]> git.sur5r.net Git - u-boot/blob - arch/arm/cpu/arm926ejs/mxs/spl_power_init.c
Merge git://git.denx.de/u-boot-net
[u-boot] / arch / arm / cpu / arm926ejs / mxs / spl_power_init.c
1 /*
2  * Freescale i.MX28 Boot PMIC init
3  *
4  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5  * on behalf of DENX Software Engineering GmbH
6  *
7  * SPDX-License-Identifier:     GPL-2.0+
8  */
9
10 #include <common.h>
11 #include <config.h>
12 #include <asm/io.h>
13 #include <asm/arch/imx-regs.h>
14
15 #include "mxs_init.h"
16
17 #ifdef CONFIG_SYS_MXS_VDD5V_ONLY
18 #define DCDC4P2_DROPOUT_CONFIG  POWER_DCDC4P2_DROPOUT_CTRL_100MV | \
19                                 POWER_DCDC4P2_DROPOUT_CTRL_SRC_4P2
20 #else
21 #define DCDC4P2_DROPOUT_CONFIG  POWER_DCDC4P2_DROPOUT_CTRL_100MV | \
22                                 POWER_DCDC4P2_DROPOUT_CTRL_SRC_SEL
23 #endif
24 /**
25  * mxs_power_clock2xtal() - Switch CPU core clock source to 24MHz XTAL
26  *
27  * This function switches the CPU core clock from PLL to 24MHz XTAL
28  * oscilator. This is necessary if the PLL is being reconfigured to
29  * prevent crash of the CPU core.
30  */
31 static void mxs_power_clock2xtal(void)
32 {
33         struct mxs_clkctrl_regs *clkctrl_regs =
34                 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
35
36         debug("SPL: Switching CPU clock to 24MHz XTAL\n");
37
38         /* Set XTAL as CPU reference clock */
39         writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
40                 &clkctrl_regs->hw_clkctrl_clkseq_set);
41 }
42
43 /**
44  * mxs_power_clock2pll() - Switch CPU core clock source to PLL
45  *
46  * This function switches the CPU core clock from 24MHz XTAL oscilator
47  * to PLL. This can only be called once the PLL has re-locked and once
48  * the PLL is stable after reconfiguration.
49  */
50 static void mxs_power_clock2pll(void)
51 {
52         struct mxs_clkctrl_regs *clkctrl_regs =
53                 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
54
55         debug("SPL: Switching CPU core clock source to PLL\n");
56
57         /*
58          * TODO: Are we really? It looks like we turn on PLL0, but we then
59          * set the CLKCTRL_CLKSEQ_BYPASS_CPU bit of the (which was already
60          * set by mxs_power_clock2xtal()). Clearing this bit here seems to
61          * introduce some instability (causing the CPU core to hang). Maybe
62          * we aren't giving PLL0 enough time to stabilise?
63          */
64         setbits_le32(&clkctrl_regs->hw_clkctrl_pll0ctrl0,
65                         CLKCTRL_PLL0CTRL0_POWER);
66         early_delay(100);
67
68         /*
69          * TODO: Should the PLL0 FORCE_LOCK bit be set here followed be a
70          * wait on the PLL0 LOCK bit?
71          */
72         setbits_le32(&clkctrl_regs->hw_clkctrl_clkseq,
73                         CLKCTRL_CLKSEQ_BYPASS_CPU);
74 }
75
76 /**
77  * mxs_power_set_auto_restart() - Set the auto-restart bit
78  *
79  * This function ungates the RTC block and sets the AUTO_RESTART
80  * bit to work around a design bug on MX28EVK Rev. A .
81  */
82
83 static void mxs_power_set_auto_restart(void)
84 {
85         struct mxs_rtc_regs *rtc_regs =
86                 (struct mxs_rtc_regs *)MXS_RTC_BASE;
87
88         debug("SPL: Setting auto-restart bit\n");
89
90         writel(RTC_CTRL_SFTRST, &rtc_regs->hw_rtc_ctrl_clr);
91         while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_SFTRST)
92                 ;
93
94         writel(RTC_CTRL_CLKGATE, &rtc_regs->hw_rtc_ctrl_clr);
95         while (readl(&rtc_regs->hw_rtc_ctrl) & RTC_CTRL_CLKGATE)
96                 ;
97
98         /* Do nothing if flag already set */
99         if (readl(&rtc_regs->hw_rtc_persistent0) & RTC_PERSISTENT0_AUTO_RESTART)
100                 return;
101
102         while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
103                 ;
104
105         setbits_le32(&rtc_regs->hw_rtc_persistent0,
106                         RTC_PERSISTENT0_AUTO_RESTART);
107         writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_set);
108         writel(RTC_CTRL_FORCE_UPDATE, &rtc_regs->hw_rtc_ctrl_clr);
109         while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_NEW_REGS_MASK)
110                 ;
111         while (readl(&rtc_regs->hw_rtc_stat) & RTC_STAT_STALE_REGS_MASK)
112                 ;
113 }
114
115 /**
116  * mxs_power_set_linreg() - Set linear regulators 25mV below DC-DC converter
117  *
118  * This function configures the VDDIO, VDDA and VDDD linear regulators output
119  * to be 25mV below the VDDIO, VDDA and VDDD output from the DC-DC switching
120  * converter. This is the recommended setting for the case where we use both
121  * linear regulators and DC-DC converter to power the VDDIO rail.
122  */
123 static void mxs_power_set_linreg(void)
124 {
125         struct mxs_power_regs *power_regs =
126                 (struct mxs_power_regs *)MXS_POWER_BASE;
127
128         /* Set linear regulator 25mV below switching converter */
129         debug("SPL: Setting VDDD 25mV below DC-DC converters\n");
130         clrsetbits_le32(&power_regs->hw_power_vdddctrl,
131                         POWER_VDDDCTRL_LINREG_OFFSET_MASK,
132                         POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
133
134         debug("SPL: Setting VDDA 25mV below DC-DC converters\n");
135         clrsetbits_le32(&power_regs->hw_power_vddactrl,
136                         POWER_VDDACTRL_LINREG_OFFSET_MASK,
137                         POWER_VDDACTRL_LINREG_OFFSET_1STEPS_BELOW);
138
139         debug("SPL: Setting VDDIO 25mV below DC-DC converters\n");
140         clrsetbits_le32(&power_regs->hw_power_vddioctrl,
141                         POWER_VDDIOCTRL_LINREG_OFFSET_MASK,
142                         POWER_VDDIOCTRL_LINREG_OFFSET_1STEPS_BELOW);
143 }
144
145 /**
146  * mxs_get_batt_volt() - Measure battery input voltage
147  *
148  * This function retrieves the battery input voltage and returns it.
149  */
150 static int mxs_get_batt_volt(void)
151 {
152         struct mxs_power_regs *power_regs =
153                 (struct mxs_power_regs *)MXS_POWER_BASE;
154         uint32_t volt = readl(&power_regs->hw_power_battmonitor);
155         volt &= POWER_BATTMONITOR_BATT_VAL_MASK;
156         volt >>= POWER_BATTMONITOR_BATT_VAL_OFFSET;
157         volt *= 8;
158
159         debug("SPL: Battery Voltage = %dmV\n", volt);
160         return volt;
161 }
162
163 /**
164  * mxs_is_batt_ready() - Test if the battery provides enough voltage to boot
165  *
166  * This function checks if the battery input voltage is higher than 3.6V and
167  * therefore allows the system to successfully boot using this power source.
168  */
169 static int mxs_is_batt_ready(void)
170 {
171         return (mxs_get_batt_volt() >= 3600);
172 }
173
174 /**
175  * mxs_is_batt_good() - Test if battery is operational at all
176  *
177  * This function starts recharging the battery and tests if the input current
178  * provided by the 5V input recharging the battery is also sufficient to power
179  * the DC-DC converter.
180  */
181 static int mxs_is_batt_good(void)
182 {
183         struct mxs_power_regs *power_regs =
184                 (struct mxs_power_regs *)MXS_POWER_BASE;
185         uint32_t volt = mxs_get_batt_volt();
186
187         if ((volt >= 2400) && (volt <= 4300)) {
188                 debug("SPL: Battery is good\n");
189                 return 1;
190         }
191
192         clrsetbits_le32(&power_regs->hw_power_5vctrl,
193                 POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
194                 0x3 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
195         writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
196                 &power_regs->hw_power_5vctrl_clr);
197
198         clrsetbits_le32(&power_regs->hw_power_charge,
199                 POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
200                 POWER_CHARGE_STOP_ILIMIT_10MA | 0x3);
201
202         writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_clr);
203         writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
204                 &power_regs->hw_power_5vctrl_clr);
205
206         early_delay(500000);
207
208         volt = mxs_get_batt_volt();
209
210         if (volt >= 3500) {
211                 debug("SPL: Battery Voltage too high\n");
212                 return 0;
213         }
214
215         if (volt >= 2400) {
216                 debug("SPL: Battery is good\n");
217                 return 1;
218         }
219
220         writel(POWER_CHARGE_STOP_ILIMIT_MASK | POWER_CHARGE_BATTCHRG_I_MASK,
221                 &power_regs->hw_power_charge_clr);
222         writel(POWER_CHARGE_PWD_BATTCHRG, &power_regs->hw_power_charge_set);
223
224         debug("SPL: Battery Voltage too low\n");
225         return 0;
226 }
227
228 /**
229  * mxs_power_setup_5v_detect() - Start the 5V input detection comparator
230  *
231  * This function enables the 5V detection comparator and sets the 5V valid
232  * threshold to 4.4V . We use 4.4V threshold here to make sure that even
233  * under high load, the voltage drop on the 5V input won't be so critical
234  * to cause undervolt on the 4P2 linear regulator supplying the DC-DC
235  * converter and thus making the system crash.
236  */
237 static void mxs_power_setup_5v_detect(void)
238 {
239         struct mxs_power_regs *power_regs =
240                 (struct mxs_power_regs *)MXS_POWER_BASE;
241
242         /* Start 5V detection */
243         debug("SPL: Starting 5V input detection comparator\n");
244         clrsetbits_le32(&power_regs->hw_power_5vctrl,
245                         POWER_5VCTRL_VBUSVALID_TRSH_MASK,
246                         POWER_5VCTRL_VBUSVALID_TRSH_4V4 |
247                         POWER_5VCTRL_PWRUP_VBUS_CMPS);
248 }
249
250 /**
251  * mxs_power_switch_dcdc_clocksource() - Switch PLL clock for DC-DC converters
252  * @freqsel:    One of the POWER_MISC_FREQSEL_xxx defines to select the clock
253  *
254  * This function configures and then enables an alternative PLL clock source
255  * for the DC-DC converters.
256  */
257 void mxs_power_switch_dcdc_clocksource(uint32_t freqsel)
258 {
259         struct mxs_power_regs *power_regs =
260                 (struct mxs_power_regs *)MXS_POWER_BASE;
261
262         /* Select clocksource for DC-DC converters */
263         clrsetbits_le32(&power_regs->hw_power_misc,
264                         POWER_MISC_FREQSEL_MASK,
265                         freqsel);
266         setbits_le32(&power_regs->hw_power_misc,
267                         POWER_MISC_SEL_PLLCLK);
268 }
269
270 /**
271  * mxs_power_setup_dcdc_clocksource() - Setup PLL clock source for DC-DC converters
272  *
273  * Normally, there is no need to switch DC-DC clocksource. This is the reason,
274  * why this function is a stub and does nothing. However, boards can implement
275  * this function when required and call mxs_power_switch_dcdc_clocksource() to
276  * switch to an alternative clock source.
277  */
278 __weak void mxs_power_setup_dcdc_clocksource(void)
279 {
280         debug("SPL: Using default DC-DC clocksource\n");
281 }
282
283 /**
284  * mxs_src_power_init() - Preconfigure the power block
285  *
286  * This function configures reasonable values for the DC-DC control loop
287  * and battery monitor.
288  */
289 static void mxs_src_power_init(void)
290 {
291         struct mxs_power_regs *power_regs =
292                 (struct mxs_power_regs *)MXS_POWER_BASE;
293
294         debug("SPL: Pre-Configuring power block\n");
295
296         /* Improve efficieny and reduce transient ripple */
297         writel(POWER_LOOPCTRL_TOGGLE_DIF | POWER_LOOPCTRL_EN_CM_HYST |
298                 POWER_LOOPCTRL_EN_DF_HYST, &power_regs->hw_power_loopctrl_set);
299
300         clrsetbits_le32(&power_regs->hw_power_dclimits,
301                         POWER_DCLIMITS_POSLIMIT_BUCK_MASK,
302                         0x30 << POWER_DCLIMITS_POSLIMIT_BUCK_OFFSET);
303
304         setbits_le32(&power_regs->hw_power_battmonitor,
305                         POWER_BATTMONITOR_EN_BATADJ);
306
307         /* Increase the RCSCALE level for quick DCDC response to dynamic load */
308         clrsetbits_le32(&power_regs->hw_power_loopctrl,
309                         POWER_LOOPCTRL_EN_RCSCALE_MASK,
310                         POWER_LOOPCTRL_RCSCALE_THRESH |
311                         POWER_LOOPCTRL_EN_RCSCALE_8X);
312
313         clrsetbits_le32(&power_regs->hw_power_minpwr,
314                         POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
315
316         /* 5V to battery handoff ... FIXME */
317         setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
318         early_delay(30);
319         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
320 }
321
322 /**
323  * mxs_power_init_4p2_params() - Configure the parameters of the 4P2 regulator
324  *
325  * This function configures the necessary parameters for the 4P2 linear
326  * regulator to supply the DC-DC converter from 5V input.
327  */
328 static void mxs_power_init_4p2_params(void)
329 {
330         struct mxs_power_regs *power_regs =
331                 (struct mxs_power_regs *)MXS_POWER_BASE;
332
333         debug("SPL: Configuring common 4P2 regulator params\n");
334
335         /* Setup 4P2 parameters */
336         clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
337                 POWER_DCDC4P2_CMPTRIP_MASK | POWER_DCDC4P2_TRG_MASK,
338                 POWER_DCDC4P2_TRG_4V2 | (31 << POWER_DCDC4P2_CMPTRIP_OFFSET));
339
340         clrsetbits_le32(&power_regs->hw_power_5vctrl,
341                 POWER_5VCTRL_HEADROOM_ADJ_MASK,
342                 0x4 << POWER_5VCTRL_HEADROOM_ADJ_OFFSET);
343
344         clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
345                 POWER_DCDC4P2_DROPOUT_CTRL_MASK,
346                 DCDC4P2_DROPOUT_CONFIG);
347
348         clrsetbits_le32(&power_regs->hw_power_5vctrl,
349                 POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
350                 0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
351 }
352
353 /**
354  * mxs_enable_4p2_dcdc_input() - Enable or disable the DCDC input from 4P2
355  * @xfer:       Select if the input shall be enabled or disabled
356  *
357  * This function enables or disables the 4P2 input into the DC-DC converter.
358  */
359 static void mxs_enable_4p2_dcdc_input(int xfer)
360 {
361         struct mxs_power_regs *power_regs =
362                 (struct mxs_power_regs *)MXS_POWER_BASE;
363         uint32_t tmp, vbus_thresh, vbus_5vdetect, pwd_bo;
364         uint32_t prev_5v_brnout, prev_5v_droop;
365
366         debug("SPL: %s 4P2 DC-DC Input\n", xfer ? "Enabling" : "Disabling");
367
368         if (xfer && (readl(&power_regs->hw_power_5vctrl) &
369                         POWER_5VCTRL_ENABLE_DCDC)) {
370                 return;
371         }
372
373         prev_5v_brnout = readl(&power_regs->hw_power_5vctrl) &
374                                 POWER_5VCTRL_PWDN_5VBRNOUT;
375         prev_5v_droop = readl(&power_regs->hw_power_ctrl) &
376                                 POWER_CTRL_ENIRQ_VDD5V_DROOP;
377
378         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
379         writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
380                 &power_regs->hw_power_reset);
381
382         clrbits_le32(&power_regs->hw_power_ctrl, POWER_CTRL_ENIRQ_VDD5V_DROOP);
383
384         /*
385          * Recording orignal values that will be modified temporarlily
386          * to handle a chip bug. See chip errata for CQ ENGR00115837
387          */
388         tmp = readl(&power_regs->hw_power_5vctrl);
389         vbus_thresh = tmp & POWER_5VCTRL_VBUSVALID_TRSH_MASK;
390         vbus_5vdetect = tmp & POWER_5VCTRL_VBUSVALID_5VDETECT;
391
392         pwd_bo = readl(&power_regs->hw_power_minpwr) & POWER_MINPWR_PWD_BO;
393
394         /*
395          * Disable mechanisms that get erroneously tripped by when setting
396          * the DCDC4P2 EN_DCDC
397          */
398         clrbits_le32(&power_regs->hw_power_5vctrl,
399                 POWER_5VCTRL_VBUSVALID_5VDETECT |
400                 POWER_5VCTRL_VBUSVALID_TRSH_MASK);
401
402         writel(POWER_MINPWR_PWD_BO, &power_regs->hw_power_minpwr_set);
403
404         if (xfer) {
405                 setbits_le32(&power_regs->hw_power_5vctrl,
406                                 POWER_5VCTRL_DCDC_XFER);
407                 early_delay(20);
408                 clrbits_le32(&power_regs->hw_power_5vctrl,
409                                 POWER_5VCTRL_DCDC_XFER);
410
411                 setbits_le32(&power_regs->hw_power_5vctrl,
412                                 POWER_5VCTRL_ENABLE_DCDC);
413         } else {
414                 setbits_le32(&power_regs->hw_power_dcdc4p2,
415                                 POWER_DCDC4P2_ENABLE_DCDC);
416         }
417
418         early_delay(25);
419
420         clrsetbits_le32(&power_regs->hw_power_5vctrl,
421                         POWER_5VCTRL_VBUSVALID_TRSH_MASK, vbus_thresh);
422
423         if (vbus_5vdetect)
424                 writel(vbus_5vdetect, &power_regs->hw_power_5vctrl_set);
425
426         if (!pwd_bo)
427                 clrbits_le32(&power_regs->hw_power_minpwr, POWER_MINPWR_PWD_BO);
428
429         while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ)
430                 writel(POWER_CTRL_VBUS_VALID_IRQ,
431                         &power_regs->hw_power_ctrl_clr);
432
433         if (prev_5v_brnout) {
434                 writel(POWER_5VCTRL_PWDN_5VBRNOUT,
435                         &power_regs->hw_power_5vctrl_set);
436                 writel(POWER_RESET_UNLOCK_KEY,
437                         &power_regs->hw_power_reset);
438         } else {
439                 writel(POWER_5VCTRL_PWDN_5VBRNOUT,
440                         &power_regs->hw_power_5vctrl_clr);
441                 writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
442                         &power_regs->hw_power_reset);
443         }
444
445         while (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VDD5V_DROOP_IRQ)
446                 writel(POWER_CTRL_VDD5V_DROOP_IRQ,
447                         &power_regs->hw_power_ctrl_clr);
448
449         if (prev_5v_droop)
450                 clrbits_le32(&power_regs->hw_power_ctrl,
451                                 POWER_CTRL_ENIRQ_VDD5V_DROOP);
452         else
453                 setbits_le32(&power_regs->hw_power_ctrl,
454                                 POWER_CTRL_ENIRQ_VDD5V_DROOP);
455 }
456
457 /**
458  * mxs_power_init_4p2_regulator() - Start the 4P2 regulator
459  *
460  * This function enables the 4P2 regulator and switches the DC-DC converter
461  * to use the 4P2 input.
462  */
463 static void mxs_power_init_4p2_regulator(void)
464 {
465         struct mxs_power_regs *power_regs =
466                 (struct mxs_power_regs *)MXS_POWER_BASE;
467         uint32_t tmp, tmp2;
468
469         debug("SPL: Enabling 4P2 regulator\n");
470
471         setbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_ENABLE_4P2);
472
473         writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_set);
474
475         writel(POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
476                 &power_regs->hw_power_5vctrl_clr);
477         clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_TRG_MASK);
478
479         /* Power up the 4p2 rail and logic/control */
480         writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
481                 &power_regs->hw_power_5vctrl_clr);
482
483         /*
484          * Start charging up the 4p2 capacitor. We ramp of this charge
485          * gradually to avoid large inrush current from the 5V cable which can
486          * cause transients/problems
487          */
488         debug("SPL: Charging 4P2 capacitor\n");
489         mxs_enable_4p2_dcdc_input(0);
490
491         if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
492                 /*
493                  * If we arrived here, we were unable to recover from mx23 chip
494                  * errata 5837. 4P2 is disabled and sufficient battery power is
495                  * not present. Exiting to not enable DCDC power during 5V
496                  * connected state.
497                  */
498                 clrbits_le32(&power_regs->hw_power_dcdc4p2,
499                         POWER_DCDC4P2_ENABLE_DCDC);
500                 writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
501                         &power_regs->hw_power_5vctrl_set);
502
503                 debug("SPL: Unable to recover from mx23 errata 5837\n");
504                 hang();
505         }
506
507         /*
508          * Here we set the 4p2 brownout level to something very close to 4.2V.
509          * We then check the brownout status. If the brownout status is false,
510          * the voltage is already close to the target voltage of 4.2V so we
511          * can go ahead and set the 4P2 current limit to our max target limit.
512          * If the brownout status is true, we need to ramp us the current limit
513          * so that we don't cause large inrush current issues. We step up the
514          * current limit until the brownout status is false or until we've
515          * reached our maximum defined 4p2 current limit.
516          */
517         debug("SPL: Setting 4P2 brownout level\n");
518         clrsetbits_le32(&power_regs->hw_power_dcdc4p2,
519                         POWER_DCDC4P2_BO_MASK,
520                         22 << POWER_DCDC4P2_BO_OFFSET); /* 4.15V */
521
522         if (!(readl(&power_regs->hw_power_sts) & POWER_STS_DCDC_4P2_BO)) {
523                 setbits_le32(&power_regs->hw_power_5vctrl,
524                         0x3f << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
525         } else {
526                 tmp = (readl(&power_regs->hw_power_5vctrl) &
527                         POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK) >>
528                         POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
529                 while (tmp < 0x3f) {
530                         if (!(readl(&power_regs->hw_power_sts) &
531                                         POWER_STS_DCDC_4P2_BO)) {
532                                 tmp = readl(&power_regs->hw_power_5vctrl);
533                                 tmp |= POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
534                                 early_delay(100);
535                                 writel(tmp, &power_regs->hw_power_5vctrl);
536                                 break;
537                         } else {
538                                 tmp++;
539                                 tmp2 = readl(&power_regs->hw_power_5vctrl);
540                                 tmp2 &= ~POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK;
541                                 tmp2 |= tmp <<
542                                         POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET;
543                                 writel(tmp2, &power_regs->hw_power_5vctrl);
544                                 early_delay(100);
545                         }
546                 }
547         }
548
549         clrbits_le32(&power_regs->hw_power_dcdc4p2, POWER_DCDC4P2_BO_MASK);
550         writel(POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
551 }
552
553 /**
554  * mxs_power_init_dcdc_4p2_source() - Switch DC-DC converter to 4P2 source
555  *
556  * This function configures the DC-DC converter to be supplied from the 4P2
557  * linear regulator.
558  */
559 static void mxs_power_init_dcdc_4p2_source(void)
560 {
561         struct mxs_power_regs *power_regs =
562                 (struct mxs_power_regs *)MXS_POWER_BASE;
563
564         debug("SPL: Switching DC-DC converters to 4P2\n");
565
566         if (!(readl(&power_regs->hw_power_dcdc4p2) &
567                 POWER_DCDC4P2_ENABLE_DCDC)) {
568                 debug("SPL: Already switched - aborting\n");
569                 hang();
570         }
571
572         mxs_enable_4p2_dcdc_input(1);
573
574         if (readl(&power_regs->hw_power_ctrl) & POWER_CTRL_VBUS_VALID_IRQ) {
575                 clrbits_le32(&power_regs->hw_power_dcdc4p2,
576                         POWER_DCDC4P2_ENABLE_DCDC);
577                 writel(POWER_5VCTRL_ENABLE_DCDC,
578                         &power_regs->hw_power_5vctrl_clr);
579                 writel(POWER_5VCTRL_PWD_CHARGE_4P2_MASK,
580                         &power_regs->hw_power_5vctrl_set);
581         }
582 }
583
584 /**
585  * mxs_power_enable_4p2() - Power up the 4P2 regulator
586  *
587  * This function drives the process of powering up the 4P2 linear regulator
588  * and switching the DC-DC converter input over to the 4P2 linear regulator.
589  */
590 static void mxs_power_enable_4p2(void)
591 {
592         struct mxs_power_regs *power_regs =
593                 (struct mxs_power_regs *)MXS_POWER_BASE;
594         uint32_t vdddctrl, vddactrl, vddioctrl;
595         uint32_t tmp;
596
597         debug("SPL: Powering up 4P2 regulator\n");
598
599         vdddctrl = readl(&power_regs->hw_power_vdddctrl);
600         vddactrl = readl(&power_regs->hw_power_vddactrl);
601         vddioctrl = readl(&power_regs->hw_power_vddioctrl);
602
603         setbits_le32(&power_regs->hw_power_vdddctrl,
604                 POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
605                 POWER_VDDDCTRL_PWDN_BRNOUT);
606
607         setbits_le32(&power_regs->hw_power_vddactrl,
608                 POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG |
609                 POWER_VDDACTRL_PWDN_BRNOUT);
610
611         setbits_le32(&power_regs->hw_power_vddioctrl,
612                 POWER_VDDIOCTRL_DISABLE_FET | POWER_VDDIOCTRL_PWDN_BRNOUT);
613
614         mxs_power_init_4p2_params();
615         mxs_power_init_4p2_regulator();
616
617         /* Shutdown battery (none present) */
618         if (!mxs_is_batt_ready()) {
619                 clrbits_le32(&power_regs->hw_power_dcdc4p2,
620                                 POWER_DCDC4P2_BO_MASK);
621                 writel(POWER_CTRL_DCDC4P2_BO_IRQ,
622                                 &power_regs->hw_power_ctrl_clr);
623                 writel(POWER_CTRL_ENIRQ_DCDC4P2_BO,
624                                 &power_regs->hw_power_ctrl_clr);
625         }
626
627         mxs_power_init_dcdc_4p2_source();
628
629         writel(vdddctrl, &power_regs->hw_power_vdddctrl);
630         early_delay(20);
631         writel(vddactrl, &power_regs->hw_power_vddactrl);
632         early_delay(20);
633         writel(vddioctrl, &power_regs->hw_power_vddioctrl);
634
635         /*
636          * Check if FET is enabled on either powerout and if so,
637          * disable load.
638          */
639         tmp = 0;
640         tmp |= !(readl(&power_regs->hw_power_vdddctrl) &
641                         POWER_VDDDCTRL_DISABLE_FET);
642         tmp |= !(readl(&power_regs->hw_power_vddactrl) &
643                         POWER_VDDACTRL_DISABLE_FET);
644         tmp |= !(readl(&power_regs->hw_power_vddioctrl) &
645                         POWER_VDDIOCTRL_DISABLE_FET);
646         if (tmp)
647                 writel(POWER_CHARGE_ENABLE_LOAD,
648                         &power_regs->hw_power_charge_clr);
649
650         debug("SPL: 4P2 regulator powered-up\n");
651 }
652
653 /**
654  * mxs_boot_valid_5v() - Boot from 5V supply
655  *
656  * This function configures the power block to boot from valid 5V input.
657  * This is called only if the 5V is reliable and can properly supply the
658  * CPU. This function proceeds to configure the 4P2 converter to be supplied
659  * from the 5V input.
660  */
661 static void mxs_boot_valid_5v(void)
662 {
663         struct mxs_power_regs *power_regs =
664                 (struct mxs_power_regs *)MXS_POWER_BASE;
665
666         debug("SPL: Booting from 5V supply\n");
667
668         /*
669          * Use VBUSVALID level instead of VDD5V_GT_VDDIO level to trigger a 5V
670          * disconnect event. FIXME
671          */
672         writel(POWER_5VCTRL_VBUSVALID_5VDETECT,
673                 &power_regs->hw_power_5vctrl_set);
674
675         /* Configure polarity to check for 5V disconnection. */
676         writel(POWER_CTRL_POLARITY_VBUSVALID |
677                 POWER_CTRL_POLARITY_VDD5V_GT_VDDIO,
678                 &power_regs->hw_power_ctrl_clr);
679
680         writel(POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_VDD5V_GT_VDDIO_IRQ,
681                 &power_regs->hw_power_ctrl_clr);
682
683         mxs_power_enable_4p2();
684 }
685
686 /**
687  * mxs_powerdown() - Shut down the system
688  *
689  * This function powers down the CPU completely.
690  */
691 static void mxs_powerdown(void)
692 {
693         struct mxs_power_regs *power_regs =
694                 (struct mxs_power_regs *)MXS_POWER_BASE;
695
696         debug("Powering Down\n");
697
698         writel(POWER_RESET_UNLOCK_KEY, &power_regs->hw_power_reset);
699         writel(POWER_RESET_UNLOCK_KEY | POWER_RESET_PWD_OFF,
700                 &power_regs->hw_power_reset);
701 }
702
703 /**
704  * mxs_batt_boot() - Configure the power block to boot from battery input
705  *
706  * This function configures the power block to boot from the battery voltage
707  * supply.
708  */
709 static void mxs_batt_boot(void)
710 {
711         struct mxs_power_regs *power_regs =
712                 (struct mxs_power_regs *)MXS_POWER_BASE;
713
714         debug("SPL: Configuring power block to boot from battery\n");
715
716         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_PWDN_5VBRNOUT);
717         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_ENABLE_DCDC);
718
719         clrbits_le32(&power_regs->hw_power_dcdc4p2,
720                         POWER_DCDC4P2_ENABLE_DCDC | POWER_DCDC4P2_ENABLE_4P2);
721         writel(POWER_CHARGE_ENABLE_LOAD, &power_regs->hw_power_charge_clr);
722
723         /* 5V to battery handoff. */
724         setbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
725         early_delay(30);
726         clrbits_le32(&power_regs->hw_power_5vctrl, POWER_5VCTRL_DCDC_XFER);
727
728         writel(POWER_CTRL_ENIRQ_DCDC4P2_BO, &power_regs->hw_power_ctrl_clr);
729
730         clrsetbits_le32(&power_regs->hw_power_minpwr,
731                         POWER_MINPWR_HALFFETS, POWER_MINPWR_DOUBLE_FETS);
732
733         mxs_power_set_linreg();
734
735         clrbits_le32(&power_regs->hw_power_vdddctrl,
736                 POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG);
737
738         clrbits_le32(&power_regs->hw_power_vddactrl,
739                 POWER_VDDACTRL_DISABLE_FET | POWER_VDDACTRL_ENABLE_LINREG);
740
741         clrbits_le32(&power_regs->hw_power_vddioctrl,
742                 POWER_VDDIOCTRL_DISABLE_FET);
743
744         setbits_le32(&power_regs->hw_power_5vctrl,
745                 POWER_5VCTRL_PWD_CHARGE_4P2_MASK);
746
747         setbits_le32(&power_regs->hw_power_5vctrl,
748                 POWER_5VCTRL_ENABLE_DCDC);
749
750         clrsetbits_le32(&power_regs->hw_power_5vctrl,
751                 POWER_5VCTRL_CHARGE_4P2_ILIMIT_MASK,
752                 0x8 << POWER_5VCTRL_CHARGE_4P2_ILIMIT_OFFSET);
753
754         mxs_power_enable_4p2();
755 }
756
757 /**
758  * mxs_handle_5v_conflict() - Test if the 5V input is reliable
759  *
760  * This function tests if the 5V input can reliably supply the system. If it
761  * can, then proceed to configuring the system to boot from 5V source, otherwise
762  * try booting from battery supply. If we can not boot from battery supply
763  * either, shut down the system.
764  */
765 static void mxs_handle_5v_conflict(void)
766 {
767         struct mxs_power_regs *power_regs =
768                 (struct mxs_power_regs *)MXS_POWER_BASE;
769         uint32_t tmp;
770
771         debug("SPL: Resolving 5V conflict\n");
772
773         setbits_le32(&power_regs->hw_power_vddioctrl,
774                         POWER_VDDIOCTRL_BO_OFFSET_MASK);
775
776         for (;;) {
777                 tmp = readl(&power_regs->hw_power_sts);
778
779                 if (tmp & POWER_STS_VDDIO_BO) {
780                         /*
781                          * VDDIO has a brownout, then the VDD5V_GT_VDDIO becomes
782                          * unreliable
783                          */
784                         debug("SPL: VDDIO has a brownout\n");
785                         mxs_powerdown();
786                         break;
787                 }
788
789                 if (tmp & POWER_STS_VDD5V_GT_VDDIO) {
790                         debug("SPL: POWER_STS_VDD5V_GT_VDDIO is set\n");
791                         mxs_boot_valid_5v();
792                         break;
793                 } else {
794                         debug("SPL: POWER_STS_VDD5V_GT_VDDIO is not set\n");
795                         mxs_powerdown();
796                         break;
797                 }
798
799                 /*
800                  * TODO: I can't see this being reached. We'll either
801                  * powerdown or boot from a stable 5V supply.
802                  */
803                 if (tmp & POWER_STS_PSWITCH_MASK) {
804                         debug("SPL: POWER_STS_PSWITCH_MASK is set\n");
805                         mxs_batt_boot();
806                         break;
807                 }
808         }
809 }
810
811 /**
812  * mxs_5v_boot() - Configure the power block to boot from 5V input
813  *
814  * This function handles configuration of the power block when supplied by
815  * a 5V input.
816  */
817 static void mxs_5v_boot(void)
818 {
819         struct mxs_power_regs *power_regs =
820                 (struct mxs_power_regs *)MXS_POWER_BASE;
821
822         debug("SPL: Configuring power block to boot from 5V input\n");
823
824         /*
825          * NOTE: In original IMX-Bootlets, this also checks for VBUSVALID,
826          * but their implementation always returns 1 so we omit it here.
827          */
828         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
829                 debug("SPL: 5V VDD good\n");
830                 mxs_boot_valid_5v();
831                 return;
832         }
833
834         early_delay(1000);
835         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
836                 debug("SPL: 5V VDD good (after delay)\n");
837                 mxs_boot_valid_5v();
838                 return;
839         }
840
841         debug("SPL: 5V VDD not good\n");
842         mxs_handle_5v_conflict();
843 }
844
845 /**
846  * mxs_init_batt_bo() - Configure battery brownout threshold
847  *
848  * This function configures the battery input brownout threshold. The value
849  * at which the battery brownout happens is configured to 3.0V in the code.
850  */
851 static void mxs_init_batt_bo(void)
852 {
853         struct mxs_power_regs *power_regs =
854                 (struct mxs_power_regs *)MXS_POWER_BASE;
855
856         debug("SPL: Initialising battery brown-out level to 3.0V\n");
857
858         /* Brownout at 3V */
859         clrsetbits_le32(&power_regs->hw_power_battmonitor,
860                 POWER_BATTMONITOR_BRWNOUT_LVL_MASK,
861                 15 << POWER_BATTMONITOR_BRWNOUT_LVL_OFFSET);
862
863         writel(POWER_CTRL_BATT_BO_IRQ, &power_regs->hw_power_ctrl_clr);
864         writel(POWER_CTRL_ENIRQ_BATT_BO, &power_regs->hw_power_ctrl_clr);
865 }
866
867 /**
868  * mxs_switch_vddd_to_dcdc_source() - Switch VDDD rail to DC-DC converter
869  *
870  * This function turns off the VDDD linear regulator and therefore makes
871  * the VDDD rail be supplied only by the DC-DC converter.
872  */
873 static void mxs_switch_vddd_to_dcdc_source(void)
874 {
875         struct mxs_power_regs *power_regs =
876                 (struct mxs_power_regs *)MXS_POWER_BASE;
877
878         debug("SPL: Switching VDDD to DC-DC converters\n");
879
880         clrsetbits_le32(&power_regs->hw_power_vdddctrl,
881                 POWER_VDDDCTRL_LINREG_OFFSET_MASK,
882                 POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW);
883
884         clrbits_le32(&power_regs->hw_power_vdddctrl,
885                 POWER_VDDDCTRL_DISABLE_FET | POWER_VDDDCTRL_ENABLE_LINREG |
886                 POWER_VDDDCTRL_DISABLE_STEPPING);
887 }
888
889 /**
890  * mxs_power_configure_power_source() - Configure power block source
891  *
892  * This function is the core of the power configuration logic. The function
893  * selects the power block input source and configures the whole power block
894  * accordingly. After the configuration is complete and the system is stable
895  * again, the function switches the CPU clock source back to PLL. Finally,
896  * the function switches the voltage rails to DC-DC converter.
897  */
898 static void mxs_power_configure_power_source(void)
899 {
900         int batt_ready, batt_good;
901         struct mxs_power_regs *power_regs =
902                 (struct mxs_power_regs *)MXS_POWER_BASE;
903         struct mxs_lradc_regs *lradc_regs =
904                 (struct mxs_lradc_regs *)MXS_LRADC_BASE;
905
906         debug("SPL: Configuring power source\n");
907
908         mxs_power_setup_dcdc_clocksource();
909         mxs_src_power_init();
910
911         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
912                 batt_ready = mxs_is_batt_ready();
913                 if (batt_ready) {
914                         /* 5V source detected, good battery detected. */
915                         mxs_batt_boot();
916                 } else {
917                         batt_good = mxs_is_batt_good();
918                         if (!batt_good) {
919                                 /* 5V source detected, bad battery detected. */
920                                 writel(LRADC_CONVERSION_AUTOMATIC,
921                                         &lradc_regs->hw_lradc_conversion_clr);
922                                 clrbits_le32(&power_regs->hw_power_battmonitor,
923                                         POWER_BATTMONITOR_BATT_VAL_MASK);
924                         }
925                         mxs_5v_boot();
926                 }
927         } else {
928                 /* 5V not detected, booting from battery. */
929                 mxs_batt_boot();
930         }
931
932         /*
933          * TODO: Do not switch CPU clock to PLL if we are VDD5V is sourced
934          * from USB VBUS
935          */
936         mxs_power_clock2pll();
937
938         mxs_init_batt_bo();
939
940         mxs_switch_vddd_to_dcdc_source();
941
942 #ifdef CONFIG_MX23
943         /* Fire up the VDDMEM LinReg now that we're all set. */
944         debug("SPL: Enabling mx23 VDDMEM linear regulator\n");
945         writel(POWER_VDDMEMCTRL_ENABLE_LINREG | POWER_VDDMEMCTRL_ENABLE_ILIMIT,
946                 &power_regs->hw_power_vddmemctrl);
947 #endif
948 }
949
950 /**
951  * mxs_enable_output_rail_protection() - Enable power rail protection
952  *
953  * This function enables overload protection on the power rails. This is
954  * triggered if the power rails' voltage drops rapidly due to overload and
955  * in such case, the supply to the powerrail is cut-off, protecting the
956  * CPU from damage. Note that under such condition, the system will likely
957  * crash or misbehave.
958  */
959 static void mxs_enable_output_rail_protection(void)
960 {
961         struct mxs_power_regs *power_regs =
962                 (struct mxs_power_regs *)MXS_POWER_BASE;
963
964         debug("SPL: Enabling output rail protection\n");
965
966         writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
967                 POWER_CTRL_VDDIO_BO_IRQ, &power_regs->hw_power_ctrl_clr);
968
969         setbits_le32(&power_regs->hw_power_vdddctrl,
970                         POWER_VDDDCTRL_PWDN_BRNOUT);
971
972         setbits_le32(&power_regs->hw_power_vddactrl,
973                         POWER_VDDACTRL_PWDN_BRNOUT);
974
975         setbits_le32(&power_regs->hw_power_vddioctrl,
976                         POWER_VDDIOCTRL_PWDN_BRNOUT);
977 }
978
979 /**
980  * mxs_get_vddio_power_source_off() - Get VDDIO rail power source
981  *
982  * This function tests if the VDDIO rail is supplied by linear regulator
983  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
984  * returns 0 if powered by the DC-DC converter.
985  */
986 static int mxs_get_vddio_power_source_off(void)
987 {
988         struct mxs_power_regs *power_regs =
989                 (struct mxs_power_regs *)MXS_POWER_BASE;
990         uint32_t tmp;
991
992         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
993                 tmp = readl(&power_regs->hw_power_vddioctrl);
994                 if (tmp & POWER_VDDIOCTRL_DISABLE_FET) {
995                         if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
996                                 POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
997                                 return 1;
998                         }
999                 }
1000
1001                 if (!(readl(&power_regs->hw_power_5vctrl) &
1002                         POWER_5VCTRL_ENABLE_DCDC)) {
1003                         if ((tmp & POWER_VDDIOCTRL_LINREG_OFFSET_MASK) ==
1004                                 POWER_VDDIOCTRL_LINREG_OFFSET_0STEPS) {
1005                                 return 1;
1006                         }
1007                 }
1008         }
1009
1010         return 0;
1011
1012 }
1013
1014 /**
1015  * mxs_get_vddd_power_source_off() - Get VDDD rail power source
1016  *
1017  * This function tests if the VDDD rail is supplied by linear regulator
1018  * or by the DC-DC converter. Returns 1 if powered by linear regulator,
1019  * returns 0 if powered by the DC-DC converter.
1020  */
1021 static int mxs_get_vddd_power_source_off(void)
1022 {
1023         struct mxs_power_regs *power_regs =
1024                 (struct mxs_power_regs *)MXS_POWER_BASE;
1025         uint32_t tmp;
1026
1027         tmp = readl(&power_regs->hw_power_vdddctrl);
1028         if (tmp & POWER_VDDDCTRL_DISABLE_FET) {
1029                 if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
1030                         POWER_VDDDCTRL_LINREG_OFFSET_0STEPS) {
1031                         return 1;
1032                 }
1033         }
1034
1035         if (readl(&power_regs->hw_power_sts) & POWER_STS_VDD5V_GT_VDDIO) {
1036                 if (!(readl(&power_regs->hw_power_5vctrl) &
1037                         POWER_5VCTRL_ENABLE_DCDC)) {
1038                         return 1;
1039                 }
1040         }
1041
1042         if (!(tmp & POWER_VDDDCTRL_ENABLE_LINREG)) {
1043                 if ((tmp & POWER_VDDDCTRL_LINREG_OFFSET_MASK) ==
1044                         POWER_VDDDCTRL_LINREG_OFFSET_1STEPS_BELOW) {
1045                         return 1;
1046                 }
1047         }
1048
1049         return 0;
1050 }
1051
1052 struct mxs_vddx_cfg {
1053         uint32_t                *reg;
1054         uint8_t                 step_mV;
1055         uint16_t                lowest_mV;
1056         int                     (*powered_by_linreg)(void);
1057         uint32_t                trg_mask;
1058         uint32_t                bo_irq;
1059         uint32_t                bo_enirq;
1060         uint32_t                bo_offset_mask;
1061         uint32_t                bo_offset_offset;
1062 };
1063
1064 static const struct mxs_vddx_cfg mxs_vddio_cfg = {
1065         .reg                    = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
1066                                         hw_power_vddioctrl),
1067 #if defined(CONFIG_MX23)
1068         .step_mV                = 25,
1069 #else
1070         .step_mV                = 50,
1071 #endif
1072         .lowest_mV              = 2800,
1073         .powered_by_linreg      = mxs_get_vddio_power_source_off,
1074         .trg_mask               = POWER_VDDIOCTRL_TRG_MASK,
1075         .bo_irq                 = POWER_CTRL_VDDIO_BO_IRQ,
1076         .bo_enirq               = POWER_CTRL_ENIRQ_VDDIO_BO,
1077         .bo_offset_mask         = POWER_VDDIOCTRL_BO_OFFSET_MASK,
1078         .bo_offset_offset       = POWER_VDDIOCTRL_BO_OFFSET_OFFSET,
1079 };
1080
1081 static const struct mxs_vddx_cfg mxs_vddd_cfg = {
1082         .reg                    = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
1083                                         hw_power_vdddctrl),
1084         .step_mV                = 25,
1085         .lowest_mV              = 800,
1086         .powered_by_linreg      = mxs_get_vddd_power_source_off,
1087         .trg_mask               = POWER_VDDDCTRL_TRG_MASK,
1088         .bo_irq                 = POWER_CTRL_VDDD_BO_IRQ,
1089         .bo_enirq               = POWER_CTRL_ENIRQ_VDDD_BO,
1090         .bo_offset_mask         = POWER_VDDDCTRL_BO_OFFSET_MASK,
1091         .bo_offset_offset       = POWER_VDDDCTRL_BO_OFFSET_OFFSET,
1092 };
1093
1094 #ifdef CONFIG_MX23
1095 static const struct mxs_vddx_cfg mxs_vddmem_cfg = {
1096         .reg                    = &(((struct mxs_power_regs *)MXS_POWER_BASE)->
1097                                         hw_power_vddmemctrl),
1098         .step_mV                = 50,
1099         .lowest_mV              = 1700,
1100         .powered_by_linreg      = NULL,
1101         .trg_mask               = POWER_VDDMEMCTRL_TRG_MASK,
1102         .bo_irq                 = 0,
1103         .bo_enirq               = 0,
1104         .bo_offset_mask         = 0,
1105         .bo_offset_offset       = 0,
1106 };
1107 #endif
1108
1109 /**
1110  * mxs_power_set_vddx() - Configure voltage on DC-DC converter rail
1111  * @cfg:                Configuration data of the DC-DC converter rail
1112  * @new_target:         New target voltage of the DC-DC converter rail
1113  * @new_brownout:       New brownout trigger voltage
1114  *
1115  * This function configures the output voltage on the DC-DC converter rail.
1116  * The rail is selected by the @cfg argument. The new voltage target is
1117  * selected by the @new_target and the voltage is specified in mV. The
1118  * new brownout value is selected by the @new_brownout argument and the
1119  * value is also in mV.
1120  */
1121 static void mxs_power_set_vddx(const struct mxs_vddx_cfg *cfg,
1122                                 uint32_t new_target, uint32_t new_brownout)
1123 {
1124         struct mxs_power_regs *power_regs =
1125                 (struct mxs_power_regs *)MXS_POWER_BASE;
1126         uint32_t cur_target, diff, bo_int = 0;
1127         uint32_t powered_by_linreg = 0;
1128         int adjust_up, tmp;
1129
1130         new_brownout = DIV_ROUND_CLOSEST(new_target - new_brownout,
1131                                          cfg->step_mV);
1132
1133         cur_target = readl(cfg->reg);
1134         cur_target &= cfg->trg_mask;
1135         cur_target *= cfg->step_mV;
1136         cur_target += cfg->lowest_mV;
1137
1138         adjust_up = new_target > cur_target;
1139         if (cfg->powered_by_linreg)
1140                 powered_by_linreg = cfg->powered_by_linreg();
1141
1142         if (adjust_up && cfg->bo_irq) {
1143                 if (powered_by_linreg) {
1144                         bo_int = readl(cfg->reg);
1145                         clrbits_le32(cfg->reg, cfg->bo_enirq);
1146                 }
1147                 setbits_le32(cfg->reg, cfg->bo_offset_mask);
1148         }
1149
1150         do {
1151                 if (abs(new_target - cur_target) > 100) {
1152                         if (adjust_up)
1153                                 diff = cur_target + 100;
1154                         else
1155                                 diff = cur_target - 100;
1156                 } else {
1157                         diff = new_target;
1158                 }
1159
1160                 diff -= cfg->lowest_mV;
1161                 diff /= cfg->step_mV;
1162
1163                 clrsetbits_le32(cfg->reg, cfg->trg_mask, diff);
1164
1165                 if (powered_by_linreg ||
1166                         (readl(&power_regs->hw_power_sts) &
1167                                 POWER_STS_VDD5V_GT_VDDIO))
1168                         early_delay(500);
1169                 else {
1170                         for (;;) {
1171                                 tmp = readl(&power_regs->hw_power_sts);
1172                                 if (tmp & POWER_STS_DC_OK)
1173                                         break;
1174                         }
1175                 }
1176
1177                 cur_target = readl(cfg->reg);
1178                 cur_target &= cfg->trg_mask;
1179                 cur_target *= cfg->step_mV;
1180                 cur_target += cfg->lowest_mV;
1181         } while (new_target > cur_target);
1182
1183         if (cfg->bo_irq) {
1184                 if (adjust_up && powered_by_linreg) {
1185                         writel(cfg->bo_irq, &power_regs->hw_power_ctrl_clr);
1186                         if (bo_int & cfg->bo_enirq)
1187                                 setbits_le32(cfg->reg, cfg->bo_enirq);
1188                 }
1189
1190                 clrsetbits_le32(cfg->reg, cfg->bo_offset_mask,
1191                                 new_brownout << cfg->bo_offset_offset);
1192         }
1193 }
1194
1195 /**
1196  * mxs_setup_batt_detect() - Start the battery voltage measurement logic
1197  *
1198  * This function starts and configures the LRADC block. This allows the
1199  * power initialization code to measure battery voltage and based on this
1200  * knowledge, decide whether to boot at all, boot from battery or boot
1201  * from 5V input.
1202  */
1203 static void mxs_setup_batt_detect(void)
1204 {
1205         debug("SPL: Starting battery voltage measurement logic\n");
1206
1207         mxs_lradc_init();
1208         mxs_lradc_enable_batt_measurement();
1209         early_delay(10);
1210 }
1211
1212 /**
1213  * mxs_ungate_power() - Ungate the POWER block
1214  *
1215  * This function ungates clock to the power block. In case the power block
1216  * was still gated at this point, it will not be possible to configure the
1217  * block and therefore the power initialization would fail. This function
1218  * is only needed on i.MX233, on i.MX28 the power block is always ungated.
1219  */
1220 static void mxs_ungate_power(void)
1221 {
1222 #ifdef CONFIG_MX23
1223         struct mxs_power_regs *power_regs =
1224                 (struct mxs_power_regs *)MXS_POWER_BASE;
1225
1226         writel(POWER_CTRL_CLKGATE, &power_regs->hw_power_ctrl_clr);
1227 #endif
1228 }
1229
1230 /**
1231  * mxs_power_init() - The power block init main function
1232  *
1233  * This function calls all the power block initialization functions in
1234  * proper sequence to start the power block.
1235  */
1236 void mxs_power_init(void)
1237 {
1238         struct mxs_power_regs *power_regs =
1239                 (struct mxs_power_regs *)MXS_POWER_BASE;
1240
1241         debug("SPL: Initialising Power Block\n");
1242
1243         mxs_ungate_power();
1244
1245         mxs_power_clock2xtal();
1246         mxs_power_set_auto_restart();
1247         mxs_power_set_linreg();
1248         mxs_power_setup_5v_detect();
1249
1250         mxs_setup_batt_detect();
1251
1252         mxs_power_configure_power_source();
1253         mxs_enable_output_rail_protection();
1254
1255         debug("SPL: Setting VDDIO to 3V3 (brownout @ 3v15)\n");
1256         mxs_power_set_vddx(&mxs_vddio_cfg, 3300, 3150);
1257
1258         debug("SPL: Setting VDDD to 1V5 (brownout @ 1v315)\n");
1259         mxs_power_set_vddx(&mxs_vddd_cfg, 1500, 1315);
1260 #ifdef CONFIG_MX23
1261         debug("SPL: Setting mx23 VDDMEM to 2V5 (brownout @ 1v7)\n");
1262         mxs_power_set_vddx(&mxs_vddmem_cfg, 2500, 1700);
1263 #endif
1264         writel(POWER_CTRL_VDDD_BO_IRQ | POWER_CTRL_VDDA_BO_IRQ |
1265                 POWER_CTRL_VDDIO_BO_IRQ | POWER_CTRL_VDD5V_DROOP_IRQ |
1266                 POWER_CTRL_VBUS_VALID_IRQ | POWER_CTRL_BATT_BO_IRQ |
1267                 POWER_CTRL_DCDC4P2_BO_IRQ, &power_regs->hw_power_ctrl_clr);
1268
1269         writel(POWER_5VCTRL_PWDN_5VBRNOUT, &power_regs->hw_power_5vctrl_set);
1270
1271         early_delay(1000);
1272 }
1273
1274 #ifdef  CONFIG_SPL_MXS_PSWITCH_WAIT
1275 /**
1276  * mxs_power_wait_pswitch() - Wait for power switch to be pressed
1277  *
1278  * This function waits until the power-switch was pressed to start booting
1279  * the board.
1280  */
1281 void mxs_power_wait_pswitch(void)
1282 {
1283         struct mxs_power_regs *power_regs =
1284                 (struct mxs_power_regs *)MXS_POWER_BASE;
1285
1286         debug("SPL: Waiting for power switch input\n");
1287         while (!(readl(&power_regs->hw_power_sts) & POWER_STS_PSWITCH_MASK))
1288                 ;
1289 }
1290 #endif