static int lpc3180_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device)
{
lpc3180_nand_controller_t *lpc3180_info;
-
+
if (argc < 3)
{
LOG_WARNING("incomplete 'lpc3180' nand flash configuration");
return ERROR_FLASH_BANK_INVALID;
}
-
+
lpc3180_info = malloc(sizeof(lpc3180_nand_controller_t));
device->controller_priv = lpc3180_info;
lpc3180_info->osc_freq = strtoul(args[2], NULL, 0);
if ((lpc3180_info->osc_freq < 1000) || (lpc3180_info->osc_freq > 20000))
{
- LOG_WARNING("LPC3180 oscillator frequency should be between 1000 and 20000 kHz, was %i", lpc3180_info->osc_freq);
+ LOG_WARNING("LPC3180 oscillator frequency should be between 1000 and 20000 kHz, was %i", lpc3180_info->osc_freq);
}
lpc3180_info->selected_controller = LPC3180_NO_CONTROLLER;
lpc3180_info->sw_write_protection = 0;
lpc3180_info->sw_wp_lower_bound = 0x0;
lpc3180_info->sw_wp_upper_bound = 0x0;
-
+
return ERROR_OK;
}
static int lpc3180_register_commands(struct command_context_s *cmd_ctx)
{
command_t *lpc3180_cmd = register_command(cmd_ctx, NULL, "lpc3180", NULL, COMMAND_ANY, "commands specific to the LPC3180 NAND flash controllers");
-
+
register_command(cmd_ctx, lpc3180_cmd, "select", handle_lpc3180_select_command, COMMAND_EXEC, "select <'mlc'|'slc'> controller (default is mlc)");
-
+
return ERROR_OK;
}
if (!lock)
LOG_WARNING("PLL is not locked");
-
+
if (!bypass && direct) /* direct mode */
return (m * fclkin) / n;
-
+
if (bypass && !direct) /* bypass mode */
return fclkin / (2 * p);
-
+
if (bypass & direct) /* direct bypass mode */
return fclkin;
-
+
if (feedback) /* integer mode */
return m * (fclkin / n);
else /* non-integer mode */
- return (m / (2 * p)) * (fclkin / n);
+ return (m / (2 * p)) * (fclkin / n);
}
static float lpc3180_cycle_time(lpc3180_nand_controller_t *lpc3180_info)
int hclk;
int hclk_pll;
float cycle;
-
+
/* calculate timings */
-
- /* determine current SYSCLK (13'MHz or main oscillator) */
+
+ /* determine current SYSCLK (13'MHz or main oscillator) */
target_read_u32(target, 0x40004050, &sysclk_ctrl);
-
+
if ((sysclk_ctrl & 1) == 0)
sysclk = lpc3180_info->osc_freq;
else
sysclk = 13000;
-
+
/* determine selected HCLK source */
target_read_u32(target, 0x40004044, &pwr_ctrl);
-
+
if ((pwr_ctrl & (1 << 2)) == 0) /* DIRECT RUN mode */
{
hclk = sysclk;
hclk_pll = lpc3180_pll(sysclk, hclkpll_ctrl);
target_read_u32(target, 0x40004040, &hclkdiv_ctrl);
-
+
if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */
{
hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1);
}
else /* HCLK uses HCLK_PLL */
{
- hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
+ hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
}
}
-
+
LOG_DEBUG("LPC3180 HCLK currently clocked at %i kHz", hclk);
-
+
cycle = (1.0 / hclk) * 1000000.0;
-
+
return cycle;
}
int bus_width = (device->bus_width) ? (device->bus_width) : 8;
int address_cycles = (device->address_cycles) ? (device->address_cycles) : 3;
int page_size = (device->page_size) ? (device->page_size) : 512;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
/* sanitize arguments */
if ((bus_width != 8) && (bus_width != 16))
{
LOG_ERROR("LPC3180 only supports 8 or 16 bit bus width, not %i", bus_width);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
-
+
/* The LPC3180 only brings out 8 bit NAND data bus, but the controller
* would support 16 bit, too, so we just warn about this for now
*/
{
LOG_WARNING("LPC3180 only supports 8 bit bus width");
}
-
+
/* inform calling code about selected bus width */
device->bus_width = bus_width;
-
+
if ((address_cycles != 3) && (address_cycles != 4))
{
LOG_ERROR("LPC3180 only supports 3 or 4 address cycles, not %i", address_cycles);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
-
+
if ((page_size != 512) && (page_size != 2048))
{
LOG_ERROR("LPC3180 only supports 512 or 2048 byte pages, not %i", page_size);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
-
+
/* select MLC controller if none is currently selected */
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_DEBUG("no LPC3180 NAND flash controller selected, using default 'mlc'");
lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u32 mlc_icr_value = 0x0;
float cycle;
int twp, twh, trp, treh, trhz, trbwb, tcea;
-
+
/* FLASHCLK_CTRL = 0x22 (enable clock for MLC flash controller) */
target_write_u32(target, 0x400040c8, 0x22);
-
+
/* MLC_CEH = 0x0 (Force nCE assert) */
target_write_u32(target, 0x200b804c, 0x0);
-
+
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
-
+
/* MLC_ICR = configuration */
if (lpc3180_info->sw_write_protection)
mlc_icr_value |= 0x8;
if (bus_width == 16)
mlc_icr_value |= 0x1;
target_write_u32(target, 0x200b8030, mlc_icr_value);
-
+
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(lpc3180_info);
-
+
twp = ((40 / cycle) + 1);
twh = ((20 / cycle) + 1);
trp = ((30 / cycle) + 1);
trhz = ((30 / cycle) + 1);
trbwb = ((100 / cycle) + 1);
tcea = ((45 / cycle) + 1);
-
+
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
-
+
/* MLC_TIME_REG */
- target_write_u32(target, 0x200b8034, (twp & 0xf) | ((twh & 0xf) << 4) |
- ((trp & 0xf) << 8) | ((treh & 0xf) << 12) | ((trhz & 0x7) << 16) |
- ((trbwb & 0x1f) << 19) | ((tcea & 0x3) << 24));
+ target_write_u32(target, 0x200b8034, (twp & 0xf) | ((twh & 0xf) << 4) |
+ ((trp & 0xf) << 8) | ((treh & 0xf) << 12) | ((trhz & 0x7) << 16) |
+ ((trbwb & 0x1f) << 19) | ((tcea & 0x3) << 24));
lpc3180_reset(device);
}
float cycle;
int r_setup, r_hold, r_width, r_rdy;
int w_setup, w_hold, w_width, w_rdy;
-
+
/* FLASHCLK_CTRL = 0x05 (enable clock for SLC flash controller) */
target_write_u32(target, 0x400040c8, 0x05);
-
+
/* SLC_CFG = 0x (Force nCE assert, ECC enabled, WIDTH = bus_width) */
target_write_u32(target, 0x20020014, 0x28 | (bus_width == 16) ? 1 : 0);
-
+
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(lpc3180_info);
-
+
r_setup = w_setup = 0;
r_hold = w_hold = 10 / cycle;
r_width = 30 / cycle;
w_width = 40 / cycle;
r_rdy = w_rdy = 100 / cycle;
-
+
/* SLC_TAC: SLC timing arcs register */
target_write_u32(target, 0x2002002c, (r_setup & 0xf) | ((r_hold & 0xf) << 4) |
((r_width & 0xf) << 8) | ((r_rdy & 0xf) << 12) | ((w_setup & 0xf) << 16) |
- ((w_hold & 0xf) << 20) | ((w_width & 0xf) << 24) | ((w_rdy & 0xf) << 28));
-
+ ((w_hold & 0xf) << 20) | ((w_width & 0xf) << 24) | ((w_rdy & 0xf) << 28));
+
lpc3180_reset(device);
}
-
+
return ERROR_OK;
}
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
{
/* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */
target_write_u32(target, 0x20020010, 0x6);
-
+
if (!lpc3180_controller_ready(device, 100))
{
LOG_ERROR("LPC3180 NAND controller timed out after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
}
-
+
return ERROR_OK;
}
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
{
/* SLC_CMD = command */
target_write_u32(target, 0x20020008, command);
- }
-
+ }
+
return ERROR_OK;
}
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
/* SLC_ADDR = address */
target_write_u32(target, 0x20020004, address);
}
-
+
return ERROR_OK;
}
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
/* SLC_DATA = data */
target_write_u32(target, 0x20020000, data);
}
-
+
return ERROR_OK;
}
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
/* data = SLC_DATA, must use 32-bit access */
target_read_u32(target, 0x20020000, &data32);
-
+
if (device->bus_width == 8)
{
u8 *data8 = data;
LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
- }
-
+ }
+
return ERROR_OK;
}
target_t *target = lpc3180_info->target;
int retval;
u8 status;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
u8 *page_buffer;
u8 *oob_buffer;
int quarter, num_quarters;
-
+
if (!data && oob)
{
LOG_ERROR("LPC3180 MLC controller can't write OOB data only");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
-
+
if (oob && (oob_size > 6))
{
LOG_ERROR("LPC3180 MLC controller can't write more than 6 bytes of OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
-
+
if (data_size > (u32)device->page_size)
{
LOG_ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
-
+
/* MLC_CMD = sequential input */
target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN);
page_buffer = malloc(512);
- oob_buffer = malloc(6);
+ oob_buffer = malloc(6);
if (device->page_size == 512)
{
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
-
+
if (device->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
}
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
}
-
+
/* when using the MLC controller, we have to treat a large page device
* as being made out of four quarters, each the size of a small page device
*/
num_quarters = (device->page_size == 2048) ? 4 : 1;
-
+
for (quarter = 0; quarter < num_quarters; quarter++)
{
int thisrun_data_size = (data_size > 512) ? 512 : data_size;
int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size;
-
+
memset(page_buffer, 0xff, 512);
if (data)
{
data_size -= thisrun_data_size;
data += thisrun_data_size;
}
-
+
memset(oob_buffer, 0xff, (device->page_size == 512) ? 6 : 24);
if (oob)
{
oob_size -= thisrun_oob_size;
oob += thisrun_oob_size;
}
-
+
/* write MLC_ECC_ENC_REG to start encode cycle */
target_write_u32(target, 0x200b8008, 0x0);
-
+
target->type->write_memory(target, 0x200a8000, 4, 128, page_buffer + (quarter * 512));
target->type->write_memory(target, 0x200a8000, 1, 6, oob_buffer + (quarter * 6));
-
+
/* write MLC_ECC_AUTO_ENC_REG to start auto encode */
target_write_u32(target, 0x200b8010, 0x0);
-
+
if (!lpc3180_controller_ready(device, 1000))
{
LOG_ERROR("timeout while waiting for completion of auto encode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
}
-
+
/* MLC_CMD = auto program command */
target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG);
-
+
if ((retval = nand_read_status(device, &status)) != ERROR_OK)
{
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (status & NAND_STATUS_FAIL)
{
LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status);
return ERROR_NAND_OPERATION_FAILED;
}
-
+
free(page_buffer);
free(oob_buffer);
}
{
return nand_write_page_raw(device, page, data, data_size, oob, oob_size);
}
-
+
return ERROR_OK;
}
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
#endif
-
+
if (data_size > (u32)device->page_size)
{
LOG_ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
-
+
if (device->page_size == 2048)
{
page_buffer = malloc(2048);
page_buffer = malloc(512);
oob_buffer = malloc(16);
}
-
+
if (!data && oob)
{
- /* MLC_CMD = Read OOB
+ /* MLC_CMD = Read OOB
* we can use the READOOB command on both small and large page devices,
* as the controller translates the 0x50 command to a 0x0 with appropriate
* positioning of the serial buffer read pointer
/* MLC_CMD = Read0 */
target_write_u32(target, 0x200b8000, NAND_CMD_READ0);
}
-
+
if (device->page_size == 512)
{
/* small page device */
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
-
+
if (device->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
}
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
-
+
/* MLC_CMD = Read Start */
target_write_u32(target, 0x200b8000, NAND_CMD_READSTART);
}
-
+
while (page_bytes_done < (u32)device->page_size)
{
/* MLC_ECC_AUTO_DEC_REG = dummy */
target_write_u32(target, 0x200b8014, 0xaa55aa55);
-
+
if (!lpc3180_controller_ready(device, 1000))
{
LOG_ERROR("timeout while waiting for completion of auto decode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
target_read_u32(target, 0x200b8048, &mlc_isr);
-
+
if (mlc_isr & 0x8)
{
if (mlc_isr & 0x40)
LOG_ERROR("uncorrectable error detected: 0x%2.2x", mlc_isr);
return ERROR_NAND_OPERATION_FAILED;
}
-
+
LOG_WARNING("%i symbol error detected and corrected", ((mlc_isr & 0x30) >> 4) + 1);
}
-
+
if (data)
{
target->type->read_memory(target, 0x200a8000, 4, 128, page_buffer + page_bytes_done);
}
-
+
if (oob)
{
target->type->read_memory(target, 0x200a8000, 4, 4, oob_buffer + oob_bytes_done);
page_bytes_done += 512;
oob_bytes_done += 16;
}
-
+
if (data)
memcpy(data, page_buffer, data_size);
-
+
if (oob)
memcpy(oob, oob_buffer, oob_size);
-
+
free(page_buffer);
free(oob_buffer);
}
{
return nand_read_page_raw(device, page, data, data_size, oob, oob_size);
}
-
+
return ERROR_OK;
}
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
u8 status = 0x0;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
do
{
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* Read MLC_ISR, wait for controller to become ready */
target_read_u8(target, 0x200b8048, &status);
-
+
if (status & 2)
return 1;
}
alive_sleep(1);
} while (timeout-- > 0);
-
+
return 0;
}
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
-
+
if (target->state != TARGET_HALTED)
{
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
do
{
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
- {
+ {
u8 status = 0x0;
-
+
/* Read MLC_ISR, wait for NAND flash device to become ready */
target_read_u8(target, 0x200b8048, &status);
-
+
if (status & 1)
return 1;
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
u32 status = 0x0;
-
+
/* Read SLC_STAT and check READY bit */
target_read_u32(target, 0x20020018, &status);
-
+
if (status & 1)
return 1;
}
-
+
alive_sleep(1);
} while (timeout-- > 0);
-
- return 0;
+
+ return 0;
}
static int handle_lpc3180_select_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
nand_device_t *device = NULL;
lpc3180_nand_controller_t *lpc3180_info = NULL;
- char *selected[] =
+ char *selected[] =
{
"no", "mlc", "slc"
};
-
+
if ((argc < 1) || (argc > 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
device = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (!device)
{
command_print(cmd_ctx, "nand device '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
-
+
lpc3180_info = device->controller_priv;
-
+
if (argc == 2)
{
if (strcmp(args[1], "mlc") == 0)
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
-
+
command_print(cmd_ctx, "%s controller selected", selected[lpc3180_info->selected_controller]);
-
+
return ERROR_OK;
}
{
int i;
int retval;
-
+
if (argc < 1)
{
LOG_WARNING("incomplete flash device nand configuration");
return ERROR_FLASH_BANK_INVALID;
}
-
+
for (i = 0; nand_flash_controllers[i]; i++)
{
nand_device_t *p, *c;
-
+
if (strcmp(args[0], nand_flash_controllers[i]->name) == 0)
{
/* register flash specific commands */
LOG_ERROR("couldn't register '%s' commands", args[0]);
return retval;
}
-
+
c = malloc(sizeof(nand_device_t));
c->controller = nand_flash_controllers[i];
free(c);
return ERROR_OK;
}
-
+
/* put NAND device in linked list */
if (nand_devices)
{
{
nand_devices = c;
}
-
+
return ERROR_OK;
}
}
{
LOG_ERROR("%i: %s", i, nand_flash_controllers[i]->name);
}
-
+
return ERROR_OK;
}
int nand_register_commands(struct command_context_s *cmd_ctx)
{
nand_cmd = register_command(cmd_ctx, NULL, "nand", NULL, COMMAND_ANY, "NAND specific commands");
-
+
register_command(cmd_ctx, nand_cmd, "device", handle_nand_device_command, COMMAND_CONFIG, NULL);
-
+
return ERROR_OK;
}
register_command(cmd_ctx, nand_cmd, "raw_access", handle_nand_raw_access_command, COMMAND_EXEC,
"raw access to NAND flash device <num> ['enable'|'disable']");
}
-
+
return ERROR_OK;
}
return p;
}
}
-
+
return NULL;
}
u32 page = 0x0;
int i;
u8 oob[6];
-
+
if ((first < 0) || (first >= device->num_blocks))
first = 0;
-
+
if ((last >= device->num_blocks) || (last == -1))
last = device->num_blocks - 1;
-
+
for (i = first; i < last; i++)
{
nand_read_page(device, page, NULL, 0, oob, 6);
-
+
if (((device->device->options & NAND_BUSWIDTH_16) && ((oob[0] & oob[1]) != 0xff))
|| (((device->page_size == 512) && (oob[5] != 0xff)) ||
((device->page_size == 2048) && (oob[0] != 0xff))))
{
device->blocks[i].is_bad = 0;
}
-
+
page += (device->erase_size / device->page_size);
}
-
+
return ERROR_OK;
}
{
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
-
+
/* Send read status command */
device->controller->command(device, NAND_CMD_STATUS);
-
+
alive_sleep(1);
-
+
/* read status */
if (device->device->options & NAND_BUSWIDTH_16)
{
{
device->controller->read_data(device, status);
}
-
+
return ERROR_OK;
}
/* clear device data */
device->device = NULL;
device->manufacturer = NULL;
-
+
/* clear device parameters */
device->bus_width = 0;
device->address_cycles = 0;
device->page_size = 0;
device->erase_size = 0;
-
+
/* initialize controller (device parameters are zero, use controller default) */
if ((retval = device->controller->init(device) != ERROR_OK))
{
return ERROR_NAND_OPERATION_FAILED;
}
}
-
+
device->controller->command(device, NAND_CMD_RESET);
device->controller->reset(device);
device->controller->command(device, NAND_CMD_READID);
device->controller->address(device, 0x0);
-
+
if (device->bus_width == 8)
{
device->controller->read_data(device, &manufacturer_id);
device->controller->read_data(device, &data_buf);
device_id = data_buf & 0xff;
}
-
+
for (i = 0; nand_flash_ids[i].name; i++)
{
if (nand_flash_ids[i].id == device_id)
break;
}
}
-
+
for (i = 0; nand_manuf_ids[i].name; i++)
{
if (nand_manuf_ids[i].id == manufacturer_id)
break;
}
}
-
+
if (!device->manufacturer)
{
device->manufacturer = &nand_manuf_ids[0];
device->manufacturer->id = manufacturer_id;
}
-
+
if (!device->device)
{
LOG_ERROR("unknown NAND flash device found, manufacturer id: 0x%2.2x device id: 0x%2.2x",
manufacturer_id, device_id);
return ERROR_NAND_OPERATION_FAILED;
}
-
+
LOG_DEBUG("found %s (%s)", device->device->name, device->manufacturer->name);
-
+
/* initialize device parameters */
-
- /* bus width */
+
+ /* bus width */
if (device->device->options & NAND_BUSWIDTH_16)
device->bus_width = 16;
else
id_buff[5] = data_buf >> 8;
}
}
-
+
/* page size */
if (device->device->page_size == 0)
{
{
device->page_size = device->device->page_size;
}
-
+
/* number of address cycles */
if (device->page_size <= 512)
{
device->address_cycles = 6;
}
}
-
+
/* erase size */
if (device->device->erase_size == 0)
{
{
device->erase_size = device->device->erase_size;
}
-
+
/* initialize controller, but leave parameters at the controllers default */
if ((retval = device->controller->init(device) != ERROR_OK))
{
return ERROR_NAND_OPERATION_FAILED;
}
}
-
+
device->num_blocks = (device->device->chip_size * 1024) / (device->erase_size / 1024);
device->blocks = malloc(sizeof(nand_block_t) * device->num_blocks);
-
+
for (i = 0; i < device->num_blocks; i++)
{
device->blocks[i].size = device->erase_size;
device->blocks[i].is_erased = -1;
device->blocks[i].is_bad = -1;
}
-
+
return ERROR_OK;
}
u32 page;
u8 status;
int retval;
-
+
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
-
+
if ((first_block < 0) || (last_block > device->num_blocks))
return ERROR_INVALID_ARGUMENTS;
-
+
/* make sure we know if a block is bad before erasing it */
for (i = first_block; i <= last_block; i++)
{
break;
}
}
-
+
for (i = first_block; i <= last_block; i++)
{
/* Send erase setup command */
device->controller->command(device, NAND_CMD_ERASE1);
-
+
page = i * (device->erase_size / device->page_size);
-
+
/* Send page address */
if (device->page_size <= 512)
{
/* row */
device->controller->address(device, page & 0xff);
device->controller->address(device, (page >> 8) & 0xff);
-
+
/* 3rd cycle only on devices with more than 32 MiB */
if (device->address_cycles >= 4)
device->controller->address(device, (page >> 16) & 0xff);
-
+
/* 4th cycle only on devices with more than 8 GiB */
if (device->address_cycles >= 5)
device->controller->address(device, (page >> 24) & 0xff);
/* row */
device->controller->address(device, page & 0xff);
device->controller->address(device, (page >> 8) & 0xff);
-
+
/* 3rd cycle only on devices with more than 128 MiB */
if (device->address_cycles >= 5)
device->controller->address(device, (page >> 16) & 0xff);
}
-
+
/* Send erase confirm command */
device->controller->command(device, NAND_CMD_ERASE2);
LOG_ERROR("timeout waiting for NAND flash block erase to complete");
return ERROR_NAND_OPERATION_TIMEOUT;
}
-
+
if ((retval = nand_read_status(device, &status)) != ERROR_OK)
{
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (status & 0x1)
{
LOG_ERROR("erase operation didn't pass, status: 0x%2.2x", status);
device->blocks[i].is_erased = 1;
}
-
+
return ERROR_OK;
}
static int nand_read_plain(struct nand_device_s *device, u32 address, u8 *data, u32 data_size)
{
u8 *page;
-
+
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
-
+
if (address % device->page_size)
{
LOG_ERROR("reads need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
page = malloc(device->page_size);
-
+
while (data_size > 0 )
{
u32 thisrun_size = (data_size > device->page_size) ? device->page_size : data_size;
u32 page_address;
-
-
+
+
page_address = address / device->page_size;
-
+
nand_read_page(device, page_address, page, device->page_size, NULL, 0);
memcpy(data, page, thisrun_size);
-
+
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
-
+
free(page);
-
+
return ERROR_OK;
}
static int nand_write_plain(struct nand_device_s *device, u32 address, u8 *data, u32 data_size)
{
u8 *page;
-
+
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
-
+
if (address % device->page_size)
{
LOG_ERROR("writes need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
page = malloc(device->page_size);
-
+
while (data_size > 0 )
{
u32 thisrun_size = (data_size > device->page_size) ? device->page_size : data_size;
u32 page_address;
-
+
memset(page, 0xff, device->page_size);
memcpy(page, data, thisrun_size);
-
+
page_address = address / device->page_size;
-
+
nand_write_page(device, page_address, page, device->page_size, NULL, 0);
-
+
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
-
+
free(page);
-
+
return ERROR_OK;
}
#endif
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
-
+
block = page / (device->erase_size / device->page_size);
if (device->blocks[block].is_erased == 1)
device->blocks[block].is_erased = 0;
{
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
-
+
if (device->use_raw || device->controller->read_page == NULL)
return nand_read_page_raw(device, page, data, data_size, oob, oob_size);
else
int nand_read_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size)
{
u32 i;
-
+
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
device->controller->command(device, NAND_CMD_READ0);
else
device->controller->command(device, NAND_CMD_READOOB);
-
+
/* column (always 0, we start at the beginning of a page/OOB area) */
device->controller->address(device, 0x0);
-
+
/* row */
device->controller->address(device, page & 0xff);
device->controller->address(device, (page >> 8) & 0xff);
-
+
/* 4th cycle only on devices with more than 32 MiB */
if (device->address_cycles >= 4)
device->controller->address(device, (page >> 16) & 0xff);
{
/* large page device */
device->controller->command(device, NAND_CMD_READ0);
-
+
/* column (0 when we start at the beginning of a page,
* or 2048 for the beginning of OOB area)
*/
device->controller->address(device, 0x0);
else
device->controller->address(device, 0x8);
-
+
/* row */
device->controller->address(device, page & 0xff);
device->controller->address(device, (page >> 8) & 0xff);
/* large page devices need a start command */
device->controller->command(device, NAND_CMD_READSTART);
}
-
+
if (device->controller->nand_ready) {
if (!device->controller->nand_ready(device, 100))
return ERROR_NAND_OPERATION_TIMEOUT;
} else {
alive_sleep(1);
}
-
+
if (data)
{
if (device->controller->read_block_data != NULL)
}
}
}
-
+
if (oob)
{
if (device->controller->read_block_data != NULL)
}
}
}
-
- return ERROR_OK;
+
+ return ERROR_OK;
}
int nand_write_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size)
u32 i;
int retval;
u8 status;
-
+
if (!device->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
device->controller->command(device, NAND_CMD_SEQIN);
-
+
if (device->page_size <= 512)
{
/* column (always 0, we start at the beginning of a page/OOB area) */
device->controller->address(device, 0x0);
-
+
/* row */
device->controller->address(device, page & 0xff);
device->controller->address(device, (page >> 8) & 0xff);
-
+
/* 4th cycle only on devices with more than 32 MiB */
if (device->address_cycles >= 4)
device->controller->address(device, (page >> 16) & 0xff);
device->controller->address(device, 0x0);
else
device->controller->address(device, 0x8);
-
+
/* row */
device->controller->address(device, page & 0xff);
device->controller->address(device, (page >> 8) & 0xff);
if (device->address_cycles >= 5)
device->controller->address(device, (page >> 16) & 0xff);
}
-
+
if (data)
{
if (device->controller->write_block_data != NULL)
}
}
}
-
+
if (oob)
{
if (device->controller->write_block_data != NULL)
}
}
}
-
+
device->controller->command(device, NAND_CMD_PAGEPROG);
-
+
retval = device->controller->nand_ready ?
device->controller->nand_ready(device, 100) :
nand_poll_ready(device, 100);
if (!retval)
return ERROR_NAND_OPERATION_TIMEOUT;
-
+
if ((retval = nand_read_status(device, &status)) != ERROR_OK)
{
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
if (status & NAND_STATUS_FAIL)
{
LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status);
return ERROR_NAND_OPERATION_FAILED;
}
-
- return ERROR_OK;
+
+ return ERROR_OK;
}
int handle_nand_list_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
nand_device_t *p;
int i = 0;
-
+
if (!nand_devices)
{
command_print(cmd_ctx, "no NAND flash devices configured");
return ERROR_OK;
}
-
+
for (p = nand_devices; p; p = p->next)
{
if (p->device)
else
command_print(cmd_ctx, "#%i: not probed");
}
-
+
return ERROR_OK;
}
int j = 0;
int first = -1;
int last = -1;
-
+
if ((argc < 1) || (argc > 3))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
if (argc == 2)
{
first = last = strtoul(args[1], NULL, 0);
first = strtoul(args[1], NULL, 0);
last = strtoul(args[2], NULL, 0);
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
{
if (first >= p->num_blocks)
first = p->num_blocks - 1;
-
+
if (last >= p->num_blocks)
last = p->num_blocks - 1;
-
+
command_print(cmd_ctx, "#%i: %s (%s) pagesize: %i, buswidth: %i, erasesize: %i",
i++, p->device->name, p->manufacturer->name, p->page_size, p->bus_width, p->erase_size);
-
+
for (j = first; j <= last; j++)
{
char *erase_state, *bad_state;
-
+
if (p->blocks[j].is_erased == 0)
erase_state = "not erased";
else if (p->blocks[j].is_erased == 1)
erase_state = "erased";
else
erase_state = "erase state unknown";
-
+
if (p->blocks[j].is_bad == 0)
bad_state = "";
else if (p->blocks[j].is_bad == 1)
command_print(cmd_ctx, "#%i: not probed");
}
}
-
+
return ERROR_OK;
}
{
nand_device_t *p;
int retval;
-
+
if (argc != 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
{
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]);
}
-
+
return ERROR_OK;
}
{
nand_device_t *p;
int retval;
-
+
if (argc != 3)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
int first = strtoul(args[1], NULL, 0);
int last = strtoul(args[2], NULL, 0);
-
+
if ((retval = nand_erase(p, first, last)) == ERROR_OK)
{
command_print(cmd_ctx, "successfully erased blocks %i to %i on NAND flash device '%s'", first, last, p->device->name);
{
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]);
}
-
+
return ERROR_OK;
}
int retval;
int first = -1;
int last = -1;
-
+
if ((argc < 1) || (argc > 3) || (argc == 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
if (argc == 3)
{
first = strtoul(args[1], NULL, 0);
last = strtoul(args[2], NULL, 0);
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
{
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]);
}
-
+
return ERROR_OK;
}
static int handle_nand_copy_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
nand_device_t *p;
-
+
if (argc != 4)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
{
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]);
}
-
+
return ERROR_OK;
}
u32 binary_size;
u32 buf_cnt;
enum oob_formats oob_format = NAND_OOB_NONE;
-
+
fileio_t fileio;
-
+
duration_t duration;
char *duration_text;
-
+
nand_device_t *p;
-
+
if (argc < 3)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
u8 *oob = NULL;
u32 oob_size = 0;
const int *eccpos = NULL;
-
+
offset = strtoul(args[2], NULL, 0);
-
+
if (argc > 3)
{
int i;
}
}
}
-
+
duration_start_measure(&duration);
if (fileio_open(&fileio, args[1], FILEIO_READ, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
-
+
buf_cnt = binary_size = fileio.size;
-
+
if (!(oob_format & NAND_OOB_ONLY))
{
page_size = p->page_size;
}
oob = malloc(oob_size);
}
-
+
if (offset % p->page_size)
{
command_print(cmd_ctx, "only page size aligned offsets and sizes are supported");
free(page);
return ERROR_OK;
}
-
+
while (buf_cnt > 0)
{
u32 size_read;
-
+
if (NULL != page)
{
fileio_read(&fileio, page_size, page, &size_read);
memset(oob + size_read, 0xff, oob_size - size_read);
}
}
-
+
if (nand_write_page(p, offset / p->page_size, page, page_size, oob, oob_size) != ERROR_OK)
{
command_print(cmd_ctx, "failed writing file %s to NAND flash %s at offset 0x%8.8x",
{
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]);
}
-
+
return ERROR_OK;
}
static int handle_nand_dump_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
nand_device_t *p;
-
+
if (argc < 4)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
duration_t duration;
char *duration_text;
int retval;
-
+
u8 *page = NULL;
u32 page_size = 0;
u8 *oob = NULL;
u32 size = strtoul(args[3], NULL, 0);
u32 bytes_done = 0;
enum oob_formats oob_format = NAND_OOB_NONE;
-
+
if (argc > 4)
{
int i;
else if (!strcmp(args[i], "oob_only"))
oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY;
else
- command_print(cmd_ctx, "unknown option: '%s'", args[i]);
+ command_print(cmd_ctx, "unknown option: '%s'", args[i]);
}
}
-
+
if ((address % p->page_size) || (size % p->page_size))
{
command_print(cmd_ctx, "only page size aligned addresses and sizes are supported");
return ERROR_OK;
}
-
+
if (!(oob_format & NAND_OOB_ONLY))
{
page_size = p->page_size;
oob_size = 64;
oob = malloc(oob_size);
}
-
+
if (fileio_open(&fileio, args[1], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
-
+
duration_start_measure(&duration);
-
+
while (size > 0)
{
u32 size_written;
{
command_print(cmd_ctx, "reading NAND flash page failed");
free(page);
- free(oob);
+ free(oob);
fileio_close(&fileio);
return ERROR_OK;
}
-
+
if (NULL != page)
{
fileio_write(&fileio, page_size, page, &size_written);
bytes_done += page_size;
}
-
+
if (NULL != oob)
{
fileio_write(&fileio, oob_size, oob, &size_written);
bytes_done += oob_size;
}
-
+
size -= p->page_size;
address += p->page_size;
}
-
+
free(page);
page = NULL;
free(oob);
{
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]);
}
-
+
return ERROR_OK;
}
static int handle_nand_raw_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
nand_device_t *p;
-
+
if ((argc < 1) || (argc > 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
p = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (p)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
-
+
command_print(cmd_ctx, "raw access is %s", (p->use_raw) ? "enabled" : "disabled");
}
else
{
command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]);
}
-
+
return ERROR_OK;
}
typedef struct nand_manufacturer_s
{
- int id;
+ int id;
char *name;
} nand_manufacturer_t;
/* Option constants for bizarre disfunctionality and real features
*/
-enum {
+enum {
/* Chip can not auto increment pages */
NAND_NO_AUTOINCR = 0x00000001,
-
+
/* Buswitdh is 16 bit */
NAND_BUSWIDTH_16 = 0x00000002,
-
+
/* Device supports partial programming without padding */
NAND_NO_PADDING = 0x00000004,
-
+
/* Chip has cache program function */
NAND_CACHEPRG = 0x00000008,
-
+
/* Chip has copy back function */
NAND_COPYBACK = 0x00000010,
-
+
/* AND Chip which has 4 banks and a confusing page / block
* assignment. See Renesas datasheet for further information */
NAND_IS_AND = 0x00000020,
-
+
/* Chip has a array of 4 pages which can be read without
* additional ready /busy waits */
NAND_4PAGE_ARRAY = 0x00000040,
-
+
/* Chip requires that BBT is periodically rewritten to prevent
* bits from adjacent blocks from 'leaking' in altering data.
* This happens with the Renesas AG-AND chips, possibly others. */
BBT_AUTO_REFRESH = 0x00000080,
-
+
/* Chip does not require ready check on read. True
* for all large page devices, as they do not support
* autoincrement.*/
NAND_NO_READRDY = 0x00000100,
-
+
/* Options valid for Samsung large page devices */
NAND_SAMSUNG_LP_OPTIONS = (NAND_NO_PADDING | NAND_CACHEPRG | NAND_COPYBACK),
-
+
/* Options for new chips with large page size. The pagesize and the
* erasesize is determined from the extended id bytes
*/
NAND_CMD_READID = 0x90,
NAND_CMD_ERASE2 = 0xd0,
NAND_CMD_RESET = 0xff,
-
+
/* Extended commands for large page devices */
NAND_CMD_READSTART = 0x30,
NAND_CMD_RNDOUTSTART = 0xE0,
NAND_OOB_NONE = 0x0, /* no OOB data at all */
NAND_OOB_RAW = 0x1, /* raw OOB data (16 bytes for 512b page sizes, 64 bytes for 2048b page sizes) */
NAND_OOB_ONLY = 0x2, /* only OOB data */
- NAND_OOB_SW_ECC = 0x10, /* when writing, use SW ECC (as opposed to no ECC) */
+ NAND_OOB_SW_ECC = 0x10, /* when writing, use SW ECC (as opposed to no ECC) */
NAND_OOB_HW_ECC = 0x20, /* when writing, use HW ECC (as opposed to no ECC) */
NAND_OOB_SW_ECC_KW = 0x40, /* when writing, use Marvell's Kirkwood bootrom format */
NAND_OOB_JFFS2 = 0x100, /* when writing, use JFFS2 OOB layout */
struct nand_device_s *device)
{
s3c24xx_nand_controller_t *info;
-
+
info = s3c24xx_nand_device_command(cmd_ctx, cmd, args, argc, device);
if (info == NULL) {
return ERROR_NAND_DEVICE_INVALID;
info->addr = S3C2410_NFADDR;
info->data = S3C2410_NFDATA;
info->nfstat = S3C2410_NFSTAT;
-
+
return ERROR_OK;
}
s3c24xx_nand_controller_t *s3c24xx_info = device->controller_priv;
target_t *target = s3c24xx_info->target;
- target_write_u32(target, S3C2410_NFCONF,
+ target_write_u32(target, S3C2410_NFCONF,
S3C2410_NFCONF_EN | S3C2410_NFCONF_TACLS(3) |
S3C2410_NFCONF_TWRPH0(5) | S3C2410_NFCONF_TWRPH1(3));
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
target_write_u32(target, S3C2410_NFDATA, data);
return ERROR_OK;
}
{
s3c24xx_nand_controller_t *s3c24xx_info = device->controller_priv;
target_t *target = s3c24xx_info->target;
-
+
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
- target_read_u8(target, S3C2410_NFDATA, data);
+ target_read_u8(target, S3C2410_NFDATA, data);
return ERROR_OK;
}
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
do {
target_read_u8(target, S3C2410_NFSTAT, &status);
-
+
if (status & S3C2410_NFSTAT_BUSY)
return 1;
- alive_sleep(1);
+ alive_sleep(1);
} while (timeout-- > 0);
return 0;
info->addr = S3C2440_NFADDR;
info->data = S3C2440_NFDATA;
info->nfstat = S3C2412_NFSTAT;
-
+
return ERROR_OK;
}
struct nand_device_s *device)
{
s3c24xx_nand_controller_t *info;
-
+
info = s3c24xx_nand_device_command(cmd_ctx, cmd, args, argc, device);
if (info == NULL) {
return ERROR_NAND_DEVICE_INVALID;
info->addr = S3C2440_NFADDR;
info->data = S3C2440_NFDATA;
info->nfstat = S3C2440_NFSTAT;
-
+
return ERROR_OK;
}
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
- do {
+
+ do {
target_read_u8(target, s3c24xx_info->nfstat, &status);
-
+
if (status & S3C2440_NFSTAT_READY)
return 1;
return ERROR_NAND_OPERATION_FAILED;
}
- while (data_size >= 4) {
+ while (data_size >= 4) {
target_read_u32(target, nfdata, &tmp);
data[0] = tmp;
return ERROR_NAND_OPERATION_FAILED;
}
- while (data_size >= 4) {
+ while (data_size >= 4) {
tmp = le_to_h_u32(data);
target_write_u32(target, nfdata, tmp);
struct nand_device_s *device)
{
s3c24xx_nand_controller_t *info;
-
+
info = s3c24xx_nand_device_command(cmd_ctx, cmd, args, argc, device);
if (info == NULL) {
return ERROR_NAND_DEVICE_INVALID;
info->addr = S3C2440_NFADDR;
info->data = S3C2440_NFDATA;
info->nfstat = S3C2412_NFSTAT;
-
+
return ERROR_OK;
}
struct nand_device_s *device)
{
s3c24xx_nand_controller_t *s3c24xx_info;
-
+
s3c24xx_info = malloc(sizeof(s3c24xx_nand_controller_t));
if (s3c24xx_info == NULL) {
LOG_ERROR("no memory for nand controller\n");
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
target_write_u32(target, s3c24xx_info->cmd, 0xff);
-
+
return ERROR_OK;
}
{
s3c24xx_nand_controller_t *s3c24xx_info = device->controller_priv;
target_t *target = s3c24xx_info->target;
-
+
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
{
s3c24xx_nand_controller_t *s3c24xx_info = device->controller_priv;
target_t *target = s3c24xx_info->target;
-
+
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
target_write_u16(target, s3c24xx_info->addr, address);
return ERROR_OK;
}
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
-
+
target_write_u8(target, s3c24xx_info->data, data);
return ERROR_OK;
}
{
s3c24xx_nand_controller_t *s3c24xx_info = device->controller_priv;
target_t *target = s3c24xx_info->target;
-
+
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use S3C24XX NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
typedef struct s3c24xx_nand_controller_s
{
struct target_s *target;
-
+
/* register addresses */
u32 cmd;
u32 addr;
u32 data;
- u32 nfstat;
+ u32 nfstat;
} s3c24xx_nand_controller_t;
/* Default to using the un-translated NAND register based address */
u32 rcc;
u8 mck_valid;
u32 mck_freq;
-
} stellaris_flash_bank_t;
/* STELLARIS control registers */
#define FMPRE 0x130
#define FMPPE 0x134
-#define USECRL 0x140
+#define USECRL 0x140
#define FLASH_CONTROL_BASE 0x400FD000
#define FLASH_FMA (FLASH_CONTROL_BASE|0x000)
#define FMC_COMT (1<<3)
#define FMC_MERASE (1<<2)
#define FMC_ERASE (1<<1)
-#define FMC_WRITE (1<<0)
+#define FMC_WRITE (1<<0)
/* STELLARIS constants */
#define FLASH_PG (1<<0)
#define FLASH_PER (1<<1)
-#define FLASH_MER (1<<2)
+#define FLASH_MER (1<<2)
#define FLASH_OPTPG (1<<4)
#define FLASH_OPTER (1<<5)
#define FLASH_STRT (1<<6)
#define FLASH_LOCK (1<<7)
#define FLASH_OPTWRE (1<<9)
-/* FLASH_SR regsiter bits */
+/* FLASH_SR register bits */
#define FLASH_BSY (1<<0)
-#define FLASH_PGERR (1<<2)
+#define FLASH_PGERR (1<<2)
#define FLASH_WRPRTERR (1<<4)
#define FLASH_EOP (1<<5)
#define FLASH_AR 0x00000010
#define FLASH_ER 0x00000014
#define FLASH_NVWPAR 0x0000DFB0
-#define FLASH_NVAPR0 0x0000DFB8
-#define FLASH_NVAPR1 0x0000DFBC
+#define FLASH_NVAPR0 0x0000DFB8
+#define FLASH_NVAPR1 0x0000DFBC
/* FLASH_CR0 register bits */
#define FLASH_WMS 0x80000000
#define FLASH_SUSP 0x40000000
-#define FLASH_WPG 0x20000000
+#define FLASH_WPG 0x20000000
#define FLASH_DWPG 0x10000000
#define FLASH_SER 0x08000000
#define FLASH_SPR 0x01000000
#define FLASH_BSYA1 0x00000004
#define FLASH_BSYA0 0x00000002
-/* FLASH_CR1 regsiter bits */
+/* FLASH_CR1 register bits */
#define FLASH_B1S 0x02000000
#define FLASH_B0S 0x01000000