]> git.sur5r.net Git - openocd/commitdiff
4-bit ECC support for Marvell Kirkwood SOC
authoroharboe <oharboe@b42882b7-edfa-0310-969c-e2dbd0fdcd60>
Tue, 12 May 2009 17:29:16 +0000 (17:29 +0000)
committeroharboe <oharboe@b42882b7-edfa-0310-969c-e2dbd0fdcd60>
Tue, 12 May 2009 17:29:16 +0000 (17:29 +0000)
git-svn-id: svn://svn.berlios.de/openocd/trunk@1768 b42882b7-edfa-0310-969c-e2dbd0fdcd60

src/flash/Makefile.am
src/flash/nand.c
src/flash/nand.h
src/flash/nand_ecc_kw.c [new file with mode: 0644]
src/target/board/sheevaplug.cfg

index 7895edc85af55127ad43c7749f7f539c4efb06ad..e5b76cb61b24352d8a1e957027281eff43636808 100644 (file)
@@ -7,7 +7,7 @@ METASOURCES = AUTO
 noinst_LTLIBRARIES = libflash.la
 libflash_la_SOURCES = \
        flash.c lpc2000.c cfi.c non_cfi.c at91sam7.c \
-       str7x.c str9x.c aduc702x.c nand.c nand_ecc.c \
+       str7x.c str9x.c aduc702x.c nand.c nand_ecc.c nand_ecc_kw.c \
        lpc3180_nand_controller.c stellaris.c str9xpec.c stm32x.c tms470.c \
        ecos.c orion_nand.c s3c24xx_nand.c s3c2410_nand.c s3c2412_nand.c \
        s3c2440_nand.c s3c2443_nand.c lpc288x.c ocl.c mflash.c pic32mx.c avrf.c
index 8efed037c6073153fea0a4edf8ab0ee8340b8fbe..057feb7d94b750aeead179ae067102bf9d10c459 100644 (file)
@@ -1332,6 +1332,8 @@ static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cm
                                        oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY;
                                else if (!strcmp(args[i], "oob_softecc"))
                                        oob_format |= NAND_OOB_SW_ECC;
+                               else if (!strcmp(args[i], "oob_softecc_kw"))
+                                       oob_format |= NAND_OOB_SW_ECC_KW;
                                else
                                {
                                        command_print(cmd_ctx, "unknown option: %s", args[i]);
@@ -1355,7 +1357,7 @@ static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cm
                        page = malloc(p->page_size);
                }
 
-               if (oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC))
+               if (oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC | NAND_OOB_SW_ECC_KW))
                {
                        if (p->page_size == 512) {
                                oob_size = 16;
@@ -1401,6 +1403,21 @@ static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cm
                                        oob[eccpos[j++]] = ecc[1];
                                        oob[eccpos[j++]] = ecc[2];
                                }
+                       } else if (oob_format & NAND_OOB_SW_ECC_KW)
+                       {
+                               /*
+                                * In this case eccpos is not used as
+                                * the ECC data is always stored contigously
+                                * at the end of the OOB area.  It consists
+                                * of 10 bytes per 512-byte data block.
+                                */
+                               u32 i;
+                               u8 *ecc = oob + oob_size - page_size/512 * 10;
+                               memset(oob, 0xff, oob_size);
+                               for (i = 0; i < page_size; i += 512) {
+                                       nand_calculate_ecc_kw(p, page+i, ecc);
+                                       ecc += 10;
+                               }
                        }
                        else if (NULL != oob)
                        {
index bd9554c344c4e8ac027189858c9a08792866d588..b3c6b6b566debc523877f95b58c23b54df7a4f94 100644 (file)
@@ -200,6 +200,7 @@ enum oob_formats
        NAND_OOB_ONLY = 0x2,    /* only OOB data */
        NAND_OOB_SW_ECC = 0x10, /* when writing, use SW ECC (as opposed to no ECC) */ 
        NAND_OOB_HW_ECC = 0x20, /* when writing, use HW ECC (as opposed to no ECC) */
+       NAND_OOB_SW_ECC_KW = 0x40, /* when writing, use Marvell's Kirkwood bootrom format */
        NAND_OOB_JFFS2 = 0x100, /* when writing, use JFFS2 OOB layout */
        NAND_OOB_YAFFS2 = 0x100,/* when writing, use YAFFS2 OOB layout */
 };
@@ -210,6 +211,7 @@ extern int nand_read_page_raw(struct nand_device_s *device, u32 page, u8 *data,
 extern int nand_write_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
 extern int nand_read_status(struct nand_device_s *device, u8 *status);
 extern int nand_calculate_ecc(struct nand_device_s *device, const u8 *dat, u8 *ecc_code);
+extern int nand_calculate_ecc_kw(struct nand_device_s *device, const u8 *dat, u8 *ecc_code);
 
 extern int nand_register_commands(struct command_context_s *cmd_ctx);
 extern int nand_init(struct command_context_s *cmd_ctx);
diff --git a/src/flash/nand_ecc_kw.c b/src/flash/nand_ecc_kw.c
new file mode 100644 (file)
index 0000000..ecc7adc
--- /dev/null
@@ -0,0 +1,174 @@
+/*\r
+ * Reed-Solomon ECC handling for the Marvell Kirkwood SOC\r
+ * Copyright (C) 2009 Marvell Semiconductor, Inc.\r
+ *\r
+ * Authors: Lennert Buytenhek <buytenh@wantstofly.org>\r
+ *          Nicolas Pitre <nico@cam.org>\r
+ *\r
+ * This file is free software; you can redistribute it and/or modify it\r
+ * under the terms of the GNU General Public License as published by the\r
+ * Free Software Foundation; either version 2 or (at your option) any\r
+ * later version.\r
+ *\r
+ * This file is distributed in the hope that it will be useful, but WITHOUT\r
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or\r
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License\r
+ * for more details.\r
+ */\r
+\r
+#ifdef HAVE_CONFIG_H\r
+#include "config.h"\r
+#endif\r
+\r
+#include <sys/types.h>\r
+#include "nand.h"\r
+\r
+\r
+/*****************************************************************************\r
+ * Arithmetic in GF(2^10) ("F") modulo x^10 + x^3 + 1.\r
+ *\r
+ * For multiplication, a discrete log/exponent table is used, with\r
+ * primitive element x (F is a primitive field, so x is primitive).\r
+ */\r
+#define MODPOLY                0x409           /* x^10 + x^3 + 1 in binary */\r
+\r
+/*\r
+ * Maps an integer a [0..1022] to a polynomial b = gf_exp[a] in\r
+ * GF(2^10) mod x^10 + x^3 + 1 such that b = x ^ a.  There's two\r
+ * identical copies of this array back-to-back so that we can save\r
+ * the mod 1023 operation when doing a GF multiplication.\r
+ */\r
+static uint16_t gf_exp[1023 + 1023];\r
+\r
+/*\r
+ * Maps a polynomial b in GF(2^10) mod x^10 + x^3 + 1 to an index\r
+ * a = gf_log[b] in [0..1022] such that b = x ^ a.\r
+ */\r
+static uint16_t gf_log[1024];\r
+\r
+static void gf_build_log_exp_table(void)\r
+{\r
+       int i;\r
+       int p_i;\r
+\r
+       /*\r
+        * p_i = x ^ i\r
+        *\r
+        * Initialise to 1 for i = 0.\r
+        */\r
+       p_i = 1;\r
+\r
+       for (i = 0; i < 1023; i++) {\r
+               gf_exp[i] = p_i;\r
+               gf_exp[i + 1023] = p_i;\r
+               gf_log[p_i] = i;\r
+\r
+               /*\r
+                * p_i = p_i * x\r
+                */\r
+               p_i <<= 1;\r
+               if (p_i & (1 << 10))\r
+                       p_i ^= MODPOLY;\r
+       }\r
+}\r
+\r
+\r
+/*****************************************************************************\r
+ * Reed-Solomon code\r
+ *\r
+ * This implements a (1023,1015) Reed-Solomon ECC code over GF(2^10)\r
+ * mod x^10 + x^3 + 1, shortened to (520,512).  The ECC data consists\r
+ * of 8 10-bit symbols, or 10 8-bit bytes.\r
+ *\r
+ * Given 512 bytes of data, computes 10 bytes of ECC.\r
+ *\r
+ * This is done by converting the 512 bytes to 512 10-bit symbols\r
+ * (elements of F), interpreting those symbols as a polynomial in F[X]\r
+ * by taking symbol 0 as the coefficient of X^8 and symbol 511 as the\r
+ * coefficient of X^519, and calculating the residue of that polynomial\r
+ * divided by the generator polynomial, which gives us the 8 ECC symbols\r
+ * as the remainder.  Finally, we convert the 8 10-bit ECC symbols to 10\r
+ * 8-bit bytes.\r
+ *\r
+ * The generator polynomial is hardcoded, as that is faster, but it\r
+ * can be computed by taking the primitive element a = x (in F), and\r
+ * constructing a polynomial in F[X] with roots a, a^2, a^3, ..., a^8\r
+ * by multiplying the minimal polynomials for those roots (which are\r
+ * just 'x - a^i' for each i).\r
+ *\r
+ * Note: due to unfortunate circumstances, the bootrom in the Kirkwood SOC\r
+ * expects the ECC to be computed backward, i.e. from the last byte down\r
+ * to the first one.\r
+ */\r
+int nand_calculate_ecc_kw(struct nand_device_s *device, const u8 *data, u8 *ecc)\r
+{\r
+       unsigned int r7, r6, r5, r4, r3, r2, r1, r0;\r
+       int i;\r
+       static int tables_initialized = 0;\r
+\r
+       if (!tables_initialized) {\r
+               gf_build_log_exp_table();\r
+               tables_initialized = 1;\r
+       }\r
+\r
+       /*\r
+        * Load bytes 504..511 of the data into r.\r
+        */\r
+       r0 = data[504];\r
+       r1 = data[505];\r
+       r2 = data[506];\r
+       r3 = data[507];\r
+       r4 = data[508];\r
+       r5 = data[509];\r
+       r6 = data[510];\r
+       r7 = data[511];\r
+\r
+\r
+       /*\r
+        * Shift bytes 503..0 (in that order) into r0, followed\r
+        * by eight zero bytes, while reducing the polynomial by the\r
+        * generator polynomial in every step.\r
+        */\r
+       for (i = 503; i >= -8; i--) {\r
+               unsigned int d;\r
+\r
+               d = 0;\r
+               if (i >= 0)\r
+                       d = data[i];\r
+\r
+               if (r7) {\r
+                       u16 *t = gf_exp + gf_log[r7];\r
+\r
+                       r7 = r6 ^ t[0x21c];\r
+                       r6 = r5 ^ t[0x181];\r
+                       r5 = r4 ^ t[0x18e];\r
+                       r4 = r3 ^ t[0x25f];\r
+                       r3 = r2 ^ t[0x197];\r
+                       r2 = r1 ^ t[0x193];\r
+                       r1 = r0 ^ t[0x237];\r
+                       r0 = d  ^ t[0x024];\r
+               } else {\r
+                       r7 = r6;\r
+                       r6 = r5;\r
+                       r5 = r4;\r
+                       r4 = r3;\r
+                       r3 = r2;\r
+                       r2 = r1;\r
+                       r1 = r0;\r
+                       r0 = d;\r
+               }\r
+       }\r
+\r
+       ecc[0] = r0;\r
+       ecc[1] = (r0 >> 8) | (r1 << 2);\r
+       ecc[2] = (r1 >> 6) | (r2 << 4);\r
+       ecc[3] = (r2 >> 4) | (r3 << 6);\r
+       ecc[4] = (r3 >> 2);\r
+       ecc[5] = r4;\r
+       ecc[6] = (r4 >> 8) | (r5 << 2);\r
+       ecc[7] = (r5 >> 6) | (r6 << 4);\r
+       ecc[8] = (r6 >> 4) | (r7 << 6);\r
+       ecc[9] = (r7 >> 2);\r
+\r
+       return 0;\r
+}\r
index 64e259678624b05225db7c40facb0a70f24c7cf3..276d6f2462023acf97acbf5a289c19806105399b 100644 (file)
@@ -99,7 +99,7 @@ proc sheevaplug_reflash_uboot { } {
        sheevaplug_init
        nand probe 0
        nand erase 0 0 4
-       nand write 0 uboot.bin 0 oob_softecc
+       nand write 0 uboot.bin 0 oob_softecc_kw
        resume
 
 }
@@ -108,7 +108,7 @@ proc sheevaplug_load_uboot { } {
 
        # load u-Boot into RAM and execute it
        sheevaplug_init
-       load_image /tmp/uboot.elf
+       load_image uboot.elf
        verify_image uboot.elf
        resume 0x00600000