From d956320687126471684eb03a5d62dd43671062b6 Mon Sep 17 00:00:00 2001 From: uz Date: Tue, 27 Dec 2011 22:18:05 +0000 Subject: [PATCH] Fix the factorization routine and hide it in the module. The others don't need to know about it, they can use the lcm calculation routine. git-svn-id: svn://svn.cc65.org/cc65/trunk@5328 b7a2c559-68d2-44c3-8de9-860c34a00d81 --- src/common/alignment.c | 88 +++++++++++++++++++++--------------------- src/common/alignment.h | 34 +--------------- 2 files changed, 46 insertions(+), 76 deletions(-) diff --git a/src/common/alignment.c b/src/common/alignment.c index f61dc08be..593926db5 100644 --- a/src/common/alignment.c +++ b/src/common/alignment.c @@ -49,7 +49,7 @@ * all primes up to 256, which means we're able to factorize alignments up to * 0x10000. This is checked in the code. */ -static const unsigned char Primes[PRIME_COUNT] = { +static const unsigned char Primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, @@ -57,9 +57,19 @@ static const unsigned char Primes[PRIME_COUNT] = { 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251 }; +#define PRIME_COUNT (sizeof (Primes) / sizeof (Primes[0])) #define LAST_PRIME ((unsigned long)Primes[PRIME_COUNT-1]) +#define FAC_MAX 0x10000UL -#define FAC_MAX (LAST_PRIME * LAST_PRIME - 1) + + +/* A number together with its prime factors */ +typedef struct FactorizedNumber FactorizedNumber; +struct FactorizedNumber { + unsigned long Value; /* The actual number */ + unsigned long Remainder; /* Remaining prime */ + unsigned char Powers[PRIME_COUNT]; /* Powers of the factors */ +}; @@ -75,6 +85,7 @@ static void Initialize (FactorizedNumber* F, unsigned long Value) unsigned I; F->Value = Value; + F->Remainder = 1; for (I = 0; I < PRIME_COUNT; ++I) { F->Powers[I] = 0; } @@ -82,35 +93,8 @@ static void Initialize (FactorizedNumber* F, unsigned long Value) -static unsigned char MaxPower (unsigned char A, unsigned char B) -/* Return the larger of A and B. This will get hopefully inlined by the - * compiler. - */ -{ - return (A > B)? A : B; -} - - - -static FactorizedNumber* Produce (FactorizedNumber* F) -/* Generate a value from a list of powers of primes and return F */ -{ - unsigned I; - - F->Value = 1; - for (I = 0; I < PRIME_COUNT; ++I) { - unsigned Count = F->Powers[I]; - while (Count--) { - F->Value *= Primes[I]; - } - } - return F; -} - - - -void Factorize (unsigned long Value, FactorizedNumber* F) -/* Factorize a value between 1 and 0x10000. */ +static void Factorize (unsigned long Value, FactorizedNumber* F) +/* Factorize a value between 1 and 0x10000 that is in F */ { unsigned I; @@ -131,9 +115,7 @@ void Factorize (unsigned long Value, FactorizedNumber* F) Value >>= 1; } - /* Factorize. We don't need to check for array bounds since we checked the - * maximum value above. - */ + /* Factorize. */ I = 1; /* Skip 2 because it was handled above */ while (Value > 1) { unsigned long Tmp = Value / Primes[I]; @@ -143,29 +125,47 @@ void Factorize (unsigned long Value, FactorizedNumber* F) Value = Tmp; } else { /* This is not a factor, try next one */ - ++I; + if (++I >= PRIME_COUNT) { + break; + } } } + + /* If something is left, it must be a remaining prime */ + F->Remainder = Value; } -FactorizedNumber* LCM (const FactorizedNumber* Left, - const FactorizedNumber* Right, - FactorizedNumber* Res) -/* Calculate the least common multiple of two factorized numbers and return +unsigned long LeastCommonMultiple (unsigned long Left, unsigned long Right) +/* Calculate the least common multiple of two numbers and return * the result. */ { unsigned I; - - /* Generate the powers for the lcm */ + FactorizedNumber L, R; + unsigned long Res; + + /* Factorize the two numbers */ + Factorize (Left, &L); + Factorize (Right, &R); + + /* Generate the result from the factors. + * Some thoughts on range problems: Since the largest numbers we can + * factorize are 2^16 (0x10000), the only numbers that could produce an + * overflow when using 32 bits are exactly these. But the LCM for 2^16 + * and 2^16 is 2^16 so this will never happen and we're safe. + */ + Res = L.Remainder * R.Remainder; for (I = 0; I < PRIME_COUNT; ++I) { - Res->Powers[I] = MaxPower (Left->Powers[I], Right->Powers[I]); + unsigned P = (L.Powers[I] > R.Powers[I])? L.Powers[I] : R.Powers[I]; + while (P--) { + Res *= Primes[I]; + } } - /* Generate the actual lcm value from the powers and return the result */ - return Produce (Res); + /* Return the calculated lcm */ + return Res; } diff --git a/src/common/alignment.h b/src/common/alignment.h index b55cd6f2b..15f44a368 100644 --- a/src/common/alignment.h +++ b/src/common/alignment.h @@ -43,44 +43,14 @@ -/*****************************************************************************/ -/* Data */ -/*****************************************************************************/ - - - -/* The C file contains a list of primes up to 256, so we can factorize numbers - * up to 0x10000 or somewhat more. The FactorizedNumber structure below - * contains the powers of the primes from the prime table. The size of the - * table (= the number of primes contained therein) is the constant below. - */ -#define PRIME_COUNT 54 - - - - -/* A number together with its prime factors */ -typedef struct FactorizedNumber FactorizedNumber; -struct FactorizedNumber { - unsigned long Value; /* The actual number */ - unsigned char Powers[PRIME_COUNT]; /* Powers of the factors */ -}; - - - /*****************************************************************************/ /* Code */ /*****************************************************************************/ -void Factorize (unsigned long Value, FactorizedNumber* F); -/* Factorize a value between 1 and 0x10000. */ - -FactorizedNumber* LCM (const FactorizedNumber* Left, - const FactorizedNumber* Right, - FactorizedNumber* Res); -/* Calculate the least common multiple of two factorized numbers and return +unsigned long LeastCommonMultiple (unsigned long Left, unsigned long Right); +/* Calculate the least common multiple of two numbers and return * the result. */ -- 2.39.5