/* stm32lx flash register locations */
-#define FLASH_BASE 0x40023C00
-#define FLASH_ACR 0x40023C00
-#define FLASH_PECR 0x40023C04
-#define FLASH_PDKEYR 0x40023C08
-#define FLASH_PEKEYR 0x40023C0C
-#define FLASH_PRGKEYR 0x40023C10
-#define FLASH_OPTKEYR 0x40023C14
-#define FLASH_SR 0x40023C18
-#define FLASH_OBR 0x40023C1C
-#define FLASH_WRPR 0x40023C20
+#define FLASH_ACR 0x00
+#define FLASH_PECR 0x04
+#define FLASH_PDKEYR 0x08
+#define FLASH_PEKEYR 0x0C
+#define FLASH_PRGKEYR 0x10
+#define FLASH_OPTKEYR 0x14
+#define FLASH_SR 0x18
+#define FLASH_OBR 0x1C
+#define FLASH_WRPR 0x20
/* FLASH_ACR bites */
#define FLASH_ACR__LATENCY (1<<0)
#define OPTKEY2 0x24252627
/* other registers */
-#define DBGMCU_IDCODE 0xE0042000
-#define F_SIZE 0x1FF8004C
-#define F_SIZE_MP 0x1FF800CC /* on 0x427 Medium+ and 0x436 HD devices */
+#define DBGMCU_IDCODE 0xE0042000
+#define DBGMCU_IDCODE_L0 0x40015800
/* Constants */
-#define FLASH_PAGE_SIZE 256
#define FLASH_SECTOR_SIZE 4096
-#define FLASH_PAGES_PER_SECTOR 16
#define FLASH_BANK0_ADDRESS 0x08000000
-/* stm32lx option byte register location */
-#define OB_RDP 0x1FF80000
-#define OB_USER 0x1FF80004
-#define OB_WRP0_1 0x1FF80008
-#define OB_WRP2_3 0x1FF8000C
-
-/* OB_RDP values */
-#define OB_RDP__LEVEL0 0xFF5500AA
-#define OB_RDP__LEVEL1 0xFFFF0000
-
-/* stm32lx RCC register locations */
-#define RCC_CR 0x40023800
-#define RCC_ICSCR 0x40023804
-#define RCC_CFGR 0x40023808
-
-/* RCC_ICSCR bits */
-#define RCC_ICSCR__MSIRANGE_MASK (7<<13)
-
static int stm32lx_unlock_program_memory(struct flash_bank *bank);
static int stm32lx_lock_program_memory(struct flash_bank *bank);
static int stm32lx_enable_write_half_page(struct flash_bank *bank);
static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
+struct stm32lx_rev {
+ uint16_t rev;
+ const char *str;
+};
+
+struct stm32lx_part_info {
+ uint16_t id;
+ const char *device_str;
+ const struct stm32lx_rev *revs;
+ size_t num_revs;
+ unsigned int page_size;
+ unsigned int pages_per_sector;
+ uint16_t max_flash_size_kb;
+ uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
+ bool has_dual_banks;
+
+ uint32_t flash_base; /* Flash controller registers location */
+ uint32_t fsize_base; /* Location of FSIZE register */
+};
+
struct stm32lx_flash_bank {
int probed;
- bool has_dual_banks;
+ uint32_t idcode;
uint32_t user_bank_size;
+ uint32_t flash_base;
+
+ const struct stm32lx_part_info *part_info;
+};
+
+static const struct stm32lx_rev stm32_416_revs[] = {
+ { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1018, "X" }, { 0x1038, "W" },
+ { 0x1078, "V" },
+};
+static const struct stm32lx_rev stm32_417_revs[] = {
+ { 0x1000, "A" }, { 0x1008, "Z" },
+};
+static const struct stm32lx_rev stm32_427_revs[] = {
+ { 0x1018, "A" },
+};
+static const struct stm32lx_rev stm32_436_revs[] = {
+ { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
+};
+
+static const struct stm32lx_part_info stm32lx_parts[] = {
+ {
+ .id = 0x416,
+ .revs = stm32_416_revs,
+ .num_revs = ARRAY_SIZE(stm32_416_revs),
+ .device_str = "STM32L1xx (Low/Medium Density)",
+ .page_size = 256,
+ .pages_per_sector = 16,
+ .max_flash_size_kb = 128,
+ .has_dual_banks = false,
+ .flash_base = 0x40023C00,
+ .fsize_base = 0x1FF8004C,
+ },
+ {
+ .id = 0x417,
+ .revs = stm32_417_revs,
+ .num_revs = ARRAY_SIZE(stm32_417_revs),
+ .device_str = "STM32L0xx",
+ .page_size = 128,
+ .pages_per_sector = 32,
+ .max_flash_size_kb = 64,
+ .has_dual_banks = false,
+ .flash_base = 0x40022000,
+ .fsize_base = 0x1FF8007C,
+ },
+ {
+ .id = 0x427,
+ .revs = stm32_427_revs,
+ .num_revs = ARRAY_SIZE(stm32_427_revs),
+ .device_str = "STM32L1xx (Medium+ Density)",
+ .page_size = 256,
+ .pages_per_sector = 16,
+ .max_flash_size_kb = 256,
+ .first_bank_size_kb = 192,
+ .has_dual_banks = true,
+ .flash_base = 0x40023C00,
+ .fsize_base = 0x1FF800CC,
+ },
+ {
+ .id = 0x436,
+ .revs = stm32_436_revs,
+ .num_revs = ARRAY_SIZE(stm32_436_revs),
+ .device_str = "STM32L1xx (Medium+/High Density)",
+ .page_size = 256,
+ .pages_per_sector = 16,
+ .max_flash_size_kb = 384,
+ .first_bank_size_kb = 192,
+ .has_dual_banks = true,
+ .flash_base = 0x40023C00,
+ .fsize_base = 0x1FF800CC,
+ },
+ {
+ .id = 0x437,
+ .device_str = "STM32L1xx (Medium+/High Density)",
+ .page_size = 256,
+ .pages_per_sector = 16,
+ .max_flash_size_kb = 512,
+ .first_bank_size_kb = 256,
+ .has_dual_banks = true,
+ .flash_base = 0x40023C00,
+ .fsize_base = 0x1FF800CC,
+ },
};
/* flash bank stm32lx <base> <size> 0 0 <target#>
bank->driver_priv = stm32lx_info;
stm32lx_info->probed = 0;
- stm32lx_info->has_dual_banks = false;
stm32lx_info->user_bank_size = bank->size;
/* the stm32l erased value is 0x00 */
{
int retval;
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t wrpr;
* Read the WRPR word, and check each bit (corresponding to each
* flash sector
*/
- retval = target_read_u32(target, FLASH_WRPR, &wrpr);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
+ &wrpr);
if (retval != ERROR_OK)
return retval;
- for (int i = 0; i < 32; i++) {
+ for (int i = 0; i < bank->num_sectors; i++) {
if (wrpr & (1 << i))
bank->sectors[i].is_protected = 1;
else
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
+
+ uint32_t hp_nb = stm32lx_info->part_info->page_size / 2;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
0x93, 0x42, /* cmp r3, r2 */
0xf8, 0xd3, /* bcc write_word */
0x00, 0xbe, /* bkpt 0 */
+
};
- /* Check if there is an even number of half pages (128bytes) */
- if (count % 128) {
- LOG_ERROR("there should be an even number "
- "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
+ /* Make sure we're performing a half-page aligned write. */
+ if (count % hp_nb) {
+ LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
return ERROR_FAIL;
}
else
buffer_size /= 2;
- if (buffer_size <= 256) {
+ if (buffer_size <= stm32lx_info->part_info->page_size) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
while (count > 0) {
uint32_t this_count;
- this_count = (count > 128) ? 128 : count;
+ this_count = (count > hp_nb) ? hp_nb : count;
/* Write the next half pages */
retval = target_write_buffer(target, address, this_count, buffer);
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
+ uint32_t hp_nb = stm32lx_info->part_info->page_size / 2;
uint32_t halfpages_number;
uint32_t bytes_remaining = 0;
uint32_t address = bank->base + offset;
/* first we need to write any unaligned head bytes upto
* the next 128 byte page */
- if (offset % 128)
- bytes_remaining = MIN(count, 128 - (offset % 128));
+ if (offset % hp_nb)
+ bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
while (bytes_remaining > 0) {
uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
count -= bytes_written;
/* this should always pass this check here */
- assert((offset % 128) == 0);
+ assert((offset % hp_nb) == 0);
/* calculate half pages */
- halfpages_number = count / 128;
+ halfpages_number = count / hp_nb;
if (halfpages_number) {
- retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, 128 * halfpages_number);
+ retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* attempt slow memory writes */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
/* write any remaining bytes */
- uint32_t page_bytes_written = 128 * halfpages_number;
+ uint32_t page_bytes_written = hp_nb * halfpages_number;
bytes_written += page_bytes_written;
address += page_bytes_written;
bytes_remaining = count - page_bytes_written;
return retval;
}
+static int stm32lx_read_id_code(struct target *target, uint32_t *id)
+{
+ /* read stm32 device id register */
+ int retval = target_read_u32(target, DBGMCU_IDCODE, id);
+ if (retval != ERROR_OK)
+ return retval;
+
+ /* STM32L0 parts will have 0 there, try reading the L0's location for
+ * DBG_IDCODE in case this is an L0 part. */
+ if (*id == 0)
+ retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
+
+ return retval;
+}
+
static int stm32lx_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb;
- uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = FLASH_BANK0_ADDRESS;
uint32_t second_bank_base;
- uint32_t first_bank_size_in_kb;
stm32lx_info->probed = 0;
- /* read stm32 device id register */
- int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
+ int retval = stm32lx_read_id_code(bank->target, &device_id);
if (retval != ERROR_OK)
return retval;
+ stm32lx_info->idcode = device_id;
+
LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
- /* set max flash size depending on family */
- switch (device_id & 0xfff) {
- case 0x416:
- max_flash_size_in_kb = 128;
- break;
- case 0x427:
- /* single bank, high density */
- max_flash_size_in_kb = 256;
- break;
- case 0x436:
- /* According to ST, the devices with id 0x436 have dual bank flash and comes with
- * a total flash size of 384k or 256kb. However, the first bank is always 192kb,
- * and second one holds the rest. The reason is that the 256kb version is actually
- * the same physical flash but only the first 256kb are verified.
- */
- max_flash_size_in_kb = 384;
- first_bank_size_in_kb = 192;
- stm32lx_info->has_dual_banks = true;
- break;
- case 0x437:
- /* Dual bank, high density */
- max_flash_size_in_kb = 512;
- first_bank_size_in_kb = 192;
- stm32lx_info->has_dual_banks = true;
- break;
- default:
+ for (unsigned int n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
+ if ((device_id & 0xfff) == stm32lx_parts[n].id)
+ stm32lx_info->part_info = &stm32lx_parts[n];
+ }
+
+ if (!stm32lx_info->part_info) {
LOG_WARNING("Cannot identify target as a STM32L family.");
return ERROR_FAIL;
}
- /* Get the flash size from target. 0x427 and 0x436 devices use a
- * different location for the Flash Size register, please see RM0038 r8 or
- * newer. */
- if ((device_id & 0xfff) == 0x427 || (device_id & 0xfff) == 0x436 ||
- (device_id & 0xfff) == 0x437)
- retval = target_read_u16(target, F_SIZE_MP, &flash_size_in_kb);
- else
- retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
+ stm32lx_info->flash_base = stm32lx_info->part_info->flash_base;
+
+ /* Get the flash size from target. */
+ retval = target_read_u16(target, stm32lx_info->part_info->fsize_base,
+ &flash_size_in_kb);
/* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
* or 256K, respectively. Please see RM0038 r8 or newer and refer to
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
- max_flash_size_in_kb);
- flash_size_in_kb = max_flash_size_in_kb;
- } else if (flash_size_in_kb > max_flash_size_in_kb) {
+ stm32lx_info->part_info->max_flash_size_kb);
+ flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb;
+ } else if (flash_size_in_kb > stm32lx_info->part_info->max_flash_size_kb) {
LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
- flash_size_in_kb, max_flash_size_in_kb, max_flash_size_in_kb);
- flash_size_in_kb = max_flash_size_in_kb;
+ flash_size_in_kb, stm32lx_info->part_info->max_flash_size_kb,
+ stm32lx_info->part_info->max_flash_size_kb);
+ flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb;
}
- if (stm32lx_info->has_dual_banks) {
+ if (stm32lx_info->part_info->has_dual_banks) {
/* Use the configured base address to determine if this is the first or second flash bank.
* Verify that the base address is reasonably correct and determine the flash bank size
*/
- second_bank_base = base_address + first_bank_size_in_kb * 1024;
+ second_bank_base = base_address +
+ stm32lx_info->part_info->first_bank_size_kb * 1024;
if (bank->base == second_bank_base) {
/* This is the second bank */
base_address = second_bank_base;
- flash_size_in_kb = flash_size_in_kb - first_bank_size_in_kb;
+ flash_size_in_kb = flash_size_in_kb -
+ stm32lx_info->part_info->first_bank_size_kb;
} else if (bank->base == 0 || bank->base == base_address) {
/* This is the first bank */
- flash_size_in_kb = first_bank_size_in_kb;
+ flash_size_in_kb = stm32lx_info->part_info->first_bank_size_kb;
} else {
LOG_WARNING("STM32L flash bank base address config is incorrect."
" 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
}
- /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
- * 16 pages for a protection area */
-
/* calculate numbers of sectors (4kB per sector) */
int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
return retval;
}
+/* This method must return a string displaying information about the bank */
static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
- /* This method must return a string displaying information about the bank */
-
- uint32_t dbgmcu_idcode;
-
- /* read stm32 device id register */
- int retval = target_read_u32(bank->target, DBGMCU_IDCODE, &dbgmcu_idcode);
- if (retval != ERROR_OK)
- return retval;
-
- uint16_t device_id = dbgmcu_idcode & 0xfff;
- uint16_t rev_id = dbgmcu_idcode >> 16;
- const char *device_str;
- const char *rev_str = NULL;
-
- switch (device_id) {
- case 0x416:
- device_str = "STM32L1xx (Low/Medium Density)";
-
- switch (rev_id) {
- case 0x1000:
- rev_str = "A";
- break;
-
- case 0x1008:
- rev_str = "Y";
- break;
-
- case 0x1018:
- rev_str = "X";
- break;
-
- case 0x1038:
- rev_str = "W";
- break;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
- case 0x1078:
- rev_str = "V";
- break;
+ if (!stm32lx_info->probed) {
+ int retval = stm32lx_probe(bank);
+ if (retval != ERROR_OK) {
+ snprintf(buf, buf_size,
+ "Unable to find bank information.");
+ return retval;
}
- break;
+ }
- case 0x427:
- device_str = "STM32L1xx (Medium+ Density)";
- switch (rev_id) {
- case 0x1018:
- rev_str = "A";
- break;
- }
- break;
+ const struct stm32lx_part_info *info = stm32lx_info->part_info;
- case 0x436:
- device_str = "STM32L1xx (Medium+/High Density)";
+ if (info) {
+ const char *rev_str = NULL;
+ uint16_t rev_id = stm32lx_info->idcode >> 16;
- switch (rev_id) {
- case 0x1000:
- rev_str = "A";
- break;
+ for (unsigned int i = 0; i < info->num_revs; i++)
+ if (rev_id == info->revs[i].rev)
+ rev_str = info->revs[i].str;
- case 0x1008:
- rev_str = "Z";
- break;
-
- case 0x1018:
- rev_str = "Y";
- break;
+ if (rev_str != NULL) {
+ snprintf(buf, buf_size,
+ "%s - Rev: %s",
+ stm32lx_info->part_info->device_str, rev_str);
+ } else {
+ snprintf(buf, buf_size,
+ "%s - Rev: unknown (0x%04x)",
+ stm32lx_info->part_info->device_str, rev_id);
}
- break;
- case 0x437:
- device_str = "STM32L1xx (Medium+/High Density)";
- break;
+ return ERROR_OK;
+ } else {
+ snprintf(buf, buf_size, "Cannot identify target as a STM32Lx");
- default:
- snprintf(buf, buf_size, "Cannot identify target as a STM32L1");
return ERROR_FAIL;
}
-
- if (rev_str != NULL)
- snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
- else
- snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
-
- return ERROR_OK;
}
static const struct command_registration stm32lx_exec_command_handlers[] = {
static int stm32lx_unlock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
*/
/* check flash is not already unlocked */
- retval = target_read_u32(target, FLASH_PECR, ®32);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ ®32);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
/* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
- retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
+ PEKEY1);
if (retval != ERROR_OK)
return retval;
- retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
+ PEKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
- retval = target_read_u32(target, FLASH_PECR, ®32);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ ®32);
if (retval != ERROR_OK)
return retval;
return ERROR_FLASH_OPERATION_FAILED;
}
- retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
+ PRGKEY1);
if (retval != ERROR_OK)
return retval;
- retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
+ PRGKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
- retval = target_read_u32(target, FLASH_PECR, ®32);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ ®32);
if (retval != ERROR_OK)
return retval;
static int stm32lx_enable_write_half_page(struct flash_bank *bank)
{
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
if (retval != ERROR_OK)
return retval;
- retval = target_read_u32(target, FLASH_PECR, ®32);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ ®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__FPRG;
- retval = target_write_u32(target, FLASH_PECR, reg32);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ reg32);
if (retval != ERROR_OK)
return retval;
- retval = target_read_u32(target, FLASH_PECR, ®32);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ ®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PROG;
- retval = target_write_u32(target, FLASH_PECR, reg32);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ reg32);
return retval;
}
static int stm32lx_lock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/* To lock the program memory, simply set the lock bit and lock PECR */
- retval = target_read_u32(target, FLASH_PECR, ®32);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ ®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PRGLOCK;
- retval = target_write_u32(target, FLASH_PECR, reg32);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ reg32);
if (retval != ERROR_OK)
return retval;
- retval = target_read_u32(target, FLASH_PECR, ®32);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ ®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PELOCK;
- retval = target_write_u32(target, FLASH_PECR, reg32);
+ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
+ reg32);
if (retval != ERROR_OK)
return retval;
static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
{
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/*
- * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
+ * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
* first unlock the memory, loop over the pages of this sector
* and write 0x0 to its first word.
*/
if (retval != ERROR_OK)
return retval;
- for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
+ for (int page = 0; page < (int)stm32lx_info->part_info->pages_per_sector;
+ page++) {
reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
- retval = target_write_u32(target, FLASH_PECR, reg32);
+ retval = target_write_u32(target,
+ stm32lx_info->flash_base + FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
return retval;
uint32_t addr = bank->base + bank->sectors[sector].offset + (page
- * FLASH_PAGE_SIZE);
+ * stm32lx_info->part_info->page_size);
retval = target_write_u32(target, addr, 0x0);
if (retval != ERROR_OK)
return retval;
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
{
struct target *target = bank->target;
+ struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t status;
int retval = ERROR_OK;
int timeout = 100;
/* wait for busy to clear */
for (;;) {
- retval = target_read_u32(target, FLASH_SR, &status);
+ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_SR,
+ &status);
if (retval != ERROR_OK)
return retval;