}
};
- /* Set up working area. First word is write pointer, second word is read pointer,
- * rest is fifo data area. */
- uint32_t wp_addr = source->address;
- uint32_t rp_addr = source->address + 4;
- uint32_t fifo_start_addr = source->address + 8;
- uint32_t fifo_end_addr = source->address + source->size;
-
- uint32_t wp = fifo_start_addr;
- uint32_t rp = fifo_start_addr;
-
- retval = target_write_u32(target, wp_addr, wp);
- if (retval != ERROR_OK)
- return retval;
- retval = target_write_u32(target, rp_addr, rp);
- if (retval != ERROR_OK)
- return retval;
-
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer start */
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
- /* Start up algorithm on target and let it idle while writing the first chunk */
- retval = target_start_algorithm(target, 0, NULL, 5, reg_params,
- stm32x_info->write_algorithm->address,
- 0,
+ retval = target_run_flash_async_algorithm(target, buffer, count, 2,
+ 0, NULL,
+ 5, reg_params,
+ source->address, source->size,
+ stm32x_info->write_algorithm->address, 0,
&armv7m_info);
- if (retval != ERROR_OK) {
- LOG_ERROR("error starting stm32x flash write algorithm");
- goto cleanup;
- }
-
- while (count > 0) {
- retval = target_read_u32(target, rp_addr, &rp);
- if (retval != ERROR_OK) {
- LOG_ERROR("failed to get read pointer");
- break;
- }
-
- LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp);
-
- if (rp == 0) {
- LOG_ERROR("flash write algorithm aborted by target");
- retval = ERROR_FLASH_OPERATION_FAILED;
- break;
- }
-
- if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr) {
- LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp);
- break;
- }
-
- /* Count the number of bytes available in the fifo without
- * crossing the wrap around. Make sure to not fill it completely,
- * because that would make wp == rp and that's the empty condition. */
- uint32_t thisrun_bytes;
- if (rp > wp)
- thisrun_bytes = rp - wp - 2;
- else if (rp > fifo_start_addr)
- thisrun_bytes = fifo_end_addr - wp;
- else
- thisrun_bytes = fifo_end_addr - wp - 2;
-
- if (thisrun_bytes == 0) {
- /* Throttle polling a bit if transfer is (much) faster than flash
- * programming. The exact delay shouldn't matter as long as it's
- * less than buffer size / flash speed. This is very unlikely to
- * run when using high latency connections such as USB. */
- alive_sleep(10);
- continue;
- }
-
- /* Limit to the amount of data we actually want to write */
- if (thisrun_bytes > count * 2)
- thisrun_bytes = count * 2;
-
- /* Write data to fifo */
- retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
- if (retval != ERROR_OK)
- break;
-
- /* Update counters and wrap write pointer */
- buffer += thisrun_bytes;
- count -= thisrun_bytes / 2;
- wp += thisrun_bytes;
- if (wp >= fifo_end_addr)
- wp = fifo_start_addr;
-
- /* Store updated write pointer to target */
- retval = target_write_u32(target, wp_addr, wp);
- if (retval != ERROR_OK)
- break;
- }
-
- if (retval != ERROR_OK) {
- /* abort flash write algorithm on target */
- target_write_u32(target, wp_addr, 0);
- }
-
- int retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params,
- 0, 10000, &armv7m_info);
- if (retval2 != ERROR_OK) {
- LOG_ERROR("error waiting for stm32x flash write algorithm");
- retval = retval2;
- }
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
}
}
-cleanup:
target_free_working_area(target, source);
target_free_working_area(target, stm32x_info->write_algorithm);
return retval;
}
+/**
+ * Executes a target-specific native code algorithm in the target.
+ * It differs from target_run_algorithm in that the algorithm is asynchronous.
+ * Because of this it requires an compliant algorithm:
+ * see contrib/loaders/flash/stm32f1x.S for example.
+ *
+ * @param target used to run the algorithm
+ */
+
+int target_run_flash_async_algorithm(struct target *target,
+ uint8_t *buffer, uint32_t count, int block_size,
+ int num_mem_params, struct mem_param *mem_params,
+ int num_reg_params, struct reg_param *reg_params,
+ uint32_t buffer_start, uint32_t buffer_size,
+ uint32_t entry_point, uint32_t exit_point, void *arch_info)
+{
+ int retval;
+
+ /* Set up working area. First word is write pointer, second word is read pointer,
+ * rest is fifo data area. */
+ uint32_t wp_addr = buffer_start;
+ uint32_t rp_addr = buffer_start + 4;
+ uint32_t fifo_start_addr = buffer_start + 8;
+ uint32_t fifo_end_addr = buffer_start + buffer_size;
+
+ uint32_t wp = fifo_start_addr;
+ uint32_t rp = fifo_start_addr;
+
+ /* validate block_size is 2^n */
+ assert(!block_size || !(block_size & (block_size - 1)));
+
+ retval = target_write_u32(target, wp_addr, wp);
+ if (retval != ERROR_OK)
+ return retval;
+ retval = target_write_u32(target, rp_addr, rp);
+ if (retval != ERROR_OK)
+ return retval;
+
+ /* Start up algorithm on target and let it idle while writing the first chunk */
+ retval = target_start_algorithm(target, num_mem_params, mem_params,
+ num_reg_params, reg_params,
+ entry_point,
+ exit_point,
+ arch_info);
+
+ if (retval != ERROR_OK) {
+ LOG_ERROR("error starting target flash write algorithm");
+ return retval;
+ }
+
+ while (count > 0) {
+
+ retval = target_read_u32(target, rp_addr, &rp);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("failed to get read pointer");
+ break;
+ }
+
+ LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
+
+ if (rp == 0) {
+ LOG_ERROR("flash write algorithm aborted by target");
+ retval = ERROR_FLASH_OPERATION_FAILED;
+ break;
+ }
+
+ if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
+ LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
+ break;
+ }
+
+ /* Count the number of bytes available in the fifo without
+ * crossing the wrap around. Make sure to not fill it completely,
+ * because that would make wp == rp and that's the empty condition. */
+ uint32_t thisrun_bytes;
+ if (rp > wp)
+ thisrun_bytes = rp - wp - block_size;
+ else if (rp > fifo_start_addr)
+ thisrun_bytes = fifo_end_addr - wp;
+ else
+ thisrun_bytes = fifo_end_addr - wp - block_size;
+
+ if (thisrun_bytes == 0) {
+ /* Throttle polling a bit if transfer is (much) faster than flash
+ * programming. The exact delay shouldn't matter as long as it's
+ * less than buffer size / flash speed. This is very unlikely to
+ * run when using high latency connections such as USB. */
+ alive_sleep(10);
+ continue;
+ }
+
+ /* Limit to the amount of data we actually want to write */
+ if (thisrun_bytes > count * block_size)
+ thisrun_bytes = count * block_size;
+
+ /* Write data to fifo */
+ retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
+ if (retval != ERROR_OK)
+ break;
+
+ /* Update counters and wrap write pointer */
+ buffer += thisrun_bytes;
+ count -= thisrun_bytes / block_size;
+ wp += thisrun_bytes;
+ if (wp >= fifo_end_addr)
+ wp = fifo_start_addr;
+
+ /* Store updated write pointer to target */
+ retval = target_write_u32(target, wp_addr, wp);
+ if (retval != ERROR_OK)
+ break;
+ }
+
+ if (retval != ERROR_OK) {
+ /* abort flash write algorithm on target */
+ target_write_u32(target, wp_addr, 0);
+ }
+
+ int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
+ num_reg_params, reg_params,
+ exit_point,
+ 10000,
+ arch_info);
+
+ if (retval2 != ERROR_OK) {
+ LOG_ERROR("error waiting for target flash write algorithm");
+ retval = retval2;
+ }
+
+ return retval;
+}
int target_read_memory(struct target *target,
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
uint32_t exit_point, int timeout_ms,
void *arch_info);
+/**
+ * This routine is a wrapper for asynchronous algorithms.
+ *
+ */
+int target_run_flash_async_algorithm(struct target *target,
+ uint8_t *buffer, uint32_t count, int block_size,
+ int num_mem_params, struct mem_param *mem_params,
+ int num_reg_params, struct reg_param *reg_params,
+ uint32_t buffer_start, uint32_t buffer_size,
+ uint32_t entry_point, uint32_t exit_point,
+ void *arch_info);
+
/**
* Read @a count items of @a size bytes from the memory of @a target at
* the @a address given.