#include "string.h"
#include <unistd.h>
-/* note that this is not marked as static as it must be available from outside jtag.c for those
- that implement the jtag_xxx() minidriver layer
+/* note that this is not marked as static as it must be available from outside jtag.c for those
+ that implement the jtag_xxx() minidriver layer
*/
-int jtag_error=ERROR_OK;
+int jtag_error=ERROR_OK;
char* tap_state_strings[16] =
{
- "tlr",
+ "tlr",
"sds", "cd", "sd", "e1d", "pd", "e2d", "ud",
"rti",
"sis", "ci", "si", "e1i", "pi", "e2i", "ui"
* 3: Pause-DR
* 4: Shift-IR
* 5: Pause-IR
- *
+ *
* SD->SD and SI->SI have to be caught in interface specific code
*/
u8 tap_move[6][6] =
/* how long the OpenOCD should wait before attempting JTAG communication after reset lines deasserted (in ms) */
int jtag_nsrst_delay = 0; /* default to no nSRST delay */
-int jtag_ntrst_delay = 0; /* default to no nTRST delay */
+int jtag_ntrst_delay = 0; /* default to no nTRST delay */
/* maximum number of JTAG devices expected in the chain
*/
-#define JTAG_MAX_CHAIN_SIZE 20
+#define JTAG_MAX_CHAIN_SIZE 20
/* callbacks to inform high-level handlers about JTAG state changes */
jtag_event_callback_t *jtag_event_callbacks;
/* jtag interfaces (parport, FTDI-USB, TI-USB, ...)
*/
-
+
#if BUILD_ECOSBOARD == 1
- extern jtag_interface_t eCosBoard_interface;
+ extern jtag_interface_t zy1000_interface;
#endif
-
+
#if BUILD_PARPORT == 1
extern jtag_interface_t parport_interface;
#endif
-
+
#if BUILD_DUMMY == 1
extern jtag_interface_t dummy_interface;
#endif
-
+
#if BUILD_FT2232_FTD2XX == 1
extern jtag_interface_t ft2232_interface;
#endif
jtag_interface_t *jtag_interfaces[] = {
#if BUILD_ECOSBOARD == 1
- &eCosBoard_interface,
+ &zy1000_interface,
#endif
#if BUILD_PARPORT == 1
&parport_interface,
int jtag_register_event_callback(int (*callback)(enum jtag_event event, void *priv), void *priv)
{
jtag_event_callback_t **callbacks_p = &jtag_event_callbacks;
-
+
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
-
+
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
-
+
(*callbacks_p) = malloc(sizeof(jtag_event_callback_t));
(*callbacks_p)->callback = callback;
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
-
+
return ERROR_OK;
}
int jtag_unregister_event_callback(int (*callback)(enum jtag_event event, void *priv))
{
jtag_event_callback_t **callbacks_p = &jtag_event_callbacks;
-
+
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
-
+
while (*callbacks_p)
{
jtag_event_callback_t **next = &((*callbacks_p)->next);
}
callbacks_p = next;
}
-
+
return ERROR_OK;
}
int jtag_call_event_callbacks(enum jtag_event event)
{
jtag_event_callback_t *callback = jtag_event_callbacks;
-
+
LOG_DEBUG("jtag event: %s", jtag_event_strings[event]);
-
+
while (callback)
{
callback->callback(event, callback->priv);
callback = callback->next;
}
-
+
return ERROR_OK;
}
jtag_command_t** jtag_get_last_command_p(void)
{
/* jtag_command_t *cmd = jtag_command_queue;
-
+
if (cmd)
while (cmd->next)
cmd = cmd->next;
else
return &jtag_command_queue;
-
+
return &cmd->next;*/
-
+
return last_comand_pointer;
}
device = device->next;
i++;
}
-
+
LOG_ERROR("jtag device number %d not defined", num);
exit(-1);
}
offset = (*p_page)->used;
(*p_page)->used += size;
-
+
t=(u8 *)((*p_page)->address);
return t + offset;
}
static void jtag_prelude(enum tap_state state)
{
jtag_prelude1();
-
+
if (state != -1)
jtag_add_end_state(state);
void jtag_add_ir_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
int retval;
-
+
jtag_prelude(state);
-
+
retval=interface_jtag_add_ir_scan(num_fields, fields, cmd_queue_end_state);
if (retval!=ERROR_OK)
jtag_error=retval;
}
int MINIDRIVER(interface_jtag_add_ir_scan)(int num_fields, scan_field_t *fields, enum tap_state state)
-{
+{
jtag_command_t **last_cmd;
jtag_device_t *device;
int i, j;
last_cmd = jtag_get_last_command_p();
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
(*last_cmd)->next = NULL;
found = 1;
(*last_cmd)->cmd.scan->fields[i].out_value = buf_cpy(fields[j].out_value, cmd_queue_alloc(CEIL(scan_size, 8)), scan_size);
(*last_cmd)->cmd.scan->fields[i].out_mask = buf_cpy(fields[j].out_mask, cmd_queue_alloc(CEIL(scan_size, 8)), scan_size);
-
+
if (jtag_verify_capture_ir)
{
if (fields[j].in_handler==NULL)
{
(*last_cmd)->cmd.scan->fields[i].in_handler = fields[j].in_handler;
(*last_cmd)->cmd.scan->fields[i].in_handler_priv = fields[j].in_handler_priv;
- (*last_cmd)->cmd.scan->fields[i].in_check_value = device->expected;
+ (*last_cmd)->cmd.scan->fields[i].in_check_value = device->expected;
(*last_cmd)->cmd.scan->fields[i].in_check_mask = device->expected_mask;
}
}
-
+
device->bypass = 0;
break;
}
}
-
+
if (!found)
{
/* if a device isn't listed, set it to BYPASS */
(*last_cmd)->cmd.scan->fields[i].out_value = buf_set_ones(cmd_queue_alloc(CEIL(scan_size, 8)), scan_size);
(*last_cmd)->cmd.scan->fields[i].out_mask = NULL;
device->bypass = 1;
-
+
}
-
+
/* update device information */
buf_cpy((*last_cmd)->cmd.scan->fields[i].out_value, jtag_get_device(i)->cur_instr, scan_size);
}
-
+
return ERROR_OK;
}
void jtag_add_plain_ir_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
int retval;
-
+
jtag_prelude(state);
-
+
retval=interface_jtag_add_plain_ir_scan(num_fields, fields, cmd_queue_end_state);
if (retval!=ERROR_OK)
jtag_error=retval;
{
int i;
jtag_command_t **last_cmd;
-
+
last_cmd = jtag_get_last_command_p();
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
(*last_cmd)->next = NULL;
void jtag_add_dr_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
int retval;
-
+
jtag_prelude(state);
retval=interface_jtag_add_dr_scan(num_fields, fields, cmd_queue_end_state);
LOG_ERROR("all devices in bypass");
return ERROR_JTAG_DEVICE_ERROR;
}
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
last_comand_pointer = &((*last_cmd)->next);
(*last_cmd)->cmd.scan->num_fields = num_fields + bypass_devices;
(*last_cmd)->cmd.scan->fields = cmd_queue_alloc((num_fields + bypass_devices) * sizeof(scan_field_t));
(*last_cmd)->cmd.scan->end_state = state;
-
+
for (i = 0; i < jtag_num_devices; i++)
{
int found = 0;
(*last_cmd)->cmd.scan->fields[field_count].device = i;
-
+
for (j = 0; j < num_fields; j++)
{
if (i == fields[j].device)
LOG_ERROR("BUG: no scan data for a device not in BYPASS");
exit(-1);
}
-#endif
+#endif
/* program the scan field to 1 bit length, and ignore it's value */
(*last_cmd)->cmd.scan->fields[field_count].num_bits = 1;
(*last_cmd)->cmd.scan->fields[field_count].out_value = NULL;
return ERROR_OK;
}
-void MINIDRIVER(interface_jtag_add_dr_out)(int device_num,
+void MINIDRIVER(interface_jtag_add_dr_out)(int device_num,
int num_fields,
const int *num_bits,
const u32 *value,
bypass_devices++;
device = device->next;
}
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
last_comand_pointer = &((*last_cmd)->next);
(*last_cmd)->cmd.scan->num_fields = num_fields + bypass_devices;
(*last_cmd)->cmd.scan->fields = cmd_queue_alloc((num_fields + bypass_devices) * sizeof(scan_field_t));
(*last_cmd)->cmd.scan->end_state = end_state;
-
+
for (i = 0; i < jtag_num_devices; i++)
{
(*last_cmd)->cmd.scan->fields[field_count].device = i;
-
+
if (i == device_num)
{
int j;
LOG_ERROR("BUG: no scan data for a device not in BYPASS");
exit(-1);
}
-#endif
+#endif
/* program the scan field to 1 bit length, and ignore it's value */
(*last_cmd)->cmd.scan->fields[field_count].num_bits = 1;
(*last_cmd)->cmd.scan->fields[field_count].out_value = NULL;
void jtag_add_plain_dr_scan(int num_fields, scan_field_t *fields, enum tap_state state)
{
int retval;
-
+
jtag_prelude(state);
retval=interface_jtag_add_plain_dr_scan(num_fields, fields, cmd_queue_end_state);
{
int i;
jtag_command_t **last_cmd = jtag_get_last_command_p();
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
last_comand_pointer = &((*last_cmd)->next);
(*last_cmd)->cmd.scan->num_fields = num_fields;
(*last_cmd)->cmd.scan->fields = cmd_queue_alloc(num_fields * sizeof(scan_field_t));
(*last_cmd)->cmd.scan->end_state = state;
-
+
for (i = 0; i < num_fields; i++)
{
int num_bits = fields[i].num_bits;
void jtag_add_tlr(void)
{
jtag_prelude(TAP_TLR);
-
+
int retval;
retval=interface_jtag_add_tlr();
if (retval!=ERROR_OK)
{
enum tap_state state = TAP_TLR;
jtag_command_t **last_cmd = jtag_get_last_command_p();
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
last_comand_pointer = &((*last_cmd)->next);
(*last_cmd)->cmd.statemove = cmd_queue_alloc(sizeof(statemove_command_t));
(*last_cmd)->cmd.statemove->end_state = state;
-
-
+
+
return ERROR_OK;
}
}
cur_state = path[i];
}
-
+
jtag_prelude1();
-
+
retval=interface_jtag_add_pathmove(num_states, path);
cmd_queue_cur_state = path[num_states - 1];
{
jtag_command_t **last_cmd = jtag_get_last_command_p();
int i;
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
last_comand_pointer = &((*last_cmd)->next);
(*last_cmd)->cmd.pathmove = cmd_queue_alloc(sizeof(pathmove_command_t));
(*last_cmd)->cmd.pathmove->num_states = num_states;
(*last_cmd)->cmd.pathmove->path = cmd_queue_alloc(sizeof(enum tap_state) * num_states);
-
+
for (i = 0; i < num_states; i++)
(*last_cmd)->cmd.pathmove->path[i] = path[i];
-
+
return ERROR_OK;
}
int MINIDRIVER(interface_jtag_add_runtest)(int num_cycles, enum tap_state state)
{
jtag_command_t **last_cmd = jtag_get_last_command_p();
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
(*last_cmd)->next = NULL;
(*last_cmd)->cmd.runtest = cmd_queue_alloc(sizeof(runtest_command_t));
(*last_cmd)->cmd.runtest->num_cycles = num_cycles;
(*last_cmd)->cmd.runtest->end_state = state;
-
+
return ERROR_OK;
}
void jtag_add_runtest(int num_cycles, enum tap_state state)
{
int retval;
-
+
jtag_prelude(state);
-
+
/* executed by sw or hw fifo */
retval=interface_jtag_add_runtest(num_cycles, cmd_queue_end_state);
if (retval!=ERROR_OK)
{
int trst_with_tlr = 0;
int retval;
-
+
/* FIX!!! there are *many* different cases here. A better
* approach is needed for legal combinations of transitions...
*/
if ((jtag_reset_config & RESET_HAS_SRST)&&
- (jtag_reset_config & RESET_HAS_TRST)&&
+ (jtag_reset_config & RESET_HAS_TRST)&&
((jtag_reset_config & RESET_SRST_PULLS_TRST)==0))
{
if (((req_tlr_or_trst&&!jtag_trst)||
//LOG_ERROR("BUG: transition of req_tlr_or_trst and req_srst in the same jtag_add_reset() call is undefined");
}
}
-
+
/* Make sure that jtag_reset_config allows the requested reset */
/* if SRST pulls TRST, we can't fulfill srst == 1 with trst == 0 */
if (((jtag_reset_config & RESET_SRST_PULLS_TRST) && (req_srst == 1)) && (!req_tlr_or_trst))
jtag_error=ERROR_FAIL;
return;
}
-
+
/* if TRST pulls SRST, we reset with TAP T-L-R */
if (((jtag_reset_config & RESET_TRST_PULLS_SRST) && (req_tlr_or_trst)) && (req_srst == 0))
{
trst_with_tlr = 1;
}
-
+
if (req_srst && !(jtag_reset_config & RESET_HAS_SRST))
{
LOG_ERROR("BUG: requested SRST assertion, but the current configuration doesn't support this");
jtag_error=ERROR_FAIL;
return;
}
-
+
if (req_tlr_or_trst)
{
if (!trst_with_tlr && (jtag_reset_config & RESET_HAS_TRST))
{
jtag_trst = 0;
}
-
+
jtag_srst = req_srst;
retval = interface_jtag_add_reset(jtag_trst, jtag_srst);
if (jtag_nsrst_delay)
jtag_add_sleep(jtag_nsrst_delay * 1000);
}
-
+
if (trst_with_tlr)
{
LOG_DEBUG("JTAG reset with TLR instead of TRST");
jtag_call_event_callbacks(JTAG_TRST_ASSERTED);
return;
}
-
+
if (jtag_trst)
{
/* we just asserted nTRST, so we're now in Test-Logic-Reset,
int MINIDRIVER(interface_jtag_add_sleep)(u32 us)
{
jtag_command_t **last_cmd = jtag_get_last_command_p();
-
+
/* allocate memory for a new list member */
*last_cmd = cmd_queue_alloc(sizeof(jtag_command_t));
(*last_cmd)->next = NULL;
(*last_cmd)->cmd.sleep = cmd_queue_alloc(sizeof(sleep_command_t));
(*last_cmd)->cmd.sleep->us = us;
-
+
return ERROR_OK;
}
{
int bit_count = 0;
int i;
-
+
bit_count = jtag_scan_size(cmd);
*buffer = malloc(CEIL(bit_count, 8));
-
+
bit_count = 0;
for (i = 0; i < cmd->num_fields; i++)
free(char_buf);
#endif
}
-
+
bit_count += cmd->fields[i].num_bits;
}
int i;
int bit_count = 0;
int retval;
-
+
/* we return ERROR_OK, unless a check fails, or a handler reports a problem */
retval = ERROR_OK;
-
+
for (i = 0; i < cmd->num_fields; i++)
{
/* if neither in_value nor in_handler
{
int num_bits = cmd->fields[i].num_bits;
u8 *captured = buf_set_buf(buffer, bit_count, malloc(CEIL(num_bits, 8)), 0, num_bits);
-
+
#ifdef _DEBUG_JTAG_IO_
char *char_buf;
LOG_DEBUG("fields[%i].in_value: 0x%s", i, char_buf);
free(char_buf);
#endif
-
+
if (cmd->fields[i].in_value)
{
buf_cpy(captured, cmd->fields[i].in_value, num_bits);
-
+
if (cmd->fields[i].in_handler)
{
if (cmd->fields[i].in_handler(cmd->fields[i].in_value, cmd->fields[i].in_handler_priv, cmd->fields+i) != ERROR_OK)
}
}
}
-
+
/* no in_value specified, but a handler takes care of the scanned data */
if (cmd->fields[i].in_handler && (!cmd->fields[i].in_value))
{
{
int retval = ERROR_OK;
int num_bits = field->num_bits;
-
+
int compare_failed = 0;
-
+
if (field->in_check_mask)
compare_failed = buf_cmp_mask(captured, field->in_check_value, field->in_check_mask, num_bits);
else
compare_failed = buf_cmp(captured, field->in_check_value, num_bits);
-
+
if (compare_failed)
{
/* An error handler could have caught the failing check
* only report a problem when there wasn't a handler, or if the handler
* acknowledged the error
- */
+ */
if (compare_failed)
{
char *captured_char = buf_to_str(captured, (num_bits > 64) ? 64 : num_bits, 16);
free(captured_char);
free(in_check_value_char);
-
+
retval = ERROR_JTAG_QUEUE_FAILED;
}
-
+
}
return retval;
}
-/*
+/*
set up checking of this field using the in_handler. The values passed in must be valid until
after jtag_execute() has completed.
*/
{
int i;
int type = 0;
-
+
for (i = 0; i < cmd->num_fields; i++)
{
if (cmd->fields[i].in_value || cmd->fields[i].in_handler)
int MINIDRIVER(interface_jtag_execute_queue)(void)
{
int retval;
-
+
if (jtag==NULL)
{
LOG_ERROR("No JTAG interface configured yet. Issue 'init' command in startup scripts before communicating with targets.");
return ERROR_FAIL;
}
-
+
retval = jtag->execute_queue();
-
+
cmd_queue_free();
jtag_command_queue = NULL;
jtag_device_t *device = priv;
LOG_DEBUG("-");
-
+
if (event == JTAG_TRST_ASSERTED)
{
buf_set_ones(device->cur_instr, device->ir_length);
device->bypass = 1;
}
-
+
return ERROR_OK;
}
int device_count = 0;
u8 zero_check = 0x0;
u8 one_check = 0xff;
-
+
field.device = 0;
field.num_bits = sizeof(idcode_buffer) * 8;
field.out_value = idcode_buffer;
field.in_check_mask = NULL;
field.in_handler = NULL;
field.in_handler_priv = NULL;
-
+
for (i = 0; i < JTAG_MAX_CHAIN_SIZE; i++)
{
buf_set_u32(idcode_buffer, i * 32, 32, 0x000000FF);
}
-
+
jtag_add_plain_dr_scan(1, &field, TAP_TLR);
jtag_execute_queue();
-
+
for (i = 0; i < JTAG_MAX_CHAIN_SIZE * 4; i++)
{
zero_check |= idcode_buffer[i];
one_check &= idcode_buffer[i];
}
-
+
/* if there wasn't a single non-zero bit or if all bits were one, the scan isn't valid */
if ((zero_check == 0x00) || (one_check == 0xff))
{
LOG_ERROR("JTAG communication failure, check connection, JTAG interface, target power etc.");
return ERROR_JTAG_INIT_FAILED;
}
-
+
for (bit_count = 0; bit_count < (JTAG_MAX_CHAIN_SIZE * 32) - 31;)
{
u32 idcode = buf_get_u32(idcode_buffer, bit_count, 32);
/* LSB must not be 0, this indicates a device in bypass */
LOG_WARNING("Device does not have IDCODE");
idcode=0;
-
+
bit_count += 1;
}
else
u32 manufacturer;
u32 part;
u32 version;
-
+
if (idcode == 0x000000FF)
{
int unexpected=0;
- /* End of chain (invalid manufacturer ID)
- *
+ /* End of chain (invalid manufacturer ID)
+ *
* The JTAG examine is the very first thing that happens
- *
+ *
* A single JTAG device requires only 64 bits to be read back correctly.
- *
+ *
* The code below adds a check that the rest of the data scanned (640 bits)
* are all as expected. This helps diagnose/catch problems with the JTAG chain
- *
+ *
* earlier and gives more helpful/explicit error messages.
*/
- for (bit_count += 32; bit_count < (JTAG_MAX_CHAIN_SIZE * 32) - 31;bit_count += 32)
+ for (bit_count += 32; bit_count < (JTAG_MAX_CHAIN_SIZE * 32) - 31;bit_count += 32)
{
idcode = buf_get_u32(idcode_buffer, bit_count, 32);
if (unexpected||(idcode != 0x000000FF))
unexpected = 1;
}
}
-
+
break;
}
-
+
manufacturer = (idcode & 0xffe) >> 1;
part = (idcode & 0xffff000) >> 12;
version = (idcode & 0xf0000000) >> 28;
- LOG_INFO("JTAG device found: 0x%8.8x (Manufacturer: 0x%3.3x, Part: 0x%4.4x, Version: 0x%1.1x)",
+ LOG_INFO("JTAG device found: 0x%8.8x (Manufacturer: 0x%3.3x, Part: 0x%4.4x, Version: 0x%1.1x)",
idcode, manufacturer, part, version);
-
+
bit_count += 32;
}
if (device)
}
device_count++;
}
-
+
/* see if number of discovered devices matches configuration */
if (device_count != jtag_num_devices)
{
- LOG_ERROR("number of discovered devices in JTAG chain (%i) doesn't match configuration (%i)",
+ LOG_ERROR("number of discovered devices in JTAG chain (%i) doesn't match configuration (%i)",
device_count, jtag_num_devices);
LOG_ERROR("check the config file and ensure proper JTAG communication (connections, speed, ...)");
return ERROR_JTAG_INIT_FAILED;
}
-
+
return ERROR_OK;
}
u8 *ir_test = NULL;
scan_field_t field;
int chain_pos = 0;
-
+
while (device)
{
total_ir_length += device->ir_length;
device = device->next;
}
-
+
total_ir_length += 2;
ir_test = malloc(CEIL(total_ir_length, 8));
buf_set_ones(ir_test, total_ir_length);
-
+
field.device = 0;
field.num_bits = total_ir_length;
field.out_value = ir_test;
field.in_check_mask = NULL;
field.in_handler = NULL;
field.in_handler_priv = NULL;
-
+
jtag_add_plain_ir_scan(1, &field, TAP_TLR);
jtag_execute_queue();
-
+
device = jtag_devices;
while (device)
{
chain_pos += device->ir_length;
device = device->next;
}
-
+
if (buf_get_u32(ir_test, chain_pos, 2) != 0x3)
{
char *cbuf = buf_to_str(ir_test, total_ir_length, 16);
free(ir_test);
return ERROR_JTAG_INIT_FAILED;
}
-
+
free(ir_test);
-
+
return ERROR_OK;
}
JTAG_CMD_INTERFACE,
JTAG_CMD_INIT_RESET,
};
-
+
const Jim_Nvp jtag_cmds[] = {
{ .name = "interface" , .value = JTAG_CMD_INTERFACE },
{ .name = "arp_init-reset", .value = JTAG_CMD_INIT_RESET },
-
+
{ .name = NULL, .value = -1 },
};
context = Jim_GetAssocData(interp, "context");
- // go past the command
+ // go past the command
Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
e = Jim_GetOpt_Nvp( &goi, jtag_cmds, &n );
}
return JIM_OK;
}
-
+
return JIM_ERR;
}
COMMAND_ANY, "jtag_nsrst_delay <ms> - delay after deasserting srst in ms");
register_command(cmd_ctx, NULL, "jtag_ntrst_delay", handle_jtag_ntrst_delay_command,
COMMAND_ANY, "jtag_ntrst_delay <ms> - delay after deasserting trst in ms");
-
+
register_command(cmd_ctx, NULL, "scan_chain", handle_scan_chain_command,
COMMAND_EXEC, "print current scan chain configuration");
{
if (jtag)
return ERROR_OK;
-
+
if (!jtag_interface)
{
/* nothing was previously specified by "interface" command */
if (jtag_interface->init() != ERROR_OK)
return ERROR_JTAG_INIT_FAILED;
-
-
+
+
jtag = jtag_interface;
return ERROR_OK;
}
int retval;
LOG_DEBUG("Init JTAG chain");
-
+
device = jtag_devices;
jtag_ir_scan_size = 0;
jtag_num_devices = 0;
jtag_num_devices++;
device = device->next;
}
-
+
jtag_add_tlr();
if ((retval=jtag_execute_queue())!=ERROR_OK)
return retval;
{
LOG_ERROR("trying to validate configured JTAG chain anyway...");
}
-
+
if (jtag_validate_chain() != ERROR_OK)
{
LOG_ERROR("Could not validate JTAG chain, continuing anyway...");
}
-
+
return ERROR_OK;
}
LOG_DEBUG("Trying to bring the JTAG controller to life by asserting TRST / TLR");
/* Reset can happen after a power cycle.
- *
+ *
* Ideally we would only assert TRST or run TLR before the target reset.
- *
+ *
* However w/srst_pulls_trst, trst is asserted together with the target
* reset whether we want it or not.
- *
- * NB! Some targets have JTAG circuitry disabled until a
+ *
+ * NB! Some targets have JTAG circuitry disabled until a
* trst & srst has been asserted.
- *
+ *
* NB! here we assume nsrst/ntrst delay are sufficient!
- *
+ *
* NB! order matters!!!! srst *can* disconnect JTAG circuitry
- *
+ *
*/
jtag_add_reset(1, 0); /* TLR or TRST */
if (jtag_reset_config & RESET_HAS_SRST)
jtag_add_reset(0, 0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
-
+
/* Check that we can communication on the JTAG chain + eventually we want to
- * be able to perform enumeration only after OpenOCD has started
+ * be able to perform enumeration only after OpenOCD has started
* telnet and GDB server
- *
+ *
* That would allow users to more easily perform any magic they need to before
* reset happens.
*/
static int default_speed_div(int speed, int *khz)
{
LOG_ERROR("Translation from jtag_speed to khz not implemented");
- return ERROR_FAIL;
+ return ERROR_FAIL;
+}
+
+static int default_power_dropout(int *dropout)
+{
+ *dropout=0; /* by default we can't detect power dropout */
+ return ERROR_OK;
+}
+
+static int default_srst_asserted(int *srst_asserted)
+{
+ *srst_asserted=0; /* by default we can't detect srst asserted */
+ return ERROR_OK;
}
int handle_interface_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
}
jtag_interface = jtag_interfaces[i];
-
+
if (jtag_interface->khz == NULL)
{
jtag_interface->khz = default_khz;
{
jtag_interface->speed_div = default_speed_div;
}
+ if (jtag_interface->power_dropout == NULL)
+ {
+ jtag_interface->power_dropout = default_power_dropout;
+ }
+ if (jtag_interface->srst_asserted == NULL)
+ {
+ jtag_interface->srst_asserted = default_srst_asserted;
+ }
+
return ERROR_OK;
}
}
(*last_device_p)->cur_instr = malloc((*last_device_p)->ir_length);
(*last_device_p)->bypass = 1;
buf_set_ones((*last_device_p)->cur_instr, (*last_device_p)->ir_length);
-
+
(*last_device_p)->next = NULL;
-
+
jtag_register_event_callback(jtag_reset_callback, (*last_device_p));
-
+
jtag_num_devices++;
-
+
return ERROR_OK;
}
{
jtag_device_t *device = jtag_devices;
int device_count = 0;
-
+
while (device)
{
u32 expected, expected_mask, cur_instr;
{
if (argc < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
-
+
if (argc >= 1)
{
if (strcmp(args[0], "none") == 0)
return ERROR_INVALID_ARGUMENTS;
}
}
-
+
if (argc >= 2)
{
if (strcmp(args[1], "separate") == 0)
}
}
}
-
+
if (argc >= 3)
{
if (strcmp(args[2], "trst_open_drain") == 0)
return ERROR_INVALID_ARGUMENTS;
}
}
-
+
return ERROR_OK;
}
{
jtag_nsrst_delay = strtoul(args[0], NULL, 0);
}
-
+
return ERROR_OK;
}
{
jtag_ntrst_delay = strtoul(args[0], NULL, 0);
}
-
+
return ERROR_OK;
}
int handle_jtag_speed_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int retval=ERROR_OK;
-
+
if (argc == 1)
{
LOG_DEBUG("handle jtag speed");
int cur_speed = 0;
cur_speed = jtag_speed = strtoul(args[0], NULL, 0);
-
- /* this command can be called during CONFIG,
+
+ /* this command can be called during CONFIG,
* in which case jtag isn't initialized */
if (jtag)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
command_print(cmd_ctx, "jtag_speed: %d", jtag_speed);
-
+
return retval;
}
{
int retval=ERROR_OK;
LOG_DEBUG("handle jtag khz");
-
+
if(argc == 1)
{
speed_khz = strtoul(args[0], NULL, 0);
speed_khz = 0;
return retval;
}
-
+
cur_speed = jtag_speed = speed_div1;
-
+
retval=jtag->speed(cur_speed);
} else
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
- if (jtag!=NULL)
+ if (jtag!=NULL)
{
if ((retval=jtag->speed_div(jtag_speed, &speed_khz))!=ERROR_OK)
return retval;
}
-
+
command_print(cmd_ctx, "jtag_khz: %d", speed_khz);
return retval;
}
}
command_print(cmd_ctx, "current endstate: %s", tap_state_strings[cmd_queue_end_state]);
-
+
return ERROR_OK;
}
{
int trst = -1;
int srst = -1;
-
+
if (argc < 2)
{
return ERROR_COMMAND_SYNTAX_ERROR;
{
int i;
scan_field_t *fields;
-
+
if ((argc < 2) || (argc % 2))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
fields = malloc(sizeof(scan_field_t) * argc / 2);
-
+
for (i = 0; i < argc / 2; i++)
{
int device = strtoul(args[i*2], NULL, 0);
Jim_GetLong(interp, args[i], &bits);
str = Jim_GetString(args[i+1], &len);
-
+
fields[field_count].device = device;
fields[field_count].num_bits = bits;
fields[field_count].out_value = malloc(CEIL(bits, 8));
}
Jim_SetResult(interp, list);
-
+
free(fields);
return JIM_OK;
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
command_print(cmd_ctx, "verify Capture-IR is %s", (jtag_verify_capture_ir) ? "enabled": "disabled");
-
+
return ERROR_OK;
}
+
+
+int jtag_power_dropout(int *dropout)
+{
+ return jtag->power_dropout(dropout);
+}
+
+int jtag_srst_asserted(int *srst_asserted)
+{
+ return jtag->srst_asserted(srst_asserted);
+}
#endif
/* Tap States
- * TLR - Test-Logic-Reset, RTI - Run-Test/Idle,
+ * TLR - Test-Logic-Reset, RTI - Run-Test/Idle,
* SDS - Select-DR-Scan, CD - Capture-DR, SD - Shift-DR, E1D - Exit1-DR,
* PD - Pause-DR, E2D - Exit2-DR, UD - Update-DR,
* SIS - Select-IR-Scan, CI - Capture-IR, SI - Shift-IR, E1I - Exit1-IR,
- * PI - Pause-IR, E2I - Exit2-IR, UI - Update-IR
+ * PI - Pause-IR, E2I - Exit2-IR, UI - Update-IR
*/
enum tap_state
{
- TAP_TLR = 0x0, TAP_RTI = 0x8,
- TAP_SDS = 0x1, TAP_CD = 0x2, TAP_SD = 0x3, TAP_E1D = 0x4,
+ TAP_TLR = 0x0, TAP_RTI = 0x8,
+ TAP_SDS = 0x1, TAP_CD = 0x2, TAP_SD = 0x3, TAP_E1D = 0x4,
TAP_PD = 0x5, TAP_E2D = 0x6, TAP_UD = 0x7,
TAP_SIS = 0x9, TAP_CI = 0xa, TAP_SI = 0xb, TAP_E1I = 0xc,
TAP_PI = 0xd, TAP_E2I = 0xe, TAP_UI = 0xf
u8 *out_mask; /* only masked bits care */
u8 *in_value; /* pointer to a 32-bit memory location to take data scanned out */
/* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
- u8 *in_check_value; /* used to validate scan results */
+ u8 *in_check_value; /* used to validate scan results */
u8 *in_check_mask; /* check specified bits against check_value */
in_handler_t in_handler; /* process received buffer using this handler */
void *in_handler_priv; /* additional information for the in_handler */
typedef struct jtag_interface_s
{
char* name;
-
+
/* queued command execution
*/
int (*execute_queue)(void);
-
+
/* interface initalization
*/
int (*speed)(int speed);
int (*init)(void);
int (*quit)(void);
/* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
- a failure if it can't support the KHz/RTCK.
-
+ a failure if it can't support the KHz/RTCK.
+
WARNING!!!! if RTCK is *slow* then think carefully about
whether you actually want to support this in the driver.
Many target scripts are written to handle the absence of RTCK
/* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
a failure if it can't support the KHz/RTCK. */
int (*speed_div)(int speed, int *khz);
-
+
+ /* Read and clear the power dropout flag. Note that a power dropout
+ can be transitionary, easily much less than a ms.
+
+ So to find out if the power is *currently* on, you must invoke
+ this method twice. Once to clear the power dropout flag and a
+ second time to read the current state.
+
+ Currently the default implementation is never to detect power dropout.
+ */
+ int (*power_dropout)(int *power_dropout);
+ /* Read and clear the srst asserted detection flag.
+ *
+ * NB!!!! like power_dropout this does *not* read the current
+ * state. srst assertion is transitionary and *can* be much
+ * less than 1ms.
+ */
+ int (*srst_asserted)(int *srst_asserted);
+
} jtag_interface_t;
enum jtag_event
enum reset_types
{
- RESET_NONE = 0x0,
- RESET_HAS_TRST = 0x1,
- RESET_HAS_SRST = 0x2,
- RESET_TRST_AND_SRST = 0x3,
+ RESET_NONE = 0x0,
+ RESET_HAS_TRST = 0x1,
+ RESET_HAS_SRST = 0x2,
+ RESET_TRST_AND_SRST = 0x3,
RESET_SRST_PULLS_TRST = 0x4,
RESET_TRST_PULLS_SRST = 0x8,
RESET_TRST_OPEN_DRAIN = 0x10,
extern enum reset_types jtag_reset_config;
-/* initialize interface upon startup. A successful no-op
+/* initialize interface upon startup. A successful no-op
* upon subsequent invocations
*/
extern int jtag_interface_init(struct command_context_s *cmd_ctx);
extern int jtag_register_commands(struct command_context_s *cmd_ctx);
/* JTAG interface, can be implemented with a software or hardware fifo
- *
+ *
* TAP_SD and TAP_SI are illegal end states. TAP_SD/SI as end states
* can be emulated by using a larger scan.
*
* Code that is relatively insensitive to the path(as long
- * as it is JTAG compliant) taken through state machine can use
- * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
- * specified as end state and a subsequent jtag_add_pathmove() must
- * be issued.
+ * as it is JTAG compliant) taken through state machine can use
+ * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
+ * specified as end state and a subsequent jtag_add_pathmove() must
+ * be issued.
*
*/
extern void jtag_add_ir_scan(int num_fields, scan_field_t *fields, enum tap_state endstate);
extern void jtag_add_tlr(void);
extern int interface_jtag_add_tlr(void);
/* Do not use jtag_add_pathmove() unless you need to, but do use it
- * if you have to.
+ * if you have to.
*
* DANGER! If the target is dependent upon a particular sequence
- * of transitions for things to work correctly(e.g. as a workaround
- * for an errata that contradicts the JTAG standard), then pathmove
- * must be used, even if some jtag interfaces happen to use the
- * desired path. Worse, the jtag interface used for testing a
- * particular implementation, could happen to use the "desired"
+ * of transitions for things to work correctly(e.g. as a workaround
+ * for an errata that contradicts the JTAG standard), then pathmove
+ * must be used, even if some jtag interfaces happen to use the
+ * desired path. Worse, the jtag interface used for testing a
+ * particular implementation, could happen to use the "desired"
* path when transitioning to/from end
* state.
*
* A list of unambigious single clock state transitions, not
* all drivers can support this, but it is required for e.g.
* XScale and Xilinx support
- *
+ *
* Note! TAP_TLR must not be used in the path!
- *
- * Note that the first on the list must be reachable
- * via a single transition from the current state.
+ *
+ * Note that the first on the list must be reachable
+ * via a single transition from the current state.
*
* All drivers are required to implement jtag_add_pathmove().
* However, if the pathmove sequence can not be precisely
/* go to TAP_RTI, if we're not already there and cycle
* precisely num_cycles in the TAP_RTI after which move
* to the end state, if it is != TAP_RTI
- *
+ *
* nb! num_cycles can be 0, in which case the fn will navigate
* to endstate via TAP_RTI
*/
extern void jtag_add_runtest(int num_cycles, enum tap_state endstate);
extern int interface_jtag_add_runtest(int num_cycles, enum tap_state endstate);
/* A reset of the TAP state machine can be requested.
- *
- * Whether tms or trst reset is used depends on the capabilities of
+ *
+ * Whether tms or trst reset is used depends on the capabilities of
* the target and jtag interface(reset_config command configures this).
- *
+ *
* srst can driver a reset of the TAP state machine and vice
* versa
- *
+ *
* Application code may need to examine value of jtag_reset_config
* to determine the proper codepath
- *
+ *
* DANGER! Even though srst drives trst, trst might not be connected to
* the interface, and it might actually be *harmful* to assert trst in this case.
- *
+ *
* This is why combinations such as "reset_config srst_only srst_pulls_trst"
- * are supported.
+ * are supported.
*
* only req_tlr_or_trst and srst can have a transition for a
- * call as the effects of transitioning both at the "same time"
+ * call as the effects of transitioning both at the "same time"
* are undefined, but when srst_pulls_trst or vice versa,
* then trst & srst *must* be asserted together.
*/
/* this drives the actual srst and trst pins. srst will always be 0
* if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
* trst.
- *
- * the higher level jtag_add_reset will invoke jtag_add_tlr() if
+ *
+ * the higher level jtag_add_reset will invoke jtag_add_tlr() if
* approperiate
*/
extern int interface_jtag_add_reset(int trst, int srst);
/*
- * For software FIFO implementations, the queued commands can be executed
+ * For software FIFO implementations, the queued commands can be executed
* during this call or earlier. A sw queue might decide to push out
* some of the jtag_add_xxx() operations once the queue is "big enough".
- *
- * This fn will return an error code if any of the prior jtag_add_xxx()
+ *
+ * This fn will return an error code if any of the prior jtag_add_xxx()
* calls caused a failure, e.g. check failure. Note that it does not
* matter if the operation was executed *before* jtag_execute_queue(),
- * jtag_execute_queue() will still return an error code.
- *
+ * jtag_execute_queue() will still return an error code.
+ *
* All jtag_add_xxx() calls that have in_handler!=NULL will have been
- * executed when this fn returns, but if what has been queued only
- * clocks data out, without reading anything back, then JTAG could
- * be running *after* jtag_execute_queue() returns. The API does
- * not define a way to flush a hw FIFO that runs *after*
- * jtag_execute_queue() returns.
- *
- * jtag_add_xxx() commands can either be executed immediately or
- * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
+ * executed when this fn returns, but if what has been queued only
+ * clocks data out, without reading anything back, then JTAG could
+ * be running *after* jtag_execute_queue() returns. The API does
+ * not define a way to flush a hw FIFO that runs *after*
+ * jtag_execute_queue() returns.
+ *
+ * jtag_add_xxx() commands can either be executed immediately or
+ * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
*/
extern int jtag_execute_queue(void);
/* can be implemented by hw+sw */
extern int interface_jtag_execute_queue(void);
+extern int jtag_power_dropout(int *dropout);
+extern int jtag_srst_asserted(int *srst_asserted);
+
/* JTAG support functions */
extern void jtag_set_check_value(scan_field_t *field, u8 *value, u8 *mask, error_handler_t *in_error_handler);
#ifdef HAVE_JTAG_MINIDRIVER_H
/* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
#include "jtag_minidriver.h"
-#define MINIDRIVER(a) notused ## a
+#define MINIDRIVER(a) notused ## a
#else
#define MINIDRIVER(a) a
-/* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
- *
+/* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
+ *
* Current or end_state can not be TAP_TLR. end_state can be -1
- *
+ *
* num_bits[i] is the number of bits to clock out from value[i] LSB first.
- *
+ *
* If the device is in bypass, then that is an error condition in
* the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
* does detect it. Similarly if the device is not in bypass, data must
- * be passed to it.
- *
+ * be passed to it.
+ *
* If anything fails, then jtag_error will be set and jtag_execute() will
* return an error. There is no way to determine if there was a failure
* during this function call.
- *
+ *
* Note that this jtag_add_dr_out can be defined as an inline function.
*/
-extern void interface_jtag_add_dr_out(int device,
+extern void interface_jtag_add_dr_out(int device,
int num_fields,
const int *num_bits,
const u32 *value,
-static __inline__ void jtag_add_dr_out(int device,
+static __inline__ void jtag_add_dr_out(int device,
int num_fields,
const int *num_bits,
const u32 *value,
/* low level command set
*/
-int eCosBoard_read(void);
-static void eCosBoard_write(int tck, int tms, int tdi);
-void eCosBoard_reset(int trst, int srst);
+int zy1000_read(void);
+static void zy1000_write(int tck, int tms, int tdi);
+void zy1000_reset(int trst, int srst);
-int eCosBoard_speed(int speed);
-int eCosBoard_register_commands(struct command_context_s *cmd_ctx);
-int eCosBoard_init(void);
-int eCosBoard_quit(void);
+int zy1000_speed(int speed);
+int zy1000_register_commands(struct command_context_s *cmd_ctx);
+int zy1000_init(void);
+int zy1000_quit(void);
/* interface commands */
-int eCosBoard_handle_eCosBoard_port_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
+int zy1000_handle_zy1000_port_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
-static int eCosBoard_khz(int khz, int *jtag_speed)
+static int zy1000_khz(int khz, int *jtag_speed)
{
if (khz==0)
{
return ERROR_OK;
}
-static int eCosBoard_speed_div(int speed, int *khz)
+static int zy1000_speed_div(int speed, int *khz)
{
if (speed==0)
{
return ERROR_OK;
}
+static bool readPowerDropout()
+{
+ cyg_uint32 state;
+ // sample and clear power dropout
+ HAL_WRITE_UINT32(0x08000010, 0x80);
+ HAL_READ_UINT32(0x08000010, state);
+ bool powerDropout;
+ powerDropout = (state & 0x80) != 0;
+ return powerDropout;
+}
-jtag_interface_t eCosBoard_interface =
+
+static bool readSRST()
+{
+ cyg_uint32 state;
+ // sample and clear SRST sensing
+ HAL_WRITE_UINT32(0x08000010, 0x00000040);
+ HAL_READ_UINT32(0x08000010, state);
+ bool srstAsserted;
+ srstAsserted = (state & 0x40) != 0;
+ return srstAsserted;
+}
+
+static int zy1000_power_dropout(int *dropout)
+{
+ *dropout=readPowerDropout(); /* by default we can't detect power dropout */
+ return ERROR_OK;
+}
+
+
+jtag_interface_t zy1000_interface =
{
.name = "ZY1000",
.execute_queue = bitbang_execute_queue,
- .speed = eCosBoard_speed,
- .register_commands = eCosBoard_register_commands,
- .init = eCosBoard_init,
- .quit = eCosBoard_quit,
- .khz = eCosBoard_khz,
- .speed_div = eCosBoard_speed_div,
+ .speed = zy1000_speed,
+ .register_commands = zy1000_register_commands,
+ .init = zy1000_init,
+ .quit = zy1000_quit,
+ .khz = zy1000_khz,
+ .speed_div = zy1000_speed_div,
+ .power_dropout = zy1000_power_dropout,
};
-bitbang_interface_t eCosBoard_bitbang =
+bitbang_interface_t zy1000_bitbang =
{
- .read = eCosBoard_read,
- .write = eCosBoard_write,
- .reset = eCosBoard_reset
+ .read = zy1000_read,
+ .write = zy1000_write,
+ .reset = zy1000_reset
};
-static void eCosBoard_write(int tck, int tms, int tdi)
+static void zy1000_write(int tck, int tms, int tdi)
{
}
-int eCosBoard_read(void)
+int zy1000_read(void)
{
return -1;
}
extern bool readSRST();
-void eCosBoard_reset(int trst, int srst)
+void zy1000_reset(int trst, int srst)
{
LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
if(!srst)
/* assert reset */
ZY1000_POKE(0x08000010, 0x00000002);
}
-
+
if (trst||(srst&&(jtag_reset_config & RESET_SRST_PULLS_TRST)))
{
waitIdle();
} else
{
/* We'll get RCLK failure when we assert TRST, so clear any false positives here */
- ZY1000_POKE(0x08000014, 0x400);
+ ZY1000_POKE(0x08000014, 0x400);
}
/* wait for srst to float back up */
}
}
-int eCosBoard_speed(int speed)
+int zy1000_speed(int speed)
{
if(speed == 0)
{
return ERROR_OK;
}
-int eCosBoard_register_commands(struct command_context_s *cmd_ctx)
+int zy1000_register_commands(struct command_context_s *cmd_ctx)
{
return ERROR_OK;
}
-int eCosBoard_init(void)
+int zy1000_init(void)
{
ZY1000_POKE(0x08000010, 0x30); // Turn on LED1 & LED2
/* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
- eCosBoard_reset(0, 0);
- eCosBoard_speed(jtag_speed);
+ zy1000_reset(0, 0);
+ zy1000_speed(jtag_speed);
- bitbang_interface = &eCosBoard_bitbang;
+ bitbang_interface = &zy1000_bitbang;
return ERROR_OK;
}
-int eCosBoard_quit(void)
+int zy1000_quit(void)
{
return ERROR_OK;
int interface_jtag_add_reset(int req_trst, int req_srst)
{
- eCosBoard_reset(req_trst, req_srst);
+ zy1000_reset(req_trst, req_srst);
return ERROR_OK;
}
/* test manual drive code on any target */
int tms;
u8 tms_scan = TAP_MOVE(t, state);
-
+
for (i = 0; i < 7; i++)
{
tms = (tms_scan >> i) & 1;
ZY1000_POKE(0x08000028, tms);
}
waitIdle();
- ZY1000_POKE(0x08000020, state);
+ ZY1000_POKE(0x08000020, state);
#endif