#define MIPS32_COMMON_MAGIC 0xB320B320
+/**
+ * Memory segments (32bit kernel mode addresses)
+ * These are the traditional names used in the 32-bit universe.
+ */
+#define KUSEG 0x00000000
+#define KSEG0 0x80000000
+#define KSEG1 0xa0000000
+#define KSEG2 0xc0000000
+#define KSEG3 0xe0000000
+
+/** Returns the kernel segment base of a given address */
+#define KSEGX(a) ((a) & 0xe0000000)
+
+/** CP0 CONFIG regites fields */
+#define MIPS32_CONFIG0_KU_SHIFT 25
+#define MIPS32_CONFIG0_KU_MASK (0x7 << MIPS32_CONFIG0_KU_SHIFT)
+
+#define MIPS32_CONFIG0_K0_SHIFT 0
+#define MIPS32_CONFIG0_K0_MASK (0x7 << MIPS32_CONFIG0_K0_SHIFT)
+
+#define MIPS32_CONFIG0_K23_SHIFT 28
+#define MIPS32_CONFIG0_K23_MASK (0x7 << MIPS32_CONFIG0_K23_SHIFT)
+
+#define MIPS32_CONFIG0_AR_SHIFT 10
+#define MIPS32_CONFIG0_AR_MASK (0x7 << MIPS32_CONFIG0_AR_SHIFT)
+
+#define MIPS32_CONFIG1_DL_SHIFT 10
+#define MIPS32_CONFIG1_DL_MASK (0x7 << MIPS32_CONFIG1_DL_SHIFT)
+
+#define MIPS32_ARCH_REL1 0x0
+#define MIPS32_ARCH_REL2 0x1
+
/* offsets into mips32 core register cache */
enum
{
enum mips32_isa_mode isa_mode;
};
+#define MIPS32_OP_ADDIU 0x21
+#define MIPS32_OP_ANDI 0x0C
#define MIPS32_OP_BEQ 0x04
+#define MIPS32_OP_BGTZ 0x07
#define MIPS32_OP_BNE 0x05
#define MIPS32_OP_ADDI 0x08
#define MIPS32_OP_AND 0x24
+#define MIPS32_OP_CACHE 0x2F
#define MIPS32_OP_COP0 0x10
#define MIPS32_OP_JR 0x08
#define MIPS32_OP_LUI 0x0F
#define MIPS32_OP_MTHI 0x11
#define MIPS32_OP_MFLO 0x12
#define MIPS32_OP_MTLO 0x13
+#define MIPS32_OP_RDHWR 0x3B
#define MIPS32_OP_SB 0x28
#define MIPS32_OP_SH 0x29
#define MIPS32_OP_SW 0x2B
#define MIPS32_OP_ORI 0x0D
#define MIPS32_OP_XOR 0x26
+#define MIPS32_OP_SLTU 0x2B
#define MIPS32_OP_SRL 0x03
+#define MIPS32_OP_SYNCI 0x1F
+
+#define MIPS32_OP_REGIMM 0x01
+#define MIPS32_OP_SDBBP 0x3F
+#define MIPS32_OP_SPECIAL 0x00
+#define MIPS32_OP_SPECIAL2 0x07
+#define MIPS32_OP_SPECIAL3 0x1F
#define MIPS32_COP0_MF 0x00
#define MIPS32_COP0_MT 0x04
#define MIPS32_I_INST(opcode, rs, rt, immd) (((opcode) << 26) |((rs) << 21) | ((rt) << 16) | (immd))
#define MIPS32_J_INST(opcode, addr) (((opcode) << 26) |(addr))
-#define MIPS32_NOP 0
-#define MIPS32_ADDI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ADDI, src, tar, val)
-#define MIPS32_AND(reg, off, val) MIPS32_R_INST(0, off, val, reg, 0, MIPS32_OP_AND)
-#define MIPS32_B(off) MIPS32_BEQ(0, 0, off)
-#define MIPS32_BEQ(src,tar,off) MIPS32_I_INST(MIPS32_OP_BEQ, src, tar, off)
-#define MIPS32_BNE(src,tar,off) MIPS32_I_INST(MIPS32_OP_BNE, src, tar, off)
-#define MIPS32_JR(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_JR)
-#define MIPS32_MFC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MF, gpr, cpr, 0, sel)
-#define MIPS32_MTC0(gpr,cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MT, gpr, cpr, 0, sel)
-#define MIPS32_LBU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LBU, base, reg, off)
-#define MIPS32_LHU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LHU, base, reg, off)
-#define MIPS32_LUI(reg, val) MIPS32_I_INST(MIPS32_OP_LUI, 0, reg, val)
-#define MIPS32_LW(reg, off, base) MIPS32_I_INST(MIPS32_OP_LW, base, reg, off)
-#define MIPS32_MFLO(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFLO)
-#define MIPS32_MFHI(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFHI)
-#define MIPS32_MTLO(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTLO)
-#define MIPS32_MTHI(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTHI)
-#define MIPS32_ORI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ORI, src, tar, val)
-#define MIPS32_SB(reg, off, base) MIPS32_I_INST(MIPS32_OP_SB, base, reg, off)
-#define MIPS32_SH(reg, off, base) MIPS32_I_INST(MIPS32_OP_SH, base, reg, off)
-#define MIPS32_SW(reg, off, base) MIPS32_I_INST(MIPS32_OP_SW, base, reg, off)
-#define MIPS32_XOR(reg, val1, val2) MIPS32_R_INST(0, val1, val2, reg, 0, MIPS32_OP_XOR)
-#define MIPS32_SRL(reg, src, off) MIPS32_R_INST(0, 0, src, reg, off, MIPS32_OP_SRL)
+#define MIPS32_NOP 0
+#define MIPS32_ADDI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ADDI, src, tar, val)
+#define MIPS32_ADDU(dst, src, tar) MIPS32_R_INST(MIPS32_OP_SPECIAL, src, tar, dst, 0, MIPS32_OP_ADDIU)
+#define MIPS32_AND(reg, off, val) MIPS32_R_INST(0, off, val, reg, 0, MIPS32_OP_AND)
+#define MIPS32_ANDI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ANDI, src, tar, val)
+#define MIPS32_B(off) MIPS32_BEQ(0, 0, off)
+#define MIPS32_BEQ(src, tar, off) MIPS32_I_INST(MIPS32_OP_BEQ, src, tar, off)
+#define MIPS32_BGTZ(reg, off) MIPS32_I_INST(MIPS32_OP_BGTZ, reg, 0, off)
+#define MIPS32_BNE(src,tar,off) MIPS32_I_INST(MIPS32_OP_BNE, src, tar, off)
+#define MIPS32_CACHE(op, off, base) MIPS32_I_INST(MIPS32_OP_CACHE, base, op, off)
+#define MIPS32_JR(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_JR)
+#define MIPS32_MFC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MF, gpr, cpr, 0, sel)
+#define MIPS32_MTC0(gpr, cpr, sel) MIPS32_R_INST(MIPS32_OP_COP0, MIPS32_COP0_MT, gpr, cpr, 0, sel)
+#define MIPS32_LBU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LBU, base, reg, off)
+#define MIPS32_LHU(reg, off, base) MIPS32_I_INST(MIPS32_OP_LHU, base, reg, off)
+#define MIPS32_LUI(reg, val) MIPS32_I_INST(MIPS32_OP_LUI, 0, reg, val)
+#define MIPS32_LW(reg, off, base) MIPS32_I_INST(MIPS32_OP_LW, base, reg, off)
+#define MIPS32_MFLO(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFLO)
+#define MIPS32_MFHI(reg) MIPS32_R_INST(0, 0, 0, reg, 0, MIPS32_OP_MFHI)
+#define MIPS32_MTLO(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTLO)
+#define MIPS32_MTHI(reg) MIPS32_R_INST(0, reg, 0, 0, 0, MIPS32_OP_MTHI)
+#define MIPS32_ORI(tar, src, val) MIPS32_I_INST(MIPS32_OP_ORI, src, tar, val)
+#define MIPS32_RDHWR(tar, dst) MIPS32_R_INST(MIPS32_OP_SPECIAL3, 0, tar, dst, 0, MIPS32_OP_RDHWR)
+#define MIPS32_SB(reg, off, base) MIPS32_I_INST(MIPS32_OP_SB, base, reg, off)
+#define MIPS32_SH(reg, off, base) MIPS32_I_INST(MIPS32_OP_SH, base, reg, off)
+#define MIPS32_SW(reg, off, base) MIPS32_I_INST(MIPS32_OP_SW, base, reg, off)
+#define MIPS32_XOR(reg, val1, val2) MIPS32_R_INST(0, val1, val2, reg, 0, MIPS32_OP_XOR)
+#define MIPS32_SRL(reg, src, off) MIPS32_R_INST(0, 0, src, reg, off, MIPS32_OP_SRL)
+#define MIPS32_SLTU(dst, src, tar) MIPS32_R_INST(MIPS32_OP_SPECIAL, src, tar, dst, 0, MIPS32_OP_SLTU)
+#define MIPS32_SYNCI(off, base) MIPS32_I_INST(MIPS32_OP_REGIMM, base, MIPS32_OP_SYNCI, off)
+
+#define MIPS32_SYNC 0xF
+#define MIPS32_SYNCI_STEP 0x1 /* reg num od address step size to be used with synci instruction */
+
+/**
+ * Cache operations definietions
+ * Operation field is 5 bits long :
+ * 1) bits 1..0 hold cache type
+ * 2) bits 4..2 hold operation code
+ */
+#define MIPS32_CACHE_D_HIT_WRITEBACK ((0x1 << 0) | (0x6 << 2))
+#define MIPS32_CACHE_I_HIT_INVALIDATE ((0x0 << 0) | (0x4 << 2))
/* ejtag specific instructions */
#define MIPS32_DRET 0x4200001F
-#define MIPS32_SDBBP 0x7000003F
+#define MIPS32_SDBBP 0x7000003F /* MIPS32_J_INST(MIPS32_OP_SPECIAL2, MIPS32_OP_SDBBP) */
#define MIPS16_SDBBP 0xE801
extern const struct command_registration mips32_command_handlers[];
static int mips32_pracc_write_u32(struct mips_ejtag *ejtag_info,
uint32_t addr, uint32_t *buf);
+static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
+ uint32_t start_addr, uint32_t end_addr);
+static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
+ uint32_t start_addr, uint32_t end_addr);
+
static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
{
uint32_t ejtag_ctrl;
return retval;
}
+/**
+ * \b mips32_pracc_sync_cache
+ *
+ * Synchronize Caches to Make Instruction Writes Effective
+ * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
+ * Document Number: MD00086, Revision 2.00, June 9, 2003)
+ *
+ * When the instruction stream is written, the SYNCI instruction should be used
+ * in conjunction with other instructions to make the newly-written instructions effective.
+ *
+ * Explanation :
+ * A program that loads another program into memory is actually writing the D- side cache.
+ * The instructions it has loaded can't be executed until they reach the I-cache.
+ *
+ * After the instructions have been written, the loader should arrange
+ * to write back any containing D-cache line and invalidate any locations
+ * already in the I-cache.
+ *
+ * You can do that with cache instructions, but those instructions are only available in kernel mode,
+ * and a loader writing instructions for the use of its own process need not be privileged software.
+ *
+ * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
+ * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
+ * That is, it arranges a D-cache write-back and an I-cache invalidate.
+ *
+ * To employ synci at user level, you need to know the size of a cache line,
+ * and that can be obtained with a rdhwr SYNCI_Step
+ * from one of the standard “hardware registers”.
+ */
+static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
+ uint32_t start_addr, uint32_t end_addr)
+{
+ static const uint32_t code[] = {
+ /* start: */
+ MIPS32_MTC0(15,31,0), /* move $15 to COP0 DeSave */
+ MIPS32_LUI(15,UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
+ MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_STACK)),
+ MIPS32_SW(8,0,15), /* sw $8,($15) */
+ MIPS32_SW(9,0,15), /* sw $9,($15) */
+ MIPS32_SW(10,0,15), /* sw $10,($15) */
+ MIPS32_SW(11,0,15), /* sw $11,($15) */
+
+ MIPS32_LUI(8,UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
+ MIPS32_ORI(8,8,LOWER16(MIPS32_PRACC_PARAM_IN)),
+ MIPS32_LW(9,0,8), /* Load write start_addr to $9 */
+ MIPS32_LW(10,4,8), /* Load write end_addr to $10 */
+
+ MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
+ MIPS32_BEQ(11,0,6), /* beq $11, $0, end */
+ MIPS32_NOP,
+ /* synci_loop : */
+ MIPS32_SYNCI(0,9), /* synci 0($9) */
+ MIPS32_SLTU(8,10,9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
+ MIPS32_BNE(8,0,NEG16(3)), /* bne $8, $0, synci_loop */
+ MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
+ MIPS32_SYNC,
+ /* end: */
+ MIPS32_LW(11,0,15), /* lw $11,($15) */
+ MIPS32_LW(10,0,15), /* lw $10,($15) */
+ MIPS32_LW(9,0,15), /* lw $9,($15) */
+ MIPS32_LW(8,0,15), /* lw $8,($15) */
+ MIPS32_B(NEG16(24)), /* b start */
+ MIPS32_MFC0(15,31,0), /* move COP0 DeSave to $15 */
+ };
+
+ /* TODO remove array */
+ uint32_t *param_in = malloc(2 * sizeof(uint32_t));
+ int retval;
+ param_in[0] = start_addr;
+ param_in[1] = end_addr;
+
+ retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
+
+ free(param_in);
+
+ return retval;
+}
+
+/**
+ * \b mips32_pracc_clean_invalidate_cache
+ *
+ * Writeback D$ and Invalidate I$
+ * so that the instructions written can be visible to CPU
+ */
+static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
+ uint32_t start_addr, uint32_t end_addr)
+{
+ static const uint32_t code[] = {
+ /* start: */
+ MIPS32_MTC0(15,31,0), /* move $15 to COP0 DeSave */
+ MIPS32_LUI(15,UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
+ MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_STACK)),
+ MIPS32_SW(8,0,15), /* sw $8,($15) */
+ MIPS32_SW(9,0,15), /* sw $9,($15) */
+ MIPS32_SW(10,0,15), /* sw $10,($15) */
+ MIPS32_SW(11,0,15), /* sw $11,($15) */
+
+ MIPS32_LUI(8,UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
+ MIPS32_ORI(8,8,LOWER16(MIPS32_PRACC_PARAM_IN)),
+ MIPS32_LW(9,0,8), /* Load write start_addr to $9 */
+ MIPS32_LW(10,4,8), /* Load write end_addr to $10 */
+ MIPS32_LW(11,8,8), /* Load write clsiz to $11 */
+
+ /* cache_loop: */
+ MIPS32_SLTU(8,10,9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
+ MIPS32_BGTZ(8,6), /* bgtz $8, end */
+ MIPS32_NOP,
+
+ MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK,0,9), /* cache Hit_Writeback_D, 0($9) */
+ MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE,0,9), /* cache Hit_Invalidate_I, 0($9) */
+
+ MIPS32_ADDU(9,9,11), /* $9 += $11 */
+
+ MIPS32_B(NEG16(7)), /* b cache_loop */
+ MIPS32_NOP,
+ /* end: */
+ MIPS32_LW(11,0,15), /* lw $11,($15) */
+ MIPS32_LW(10,0,15), /* lw $10,($15) */
+ MIPS32_LW(9,0,15), /* lw $9,($15) */
+ MIPS32_LW(8,0,15), /* lw $8,($15) */
+ MIPS32_B(NEG16(25)), /* b start */
+ MIPS32_MFC0(15,31,0), /* move COP0 DeSave to $15 */
+ };
+
+ /**
+ * Find cache line size in bytes
+ */
+ uint32_t conf;
+ uint32_t dl, clsiz;
+
+ mips32_cp0_read(ejtag_info, &conf, 16, 1);
+ dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
+
+ /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
+ clsiz = 0x2 << dl;
+
+ /* TODO remove array */
+ uint32_t *param_in = malloc(3 * sizeof(uint32_t));
+ int retval;
+ param_in[0] = start_addr;
+ param_in[1] = end_addr;
+ param_in[2] = clsiz;
+
+ retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
+
+ free(param_in);
+
+ return retval;
+}
+
+
int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
+ int retval;
+
switch (size)
{
case 1:
- return mips32_pracc_write_mem8(ejtag_info, addr, count, (uint8_t*)buf);
+ retval = mips32_pracc_write_mem8(ejtag_info, addr, count, (uint8_t*)buf);
+ break;
case 2:
- return mips32_pracc_write_mem16(ejtag_info, addr, count,(uint16_t*)buf);
+ retval = mips32_pracc_write_mem16(ejtag_info, addr, count,(uint16_t*)buf);
+ break;
case 4:
if (count == 1)
- return mips32_pracc_write_u32(ejtag_info, addr, (uint32_t*)buf);
+ {
+ retval = mips32_pracc_write_u32(ejtag_info, addr, (uint32_t*)buf);
+ }
else
- return mips32_pracc_write_mem32(ejtag_info, addr, count, (uint32_t*)buf);
+ {
+ retval = mips32_pracc_write_mem32(ejtag_info, addr, count, (uint32_t*)buf);
+ }
+ break;
+ default:
+ retval = ERROR_FAIL;
}
- return ERROR_OK;
+ /**
+ * If we are in the cachable regoion and cache is activated,
+ * we must clean D$ + invalidate I$ after we did the write,
+ * so that changes do not continue to live only in D$, but to be
+ * replicated in I$ also (maybe we wrote the istructions)
+ */
+ uint32_t conf = 0;
+ int cached = 0;
+
+ mips32_cp0_read(ejtag_info, &conf, 16, 0);
+
+ switch (KSEGX(addr))
+ {
+ case KUSEG:
+ cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
+ break;
+ case KSEG0 :
+ cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
+ break;
+ case KSEG1:
+ /* uncachable segment - nothing to do */
+ break;
+ case KSEG2:
+ case KSEG3:
+ cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
+ break;
+ default:
+ /* what ? */
+ break;
+ }
+
+ /**
+ * Check cachablitiy bits coherency algorithm -
+ * is the region cacheable or uncached.
+ * If cacheable we have to synchronize the cache
+ */
+ if (cached == 0x3)
+ {
+ uint32_t start_addr, end_addr;
+ uint32_t rel;
+
+ start_addr = addr;
+ end_addr = addr + count * size;
+
+ /** select cache synchronisation mechanism based on Architecture Release */
+ rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
+ switch (rel)
+ {
+ case MIPS32_ARCH_REL1 :
+ /* MIPS32/64 Release 1 - we must use cache instruction */
+ mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
+ break;
+ case MIPS32_ARCH_REL2 :
+ /* MIPS32/64 Release 2 - we can use synci instruction */
+ mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
+ break;
+ default :
+ /* what ? */
+ break;
+ }
+ }
+
+ return retval;
}
static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf)