--- /dev/null
+/*****************************************************************************/
+/* */
+/* alignment.c */
+/* */
+/* Address aligment */
+/* */
+/* */
+/* */
+/* (C) 2011, Ullrich von Bassewitz */
+/* Roemerstrasse 52 */
+/* 70794 Filderstadt */
+/* EMail: uz@cc65.org */
+/* */
+/* */
+/* This software is provided 'as-is', without any expressed or implied */
+/* warranty. In no event will the authors be held liable for any damages */
+/* arising from the use of this software. */
+/* */
+/* Permission is granted to anyone to use this software for any purpose, */
+/* including commercial applications, and to alter it and redistribute it */
+/* freely, subject to the following restrictions: */
+/* */
+/* 1. The origin of this software must not be misrepresented; you must not */
+/* claim that you wrote the original software. If you use this software */
+/* in a product, an acknowledgment in the product documentation would be */
+/* appreciated but is not required. */
+/* 2. Altered source versions must be plainly marked as such, and must not */
+/* be misrepresented as being the original software. */
+/* 3. This notice may not be removed or altered from any source */
+/* distribution. */
+/* */
+/*****************************************************************************/
+
+
+
+/* common */
+#include "alignment.h"
+#include "check.h"
+
+
+
+/*****************************************************************************/
+/* Data */
+/*****************************************************************************/
+
+
+
+/* To factorize an alignment, we will use the following prime table. It lists
+ * all primes up to 256, which means we're able to factorize alignments up to
+ * 0x10000. This is checked in the code.
+ */
+static const unsigned char Primes[PRIME_COUNT] = {
+ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
+ 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
+ 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
+ 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
+ 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
+ 233, 239, 241, 251
+};
+#define LAST_PRIME ((unsigned long)Primes[PRIME_COUNT-1])
+
+#define FAC_MAX (LAST_PRIME * LAST_PRIME - 1)
+
+
+
+/*****************************************************************************/
+/* Code */
+/*****************************************************************************/
+
+
+
+static void Initialize (FactorizedNumber* F, unsigned long Value)
+/* Initialize a FactorizedNumber structure */
+{
+ unsigned I;
+
+ F->Value = Value;
+ for (I = 0; I < PRIME_COUNT; ++I) {
+ F->Powers[I] = 0;
+ }
+}
+
+
+
+static unsigned char MaxPower (unsigned char A, unsigned char B)
+/* Return the larger of A and B. This will get hopefully inlined by the
+ * compiler.
+ */
+{
+ return (A > B)? A : B;
+}
+
+
+
+static FactorizedNumber* Produce (FactorizedNumber* F)
+/* Generate a value from a list of powers of primes and return F */
+{
+ unsigned I;
+
+ F->Value = 1;
+ for (I = 0; I < PRIME_COUNT; ++I) {
+ unsigned Count = F->Powers[I];
+ while (Count--) {
+ F->Value *= Primes[I];
+ }
+ }
+ return F;
+}
+
+
+
+void Factorize (unsigned long Value, FactorizedNumber* F)
+/* Factorize a value between 1 and 0x10000. */
+{
+ unsigned I;
+
+ /* Initialize F */
+ Initialize (F, Value);
+
+ /* If the value is 1 we're already done */
+ if (Value == 1) {
+ return;
+ }
+
+ /* Be sure we can factorize */
+ CHECK (Value <= FAC_MAX && Value != 0);
+
+ /* Handle factor 2 separately for speed */
+ while ((Value & 0x01UL) == 0UL) {
+ ++F->Powers[0];
+ Value >>= 1;
+ }
+
+ /* Factorize. We don't need to check for array bounds since we checked the
+ * maximum value above.
+ */
+ I = 1; /* Skip 2 because it was handled above */
+ while (Value > 1) {
+ unsigned long Tmp = Value / Primes[I];
+ if (Tmp * Primes[I] == Value) {
+ /* This is a factor */
+ ++F->Powers[I];
+ Value = Tmp;
+ } else {
+ /* This is not a factor, try next one */
+ ++I;
+ }
+ }
+}
+
+
+
+FactorizedNumber* LCM (const FactorizedNumber* Left,
+ const FactorizedNumber* Right,
+ FactorizedNumber* Res)
+/* Calculate the least common multiple of two factorized numbers and return
+ * the result.
+ */
+{
+ unsigned I;
+
+ /* Generate the powers for the lcm */
+ for (I = 0; I < PRIME_COUNT; ++I) {
+ Res->Powers[I] = MaxPower (Left->Powers[I], Right->Powers[I]);
+ }
+
+ /* Generate the actual lcm value from the powers and return the result */
+ return Produce (Res);
+}
+
+
+
+unsigned long AlignAddr (unsigned long Addr, unsigned long Alignment)
+/* Align an address to the given alignment */
+{
+ return ((Addr + Alignment - 1) / Alignment) * Alignment;
+}
+
+
+
+/*****************************************************************************/
+/* Data */
+/*****************************************************************************/
+
+
+
+/* The C file contains a list of primes up to 256, so we can factorize numbers
+ * up to 0x10000 or somewhat more. The FactorizedNumber structure below
+ * contains the powers of the primes from the prime table. The size of the
+ * table (= the number of primes contained therein) is the constant below.
+ */
+#define PRIME_COUNT 54
+
+
+
+
+/* A number together with its prime factors */
+typedef struct FactorizedNumber FactorizedNumber;
+struct FactorizedNumber {
+ unsigned long Value; /* The actual number */
+ unsigned char Powers[PRIME_COUNT]; /* Powers of the factors */
+};
+
+
+
/*****************************************************************************/
/* Code */
/*****************************************************************************/
-#if defined(HAVE_INLINE)
-INLINE unsigned long AlignAddr (unsigned long Addr, unsigned long Alignment)
+void Factorize (unsigned long Value, FactorizedNumber* F);
+/* Factorize a value between 1 and 0x10000. */
+
+FactorizedNumber* LCM (const FactorizedNumber* Left,
+ const FactorizedNumber* Right,
+ FactorizedNumber* Res);
+/* Calculate the least common multiple of two factorized numbers and return
+ * the result.
+ */
+
+unsigned long AlignAddr (unsigned long Addr, unsigned long Alignment);
/* Align an address to the given alignment */
-{
- return ((Addr + Alignment - 1) / Alignment) * Alignment;
-}
-#else
-/* Beware: Evaluates the argument more than once! */
-# define AlignAddr(Addr, Alignment) \
- ((((Addr) + (Alignment) - 1) / (Alignment)) * (Alignment))
-#endif