* 1 MiByte STM32F42x/43x part with DB1M Option set:
* 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
*
- * STM32F7
+ * STM32F7[4|5]
* 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
*
+ * STM32F7[6|7]
+ * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
+ * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
+ * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
+ * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
+ *
* Protection size is sector size.
*
* Tested with STM3220F-EVAL board.
* RM0385
* http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
*
+ * RM0410
+ * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
+ *
* STM32F1x series - notice that this code was copy, pasted and knocked
* into a stm32f2x driver, so in case something has been converted or
* bugs haven't been fixed, here are the original manuals:
#define STM32_FLASH_OPTCR1 0x40023c18
/* FLASH_CR register bits */
-
#define FLASH_PG (1 << 0)
#define FLASH_SER (1 << 1)
-#define FLASH_MER (1 << 2)
-#define FLASH_MER1 (1 << 15)
+#define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */
+#define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */
#define FLASH_STRT (1 << 16)
#define FLASH_PSIZE_8 (0 << 8)
#define FLASH_PSIZE_16 (1 << 8)
#define FLASH_LOCK (1 << 31)
/* FLASH_SR register bits */
-
#define FLASH_BSY (1 << 16)
#define FLASH_PGSERR (1 << 7) /* Programming sequence error */
#define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
/* STM32_FLASH_OPTCR register bits */
-
-#define OPT_LOCK (1 << 0)
-#define OPT_START (1 << 1)
-
-/* STM32_FLASH_OBR bit definitions (reading) */
-
-#define OPT_ERROR 0
-#define OPT_READOUT 1
-#define OPT_RDWDGSW 2
-#define OPT_RDRSTSTOP 3
-#define OPT_RDRSTSTDBY 4
-#define OPT_BFB2 5 /* dual flash bank only */
-#define OPT_DB1M 14 /* 1 MiB devices dual flash bank option */
+#define OPTCR_LOCK (1 << 0)
+#define OPTCR_START (1 << 1)
+#define OPTCR_NDBANK (1 << 29) /* not dual bank mode */
+#define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */
/* register unlock keys */
-
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
struct stm32x_options {
uint8_t RDP;
- uint8_t user_options;
+ uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */
uint32_t protection;
+ uint32_t boot_addr;
};
struct stm32x_flash_bank {
struct stm32x_options option_bytes;
int probed;
- bool has_large_mem; /* stm32f42x/stm32f43x family */
+ bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */
+ bool has_boot_addr; /* F7xx */
+ bool has_extra_options; /* F42x/43x/469/479/7xx */
uint32_t user_bank_size;
};
if (retval != ERROR_OK)
return retval;
- if ((ctrl & OPT_LOCK) == 0)
+ if ((ctrl & OPTCR_LOCK) == 0)
return ERROR_OK;
/* unlock option registers */
if (retval != ERROR_OK)
return retval;
- if (ctrl & OPT_LOCK) {
+ if (ctrl & OPTCR_LOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
if (retval != ERROR_OK)
return retval;
- stm32x_info->option_bytes.user_options = optiondata & 0xec;
+ /* caution: F2 implements 5 bits (WDG_SW only)
+ * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
+ stm32x_info->option_bytes.user_options = optiondata & 0xfc;
stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
stm32x_info->option_bytes.protection = (optiondata >> 16) & 0xfff;
- if (stm32x_info->has_large_mem) {
+ if (stm32x_info->has_extra_options) {
+ /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
+ stm32x_info->option_bytes.user_options |= (optiondata >> 20) & 0xf00;
+ }
+ if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
if (retval != ERROR_OK)
return retval;
- /* append protection bits */
- stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
+ /* FLASH_OPTCR1 has quite diffent meanings ... */
+ if (stm32x_info->has_boot_addr) {
+ /* for F7xx it contains boot0 and boot1 */
+ stm32x_info->option_bytes.boot_addr = optiondata;
+ } else {
+ /* for F42x/43x/469/479 it contains 12 additional protection bits */
+ stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
+ }
}
if (stm32x_info->option_bytes.RDP != 0xAA)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
- uint32_t optiondata;
+ uint32_t optiondata, optiondata2;
stm32x_info = bank->driver_priv;
return retval;
/* rebuild option data */
- optiondata = stm32x_info->option_bytes.user_options;
+ optiondata = stm32x_info->option_bytes.user_options & 0xfc;
optiondata |= stm32x_info->option_bytes.RDP << 8;
optiondata |= (stm32x_info->option_bytes.protection & 0x0fff) << 16;
- /* program options */
- retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
- if (retval != ERROR_OK)
- return retval;
+ if (stm32x_info->has_extra_options) {
+ /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
+ optiondata |= (stm32x_info->option_bytes.user_options & 0xf00) << 20;
+ }
- if (stm32x_info->has_large_mem) {
+ if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
+ if (stm32x_info->has_boot_addr) {
+ /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
+ optiondata2 = stm32x_info->option_bytes.boot_addr;
+ } else {
+ /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
+ optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
+ }
- uint32_t optiondata2 = 0;
- optiondata2 |= (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
if (retval != ERROR_OK)
return retval;
}
+ /* program options */
+ retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
+ if (retval != ERROR_OK)
+ return retval;
+
/* start programming cycle */
- retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPT_START);
+ retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
if (retval != ERROR_OK)
return retval;
return retval;
/* relock registers */
- retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPT_LOCK);
+ retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
if (retval != ERROR_OK)
return retval;
return retval;
}
- for (int i = 0; i < bank->num_sectors; i++) {
- if (stm32x_info->option_bytes.protection & (1 << i))
- bank->sectors[i].is_protected = 0;
- else
- bank->sectors[i].is_protected = 1;
+ if (stm32x_info->has_boot_addr && stm32x_info->has_large_mem) {
+ /* F76x/77x: bit k protects sectors 2*k and 2*k+1 */
+ for (int i = 0; i < (bank->num_sectors >> 1); i++) {
+ if (stm32x_info->option_bytes.protection & (1 << i)) {
+ bank->sectors[i << 1].is_protected = 0;
+ bank->sectors[(i << 1) + 1].is_protected = 0;
+ } else {
+ bank->sectors[i << 1].is_protected = 1;
+ bank->sectors[(i << 1) + 1].is_protected = 1;
+ }
+ }
+ } else {
+ /* one protection bit per sector */
+ for (int i = 0; i < bank->num_sectors; i++) {
+ if (stm32x_info->option_bytes.protection & (1 << i))
+ bank->sectors[i].is_protected = 0;
+ else
+ bank->sectors[i].is_protected = 1;
+ }
}
return ERROR_OK;
struct target *target = bank->target;
int i;
- assert(first < bank->num_sectors);
- assert(last < bank->num_sectors);
+ assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return retval;
}
- for (int i = first; i <= last; i++) {
+ if (stm32x_info->has_boot_addr && stm32x_info->has_large_mem) {
+ /* F76x/77x: bit k protects sectors 2*k and 2*k+1 */
+ if ((first & 1) != 0 || (last & 1) != 1) {
+ LOG_ERROR("sector protection must be double sector aligned");
+ return ERROR_FAIL;
+ } else {
+ first >>= 1;
+ last >>= 1;
+ }
+ }
+ for (int i = first; i <= last; i++) {
if (set)
stm32x_info->option_bytes.protection &= ~(1 << i);
else
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
}
-static void setup_sector(struct flash_bank *bank, int start, int num, int size)
+static int setup_sector(struct flash_bank *bank, int start, int num, int size)
{
+
for (int i = start; i < (start + num) ; i++) {
assert(i < bank->num_sectors);
bank->sectors[i].offset = bank->size;
bank->sectors[i].size = size;
bank->size += bank->sectors[i].size;
+ LOG_DEBUG("sector %d: %dkBytes", i, size >> 10);
}
+
+ return start + num;
+}
+
+static void setup_bank(struct flash_bank *bank, int start,
+ uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
+{
+ int remain;
+
+ start = setup_sector(bank, start, 4, (max_sector_size_in_kb / 8) * 1024);
+ start = setup_sector(bank, start, 1, (max_sector_size_in_kb / 2) * 1024);
+
+ /* remaining sectors all of size max_sector_size_in_kb */
+ remain = (flash_size_in_kb / max_sector_size_in_kb) - 1;
+ start = setup_sector(bank, start, remain, max_sector_size_in_kb * 1024);
}
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
stm32x_info->probed = 0;
stm32x_info->has_large_mem = false;
+ stm32x_info->has_boot_addr = false;
+ stm32x_info->has_extra_options = false;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &device_id);
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
- /* set max flash size depending on family */
+ /* set max flash size depending on family, id taken from AN2606 */
switch (device_id & 0xfff) {
- case 0x411:
- case 0x413:
- case 0x441:
+ case 0x411: /* F20x/21x */
+ case 0x413: /* F40x/41x */
max_flash_size_in_kb = 1024;
break;
- case 0x419:
- case 0x434:
+
+ case 0x419: /* F42x/43x */
+ case 0x434: /* F469/479 */
+ stm32x_info->has_extra_options = true;
max_flash_size_in_kb = 2048;
break;
- case 0x423:
+
+ case 0x423: /* F401xB/C */
max_flash_size_in_kb = 256;
break;
- case 0x431:
- case 0x433:
- case 0x421:
+
+ case 0x421: /* F446 */
+ case 0x431: /* F411 */
+ case 0x433: /* F401xD/E */
+ case 0x441: /* F412 */
max_flash_size_in_kb = 512;
break;
- case 0x458:
+
+ case 0x458: /* F410 */
max_flash_size_in_kb = 128;
break;
- case 0x449:
+
+ case 0x449: /* F74x/75x */
max_flash_size_in_kb = 1024;
max_sector_size_in_kb = 256;
flash_size_reg = 0x1FF0F442;
+ stm32x_info->has_extra_options = true;
+ stm32x_info->has_boot_addr = true;
+ break;
+
+ case 0x451: /* F76x/77x */
+ max_flash_size_in_kb = 2048;
+ max_sector_size_in_kb = 256;
+ flash_size_reg = 0x1FF0F442;
+ stm32x_info->has_extra_options = true;
+ stm32x_info->has_boot_addr = true;
break;
+
default:
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
- /* calculate numbers of pages */
- int num_pages = (flash_size_in_kb / max_sector_size_in_kb) + 4;
-
/* Devices with > 1024 kiByte always are dual-banked */
if (flash_size_in_kb > 1024)
stm32x_info->has_large_mem = true;
- /* F42x/43x 1024 kiByte devices have a dual bank option */
- if ((device_id & 0xfff) == 0x419 && (flash_size_in_kb == 1024)) {
+ /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
+ if ((device_id & 0xfff) == 0x419 || (device_id & 0xfff) == 0x434) {
uint32_t optiondata;
retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}
- if (optiondata & (1 << OPT_DB1M)) {
+ if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
stm32x_info->has_large_mem = true;
- LOG_INFO("Dual Bank 1024 kiB STM32F42x/43x found");
+ LOG_INFO("Dual Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
+ } else {
+ stm32x_info->has_large_mem = false;
+ LOG_INFO("Single Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
}
}
- /* check for dual-banked devices */
- if (stm32x_info->has_large_mem)
- num_pages += 4;
+ /* F76x/77x devices have a dual bank option */
+ if ((device_id & 0xfff) == 0x451) {
+ uint32_t optiondata;
+ retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
+ if (retval != ERROR_OK) {
+ LOG_DEBUG("unable to read option bytes");
+ return retval;
+ }
+ if (optiondata & OPTCR_NDBANK) {
+ stm32x_info->has_large_mem = false;
+ LOG_INFO("Single Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
+ } else {
+ stm32x_info->has_large_mem = true;
+ max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
+ LOG_INFO("Dual Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
+ }
+ }
- /* check that calculation result makes sense */
- assert(num_pages > 0);
+ /* calculate numbers of pages */
+ int num_pages = flash_size_in_kb / max_sector_size_in_kb
+ + (stm32x_info->has_large_mem ? 8 : 4);
if (bank->sectors) {
free(bank->sectors);
bank->base = base_address;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
+ for (i = 0; i < num_pages; i++) {
+ bank->sectors[i].is_erased = -1;
+ bank->sectors[i].is_protected = 0;
+ }
bank->size = 0;
-
- /* fixed memory */
- setup_sector(bank, 0, 4, (max_sector_size_in_kb / 8) * 1024);
- setup_sector(bank, 4, 1, (max_sector_size_in_kb / 2) * 1024);
+ LOG_DEBUG("allocated %d sectors", num_pages);
if (stm32x_info->has_large_mem) {
- if (flash_size_in_kb == 1024) {
- setup_sector(bank, 5, 3, 128 * 1024);
- setup_sector(bank, 12, 4, 16 * 1024);
- setup_sector(bank, 16, 1, 64 * 1024);
- setup_sector(bank, 17, 3, 128 * 1024);
- } else {
- setup_sector(bank, 5, 7, 128 * 1024);
- setup_sector(bank, 12, 4, 16 * 1024);
- setup_sector(bank, 16, 1, 64 * 1024);
- setup_sector(bank, 17, 7, 128 * 1024);
- }
+ /* dual-bank */
+ setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
+ setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
+ max_sector_size_in_kb);
} else {
- setup_sector(bank, 4 + 1, MIN(12, num_pages) - 5,
- max_sector_size_in_kb * 1024);
- }
- for (i = 0; i < num_pages; i++) {
- bank->sectors[i].is_erased = -1;
- bank->sectors[i].is_protected = 0;
+ /* single-bank */
+ setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
}
+ assert((bank->size >> 10) == flash_size_in_kb);
stm32x_info->probed = 1;
-
return ERROR_OK;
}
case 0x2003:
rev_str = "X";
break;
+
+ case 0x2007:
+ rev_str = "1";
+ break;
+
+ case 0x200F:
+ rev_str = "V";
+ break;
+
+ case 0x201F:
+ rev_str = "2";
+ break;
}
break;
case 0x413:
case 0x419:
+ case 0x434:
device_str = "STM32F4xx";
switch (rev_id) {
break;
}
break;
+
case 0x421:
device_str = "STM32F446";
break;
}
break;
+
case 0x423:
case 0x431:
case 0x433:
break;
}
break;
- case 0x434:
- device_str = "STM32F46x/F47x";
+
+ case 0x451:
+ device_str = "STM32F7[6|7]x";
switch (rev_id) {
case 0x1000:
flash_mer = FLASH_MER | FLASH_MER1;
else
flash_mer = FLASH_MER;
+
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
if (retval != ERROR_OK)
return retval;
return retval;
}
+COMMAND_HANDLER(stm32f2x_handle_options_read_command)
+{
+ int retval;
+ struct flash_bank *bank;
+ struct stm32x_flash_bank *stm32x_info = NULL;
+
+ if (CMD_ARGC != 1) {
+ command_print(CMD_CTX, "stm32f2x options_read <bank>");
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+
+ retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
+ if (ERROR_OK != retval)
+ return retval;
+
+ retval = stm32x_read_options(bank);
+ if (ERROR_OK != retval)
+ return retval;
+
+ stm32x_info = bank->driver_priv;
+ if (stm32x_info->has_extra_options) {
+ if (stm32x_info->has_boot_addr) {
+ uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
+
+ command_print(CMD_CTX, "stm32f2x user_options 0x%03X,"
+ " boot_add0 0x%04X, boot_add1 0x%04X",
+ stm32x_info->option_bytes.user_options,
+ boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
+ } else {
+ command_print(CMD_CTX, "stm32f2x user_options 0x%03X,",
+ stm32x_info->option_bytes.user_options);
+ }
+ } else {
+ command_print(CMD_CTX, "stm32f2x user_options 0x%02X",
+ stm32x_info->option_bytes.user_options);
+
+ }
+
+ return retval;
+}
+
+COMMAND_HANDLER(stm32f2x_handle_options_write_command)
+{
+ int retval;
+ struct flash_bank *bank;
+ struct stm32x_flash_bank *stm32x_info = NULL;
+ uint16_t user_options, boot_addr0, boot_addr1;
+
+ if (CMD_ARGC < 1) {
+ command_print(CMD_CTX, "stm32f2x options_write <bank> ...");
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+
+ retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
+ if (ERROR_OK != retval)
+ return retval;
+
+ retval = stm32x_read_options(bank);
+ if (ERROR_OK != retval)
+ return retval;
+
+ stm32x_info = bank->driver_priv;
+ if (stm32x_info->has_boot_addr) {
+ if (CMD_ARGC != 4) {
+ command_print(CMD_CTX, "stm32f2x options_write <bank> <user_options>"
+ " <boot_addr0> <boot_addr1>");
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+ COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
+ COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
+ stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
+ } else {
+ if (CMD_ARGC != 2) {
+ command_print(CMD_CTX, "stm32f2x options_write <bank> <user_options>");
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+ }
+
+ COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
+ if (user_options & (stm32x_info->has_extra_options ? ~0xffc : ~0xfc)) {
+ command_print(CMD_CTX, "stm32f2x invalid user_options");
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+
+ stm32x_info->option_bytes.user_options = user_options;
+
+ if (stm32x_write_options(bank) != ERROR_OK) {
+ command_print(CMD_CTX, "stm32f2x failed to write options");
+ return ERROR_OK;
+ }
+
+ /* switching between single- and dual-bank modes requires re-probe */
+ /* ... and reprogramming of whole flash */
+ stm32x_info->probed = 0;
+
+ command_print(CMD_CTX, "stm32f2x write options complete.\n"
+ "INFO: a reset or power cycle is required "
+ "for the new settings to take effect.");
+ return retval;
+}
+
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.usage = "bank_id",
.help = "Erase entire flash device.",
},
+ {
+ .name = "options_read",
+ .handler = stm32f2x_handle_options_read_command,
+ .mode = COMMAND_EXEC,
+ .usage = "bank_id",
+ .help = "Read and display device option bytes.",
+ },
+ {
+ .name = "options_write",
+ .handler = stm32f2x_handle_options_write_command,
+ .mode = COMMAND_EXEC,
+ .usage = "bank_id user_options [ boot_add0 boot_add1]",
+ .help = "Write option bytes",
+ },
COMMAND_REGISTRATION_DONE
};