+ .name = "info",
+ .handler = samd_handle_info_command,
+ .mode = COMMAND_EXEC,
+ .help = "Print information about the current at91samd chip"
+ "and its flash configuration.",
+ },
+ COMMAND_REGISTRATION_DONE
+};
+
+static const struct command_registration at91samd_command_handlers[] = {
+ {
+ .name = "at91samd",
+ .mode = COMMAND_ANY,
+ .help = "at91samd flash command group",
+ .usage = "",
+ .chain = at91samd_exec_command_handlers,
+ },
+ COMMAND_REGISTRATION_DONE
+};
+
+struct flash_driver at91samd_flash = {
+ .name = "at91samd",
+ .commands = at91samd_command_handlers,
+ .flash_bank_command = samd_flash_bank_command,
+ .erase = samd_erase,
+ .protect = samd_protect,
+ .write = samd_write,
+ .read = default_flash_read,
+ .probe = samd_probe,
+ .auto_probe = samd_probe,
+ .erase_check = default_flash_blank_check,
+ .protect_check = samd_protect_check,
+};