]> git.sur5r.net Git - u-boot/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
ARM: DRA7: emif: Enable interleaving for higher address space
[u-boot] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19
20 static int emif1_enabled = -1, emif2_enabled = -1;
21
22 void set_lpmode_selfrefresh(u32 base)
23 {
24         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25         u32 reg;
26
27         reg = readl(&emif->emif_pwr_mgmt_ctrl);
28         reg &= ~EMIF_REG_LP_MODE_MASK;
29         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30         reg &= ~EMIF_REG_SR_TIM_MASK;
31         writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33         /* dummy read for the new SR_TIM to be loaded */
34         readl(&emif->emif_pwr_mgmt_ctrl);
35 }
36
37 void force_emif_self_refresh()
38 {
39         set_lpmode_selfrefresh(EMIF1_BASE);
40         set_lpmode_selfrefresh(EMIF2_BASE);
41 }
42
43 inline u32 emif_num(u32 base)
44 {
45         if (base == EMIF1_BASE)
46                 return 1;
47         else if (base == EMIF2_BASE)
48                 return 2;
49         else
50                 return 0;
51 }
52
53 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54 {
55         u32 mr;
56         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58         mr_addr |= cs << EMIF_REG_CS_SHIFT;
59         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60         if (omap_revision() == OMAP4430_ES2_0)
61                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62         else
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65               cs, mr_addr, mr);
66         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
67             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68             ((mr & 0xff000000) >> 24) == (mr & 0xff))
69                 return mr & 0xff;
70         else
71                 return mr;
72 }
73
74 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75 {
76         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78         mr_addr |= cs << EMIF_REG_CS_SHIFT;
79         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81 }
82
83 void emif_reset_phy(u32 base)
84 {
85         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86         u32 iodft;
87
88         iodft = readl(&emif->emif_iodft_tlgc);
89         iodft |= EMIF_REG_RESET_PHY_MASK;
90         writel(iodft, &emif->emif_iodft_tlgc);
91 }
92
93 static void do_lpddr2_init(u32 base, u32 cs)
94 {
95         u32 mr_addr;
96         const struct lpddr2_mr_regs *mr_regs;
97
98         get_lpddr2_mr_regs(&mr_regs);
99         /* Wait till device auto initialization is complete */
100         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101                 ;
102         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103         /*
104          * tZQINIT = 1 us
105          * Enough loops assuming a maximum of 2GHz
106          */
107
108         sdelay(2000);
109
110         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113         /*
114          * Enable refresh along with writing MR2
115          * Encoding of RL in MR2 is (RL - 2)
116          */
117         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118         set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120         if (mr_regs->mr3 > 0)
121                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122 }
123
124 static void lpddr2_init(u32 base, const struct emif_regs *regs)
125 {
126         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128         /* Not NVM */
129         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131         /*
132          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133          * when EMIF_SDRAM_CONFIG register is written
134          */
135         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137         /*
138          * Set the SDRAM_CONFIG and PHY_CTRL for the
139          * un-locked frequency & default RL
140          */
141         writel(regs->sdram_config_init, &emif->emif_sdram_config);
142         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144         do_ext_phy_settings(base, regs);
145
146         do_lpddr2_init(base, CS0);
147         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148                 do_lpddr2_init(base, CS1);
149
150         writel(regs->sdram_config, &emif->emif_sdram_config);
151         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153         /* Enable refresh now */
154         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156         }
157
158 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159 {
160 }
161
162 void emif_update_timings(u32 base, const struct emif_regs *regs)
163 {
164         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166         if (!is_dra7xx())
167                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
168         else
169                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
170
171         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
172         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
173         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
174         if (omap_revision() == OMAP4430_ES1_0) {
175                 /* ES1 bug EMIF should be in force idle during freq_update */
176                 writel(0, &emif->emif_pwr_mgmt_ctrl);
177         } else {
178                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
179                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
180         }
181         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
182         writel(regs->zq_config, &emif->emif_zq_config);
183         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
184         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
185
186         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
187                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
188                         &emif->emif_l3_config);
189         } else if (omap_revision() >= OMAP4460_ES1_0) {
190                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
191                         &emif->emif_l3_config);
192         } else {
193                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
194                         &emif->emif_l3_config);
195         }
196 }
197
198 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
199 {
200         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
201
202         /* keep sdram in self-refresh */
203         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
204                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
205         __udelay(130);
206
207         /*
208          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
209          * Invert clock adds an additional half cycle delay on the
210          * command interface.  The additional half cycle, is usually
211          * meant to enable leveling in the situation that DQS is later
212          * than CK on the board.It also helps provide some additional
213          * margin for leveling.
214          */
215         writel(regs->emif_ddr_phy_ctlr_1,
216                &emif->emif_ddr_phy_ctrl_1);
217
218         writel(regs->emif_ddr_phy_ctlr_1,
219                &emif->emif_ddr_phy_ctrl_1_shdw);
220         __udelay(130);
221
222         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
223                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
224
225         /* Launch Full leveling */
226         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
227
228         /* Wait till full leveling is complete */
229         readl(&emif->emif_rd_wr_lvl_ctl);
230               __udelay(130);
231
232         /* Read data eye leveling no of samples */
233         config_data_eye_leveling_samples(base);
234
235         /*
236          * Launch 8 incremental WR_LVL- to compensate for
237          * PHY limitation.
238          */
239         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
240                &emif->emif_rd_wr_lvl_ctl);
241
242         __udelay(130);
243
244         /* Launch Incremental leveling */
245         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
246                __udelay(130);
247 }
248
249 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
250 {
251         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
252         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
253         u32 reg, i, phy;
254
255         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
256         phy = readl(&emif->emif_ddr_phy_ctrl_1);
257
258         /* Update PHY_REG_RDDQS_RATIO */
259         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
260         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
261                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
262                         reg = readl(emif_phy_status++);
263                         writel(reg, emif_ext_phy_ctrl_reg++);
264                         writel(reg, emif_ext_phy_ctrl_reg++);
265                 }
266
267         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
268         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
269         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[12];
270         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
271                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
272                         reg = readl(emif_phy_status++);
273                         writel(reg, emif_ext_phy_ctrl_reg++);
274                         writel(reg, emif_ext_phy_ctrl_reg++);
275                 }
276
277         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
278         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
279         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[17];
280         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
281                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
282                         reg = readl(emif_phy_status++);
283                         writel(reg, emif_ext_phy_ctrl_reg++);
284                         writel(reg, emif_ext_phy_ctrl_reg++);
285                 }
286
287         /* Disable Leveling */
288         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
289         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
290         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
291 }
292
293 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
294 {
295         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
296
297         /* Clear Error Status */
298         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
299                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
300                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
301
302         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
303                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
304                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
305
306         /* Disable refreshed before leveling */
307         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
308                         EMIF_REG_INITREF_DIS_MASK);
309
310         /* Start Full leveling */
311         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
312
313         __udelay(300);
314
315         /* Check for leveling timeout */
316         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
317                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
318                 return;
319         }
320
321         /* Enable refreshes after leveling */
322         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
323
324         debug("HW leveling success\n");
325         /*
326          * Update slave ratios in EXT_PHY_CTRLx registers
327          * as per HW leveling output
328          */
329         update_hwleveling_output(base, regs);
330 }
331
332 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
333 {
334         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
335
336         if (warm_reset()) {
337                 emif_reset_phy(base);
338                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
339         }
340         do_ext_phy_settings(base, regs);
341
342         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
343                &emif->emif_sdram_ref_ctrl);
344         /* Update timing registers */
345         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
346         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
347         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
348
349         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
350         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
351         writel(regs->zq_config, &emif->emif_zq_config);
352         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
353         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
354         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
355
356         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
357         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
358
359         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
360
361         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
362         writel(regs->sdram_config_init, &emif->emif_sdram_config);
363
364         __udelay(1000);
365
366         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
367
368         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
369                 dra7_ddr3_leveling(base, regs);
370 }
371
372 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
373 {
374         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
375
376         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
377         writel(regs->sdram_config_init, &emif->emif_sdram_config);
378         /*
379          * Set SDRAM_CONFIG and PHY control registers to locked frequency
380          * and RL =7. As the default values of the Mode Registers are not
381          * defined, contents of mode Registers must be fully initialized.
382          * H/W takes care of this initialization
383          */
384         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
385
386         /* Update timing registers */
387         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
388         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
389         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
390
391         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
392
393         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
394         writel(regs->sdram_config_init, &emif->emif_sdram_config);
395         do_ext_phy_settings(base, regs);
396
397         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
398         omap5_ddr3_leveling(base, regs);
399 }
400
401 static void ddr3_init(u32 base, const struct emif_regs *regs)
402 {
403         if (is_omap54xx())
404                 omap5_ddr3_init(base, regs);
405         else
406                 dra7_ddr3_init(base, regs);
407 }
408
409 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
410 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
411
412 /*
413  * Organization and refresh requirements for LPDDR2 devices of different
414  * types and densities. Derived from JESD209-2 section 2.4
415  */
416 const struct lpddr2_addressing addressing_table[] = {
417         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
418         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
419         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
420         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
421         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
422         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
423         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
424         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
425         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
426         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
427         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
428 };
429
430 static const u32 lpddr2_density_2_size_in_mbytes[] = {
431         8,                      /* 64Mb */
432         16,                     /* 128Mb */
433         32,                     /* 256Mb */
434         64,                     /* 512Mb */
435         128,                    /* 1Gb   */
436         256,                    /* 2Gb   */
437         512,                    /* 4Gb   */
438         1024,                   /* 8Gb   */
439         2048,                   /* 16Gb  */
440         4096                    /* 32Gb  */
441 };
442
443 /*
444  * Calculate the period of DDR clock from frequency value and set the
445  * denominator and numerator in global variables for easy access later
446  */
447 static void set_ddr_clk_period(u32 freq)
448 {
449         /*
450          * period = 1/freq
451          * period_in_ns = 10^9/freq
452          */
453         *T_num = 1000000000;
454         *T_den = freq;
455         cancel_out(T_num, T_den, 200);
456
457 }
458
459 /*
460  * Convert time in nano seconds to number of cycles of DDR clock
461  */
462 static inline u32 ns_2_cycles(u32 ns)
463 {
464         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
465 }
466
467 /*
468  * ns_2_cycles with the difference that the time passed is 2 times the actual
469  * value(to avoid fractions). The cycles returned is for the original value of
470  * the timing parameter
471  */
472 static inline u32 ns_x2_2_cycles(u32 ns)
473 {
474         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
475 }
476
477 /*
478  * Find addressing table index based on the device's type(S2 or S4) and
479  * density
480  */
481 s8 addressing_table_index(u8 type, u8 density, u8 width)
482 {
483         u8 index;
484         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
485                 return -1;
486
487         /*
488          * Look at the way ADDR_TABLE_INDEX* values have been defined
489          * in emif.h compared to LPDDR2_DENSITY_* values
490          * The table is layed out in the increasing order of density
491          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
492          * at the end
493          */
494         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
495                 index = ADDR_TABLE_INDEX1GS2;
496         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
497                 index = ADDR_TABLE_INDEX2GS2;
498         else
499                 index = density;
500
501         debug("emif: addressing table index %d\n", index);
502
503         return index;
504 }
505
506 /*
507  * Find the the right timing table from the array of timing
508  * tables of the device using DDR clock frequency
509  */
510 static const struct lpddr2_ac_timings *get_timings_table(const struct
511                         lpddr2_ac_timings const *const *device_timings,
512                         u32 freq)
513 {
514         u32 i, temp, freq_nearest;
515         const struct lpddr2_ac_timings *timings = 0;
516
517         emif_assert(freq <= MAX_LPDDR2_FREQ);
518         emif_assert(device_timings);
519
520         /*
521          * Start with the maximum allowed frequency - that is always safe
522          */
523         freq_nearest = MAX_LPDDR2_FREQ;
524         /*
525          * Find the timings table that has the max frequency value:
526          *   i.  Above or equal to the DDR frequency - safe
527          *   ii. The lowest that satisfies condition (i) - optimal
528          */
529         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
530                 temp = device_timings[i]->max_freq;
531                 if ((temp >= freq) && (temp <= freq_nearest)) {
532                         freq_nearest = temp;
533                         timings = device_timings[i];
534                 }
535         }
536         debug("emif: timings table: %d\n", freq_nearest);
537         return timings;
538 }
539
540 /*
541  * Finds the value of emif_sdram_config_reg
542  * All parameters are programmed based on the device on CS0.
543  * If there is a device on CS1, it will be same as that on CS0 or
544  * it will be NVM. We don't support NVM yet.
545  * If cs1_device pointer is NULL it is assumed that there is no device
546  * on CS1
547  */
548 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
549                                 const struct lpddr2_device_details *cs1_device,
550                                 const struct lpddr2_addressing *addressing,
551                                 u8 RL)
552 {
553         u32 config_reg = 0;
554
555         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
556         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
557                         EMIF_REG_IBANK_POS_SHIFT;
558
559         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
560
561         config_reg |= RL << EMIF_REG_CL_SHIFT;
562
563         config_reg |= addressing->row_sz[cs0_device->io_width] <<
564                         EMIF_REG_ROWSIZE_SHIFT;
565
566         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
567
568         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
569                         EMIF_REG_EBANK_SHIFT;
570
571         config_reg |= addressing->col_sz[cs0_device->io_width] <<
572                         EMIF_REG_PAGESIZE_SHIFT;
573
574         return config_reg;
575 }
576
577 static u32 get_sdram_ref_ctrl(u32 freq,
578                               const struct lpddr2_addressing *addressing)
579 {
580         u32 ref_ctrl = 0, val = 0, freq_khz;
581         freq_khz = freq / 1000;
582         /*
583          * refresh rate to be set is 'tREFI * freq in MHz
584          * division by 10000 to account for khz and x10 in t_REFI_us_x10
585          */
586         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
587         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
588
589         return ref_ctrl;
590 }
591
592 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
593                                const struct lpddr2_min_tck *min_tck,
594                                const struct lpddr2_addressing *addressing)
595 {
596         u32 tim1 = 0, val = 0;
597         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
598         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
599
600         if (addressing->num_banks == BANKS8)
601                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
602                                                         (4 * (*T_num)) - 1;
603         else
604                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
605
606         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
607
608         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
609         tim1 |= val << EMIF_REG_T_RC_SHIFT;
610
611         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
612         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
613
614         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
615         tim1 |= val << EMIF_REG_T_WR_SHIFT;
616
617         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
618         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
619
620         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
621         tim1 |= val << EMIF_REG_T_RP_SHIFT;
622
623         return tim1;
624 }
625
626 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
627                                const struct lpddr2_min_tck *min_tck)
628 {
629         u32 tim2 = 0, val = 0;
630         val = max(min_tck->tCKE, timings->tCKE) - 1;
631         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
632
633         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
634         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
635
636         /*
637          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
638          * same value
639          */
640         val = ns_2_cycles(timings->tXSR) - 1;
641         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
642         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
643
644         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
645         tim2 |= val << EMIF_REG_T_XP_SHIFT;
646
647         return tim2;
648 }
649
650 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
651                                const struct lpddr2_min_tck *min_tck,
652                                const struct lpddr2_addressing *addressing)
653 {
654         u32 tim3 = 0, val = 0;
655         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
656         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
657
658         val = ns_2_cycles(timings->tRFCab) - 1;
659         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
660
661         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
662         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
663
664         val = ns_2_cycles(timings->tZQCS) - 1;
665         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
666
667         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
668         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
669
670         return tim3;
671 }
672
673 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
674                              const struct lpddr2_addressing *addressing,
675                              u8 volt_ramp)
676 {
677         u32 zq = 0, val = 0;
678         if (volt_ramp)
679                 val =
680                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
681                     addressing->t_REFI_us_x10;
682         else
683                 val =
684                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
685                     addressing->t_REFI_us_x10;
686         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
687
688         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
689
690         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
691
692         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
693
694         /*
695          * Assuming that two chipselects have a single calibration resistor
696          * If there are indeed two calibration resistors, then this flag should
697          * be enabled to take advantage of dual calibration feature.
698          * This data should ideally come from board files. But considering
699          * that none of the boards today have calibration resistors per CS,
700          * it would be an unnecessary overhead.
701          */
702         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
703
704         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
705
706         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
707
708         return zq;
709 }
710
711 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
712                                  const struct lpddr2_addressing *addressing,
713                                  u8 is_derated)
714 {
715         u32 alert = 0, interval;
716         interval =
717             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
718         if (is_derated)
719                 interval *= 4;
720         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
721
722         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
723
724         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
725
726         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
727
728         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
729
730         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
731
732         return alert;
733 }
734
735 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
736 {
737         u32 idle = 0, val = 0;
738         if (volt_ramp)
739                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
740         else
741                 /*Maximum value in normal conditions - suggested by hw team */
742                 val = 0x1FF;
743         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
744
745         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
746
747         return idle;
748 }
749
750 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
751 {
752         u32 phy = 0, val = 0;
753
754         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
755
756         if (freq <= 100000000)
757                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
758         else if (freq <= 200000000)
759                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
760         else
761                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
762         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
763
764         /* Other fields are constant magic values. Hardcode them together */
765         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
766                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
767
768         return phy;
769 }
770
771 static u32 get_emif_mem_size(u32 base)
772 {
773         u32 size_mbytes = 0, temp;
774         struct emif_device_details dev_details;
775         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
776         u32 emif_nr = emif_num(base);
777
778         emif_reset_phy(base);
779         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
780                                                 &cs0_dev_details);
781         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
782                                                 &cs1_dev_details);
783         emif_reset_phy(base);
784
785         if (dev_details.cs0_device_details) {
786                 temp = dev_details.cs0_device_details->density;
787                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
788         }
789
790         if (dev_details.cs1_device_details) {
791                 temp = dev_details.cs1_device_details->density;
792                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
793         }
794         /* convert to bytes */
795         return size_mbytes << 20;
796 }
797
798 /* Gets the encoding corresponding to a given DMM section size */
799 u32 get_dmm_section_size_map(u32 section_size)
800 {
801         /*
802          * Section size mapping:
803          * 0x0: 16-MiB section
804          * 0x1: 32-MiB section
805          * 0x2: 64-MiB section
806          * 0x3: 128-MiB section
807          * 0x4: 256-MiB section
808          * 0x5: 512-MiB section
809          * 0x6: 1-GiB section
810          * 0x7: 2-GiB section
811          */
812         section_size >>= 24; /* divide by 16 MB */
813         return log_2_n_round_down(section_size);
814 }
815
816 static void emif_calculate_regs(
817                 const struct emif_device_details *emif_dev_details,
818                 u32 freq, struct emif_regs *regs)
819 {
820         u32 temp, sys_freq;
821         const struct lpddr2_addressing *addressing;
822         const struct lpddr2_ac_timings *timings;
823         const struct lpddr2_min_tck *min_tck;
824         const struct lpddr2_device_details *cs0_dev_details =
825                                         emif_dev_details->cs0_device_details;
826         const struct lpddr2_device_details *cs1_dev_details =
827                                         emif_dev_details->cs1_device_details;
828         const struct lpddr2_device_timings *cs0_dev_timings =
829                                         emif_dev_details->cs0_device_timings;
830
831         emif_assert(emif_dev_details);
832         emif_assert(regs);
833         /*
834          * You can not have a device on CS1 without one on CS0
835          * So configuring EMIF without a device on CS0 doesn't
836          * make sense
837          */
838         emif_assert(cs0_dev_details);
839         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
840         /*
841          * If there is a device on CS1 it should be same type as CS0
842          * (or NVM. But NVM is not supported in this driver yet)
843          */
844         emif_assert((cs1_dev_details == NULL) ||
845                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
846                     (cs0_dev_details->type == cs1_dev_details->type));
847         emif_assert(freq <= MAX_LPDDR2_FREQ);
848
849         set_ddr_clk_period(freq);
850
851         /*
852          * The device on CS0 is used for all timing calculations
853          * There is only one set of registers for timings per EMIF. So, if the
854          * second CS(CS1) has a device, it should have the same timings as the
855          * device on CS0
856          */
857         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
858         emif_assert(timings);
859         min_tck = cs0_dev_timings->min_tck;
860
861         temp = addressing_table_index(cs0_dev_details->type,
862                                       cs0_dev_details->density,
863                                       cs0_dev_details->io_width);
864
865         emif_assert((temp >= 0));
866         addressing = &(addressing_table[temp]);
867         emif_assert(addressing);
868
869         sys_freq = get_sys_clk_freq();
870
871         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
872                                                         cs1_dev_details,
873                                                         addressing, RL_BOOT);
874
875         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
876                                                 cs1_dev_details,
877                                                 addressing, RL_FINAL);
878
879         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
880
881         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
882
883         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
884
885         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
886
887         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
888
889         regs->temp_alert_config =
890             get_temp_alert_config(cs1_dev_details, addressing, 0);
891
892         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
893                                             LPDDR2_VOLTAGE_STABLE);
894
895         regs->emif_ddr_phy_ctlr_1_init =
896                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
897
898         regs->emif_ddr_phy_ctlr_1 =
899                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
900
901         regs->freq = freq;
902
903         print_timing_reg(regs->sdram_config_init);
904         print_timing_reg(regs->sdram_config);
905         print_timing_reg(regs->ref_ctrl);
906         print_timing_reg(regs->sdram_tim1);
907         print_timing_reg(regs->sdram_tim2);
908         print_timing_reg(regs->sdram_tim3);
909         print_timing_reg(regs->read_idle_ctrl);
910         print_timing_reg(regs->temp_alert_config);
911         print_timing_reg(regs->zq_config);
912         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
913         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
914 }
915 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
916
917 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
918 const char *get_lpddr2_type(u8 type_id)
919 {
920         switch (type_id) {
921         case LPDDR2_TYPE_S4:
922                 return "LPDDR2-S4";
923         case LPDDR2_TYPE_S2:
924                 return "LPDDR2-S2";
925         default:
926                 return NULL;
927         }
928 }
929
930 const char *get_lpddr2_io_width(u8 width_id)
931 {
932         switch (width_id) {
933         case LPDDR2_IO_WIDTH_8:
934                 return "x8";
935         case LPDDR2_IO_WIDTH_16:
936                 return "x16";
937         case LPDDR2_IO_WIDTH_32:
938                 return "x32";
939         default:
940                 return NULL;
941         }
942 }
943
944 const char *get_lpddr2_manufacturer(u32 manufacturer)
945 {
946         switch (manufacturer) {
947         case LPDDR2_MANUFACTURER_SAMSUNG:
948                 return "Samsung";
949         case LPDDR2_MANUFACTURER_QIMONDA:
950                 return "Qimonda";
951         case LPDDR2_MANUFACTURER_ELPIDA:
952                 return "Elpida";
953         case LPDDR2_MANUFACTURER_ETRON:
954                 return "Etron";
955         case LPDDR2_MANUFACTURER_NANYA:
956                 return "Nanya";
957         case LPDDR2_MANUFACTURER_HYNIX:
958                 return "Hynix";
959         case LPDDR2_MANUFACTURER_MOSEL:
960                 return "Mosel";
961         case LPDDR2_MANUFACTURER_WINBOND:
962                 return "Winbond";
963         case LPDDR2_MANUFACTURER_ESMT:
964                 return "ESMT";
965         case LPDDR2_MANUFACTURER_SPANSION:
966                 return "Spansion";
967         case LPDDR2_MANUFACTURER_SST:
968                 return "SST";
969         case LPDDR2_MANUFACTURER_ZMOS:
970                 return "ZMOS";
971         case LPDDR2_MANUFACTURER_INTEL:
972                 return "Intel";
973         case LPDDR2_MANUFACTURER_NUMONYX:
974                 return "Numonyx";
975         case LPDDR2_MANUFACTURER_MICRON:
976                 return "Micron";
977         default:
978                 return NULL;
979         }
980 }
981
982 static void display_sdram_details(u32 emif_nr, u32 cs,
983                                   struct lpddr2_device_details *device)
984 {
985         const char *mfg_str;
986         const char *type_str;
987         char density_str[10];
988         u32 density;
989
990         debug("EMIF%d CS%d\t", emif_nr, cs);
991
992         if (!device) {
993                 debug("None\n");
994                 return;
995         }
996
997         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
998         type_str = get_lpddr2_type(device->type);
999
1000         density = lpddr2_density_2_size_in_mbytes[device->density];
1001         if ((density / 1024 * 1024) == density) {
1002                 density /= 1024;
1003                 sprintf(density_str, "%d GB", density);
1004         } else
1005                 sprintf(density_str, "%d MB", density);
1006         if (mfg_str && type_str)
1007                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1008 }
1009
1010 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1011                                   struct lpddr2_device_details *lpddr2_device)
1012 {
1013         u32 mr = 0, temp;
1014
1015         mr = get_mr(base, cs, LPDDR2_MR0);
1016         if (mr > 0xFF) {
1017                 /* Mode register value bigger than 8 bit */
1018                 return 0;
1019         }
1020
1021         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1022         if (temp) {
1023                 /* Not SDRAM */
1024                 return 0;
1025         }
1026         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1027
1028         if (temp) {
1029                 /* DNV supported - But DNV is only supported for NVM */
1030                 return 0;
1031         }
1032
1033         mr = get_mr(base, cs, LPDDR2_MR4);
1034         if (mr > 0xFF) {
1035                 /* Mode register value bigger than 8 bit */
1036                 return 0;
1037         }
1038
1039         mr = get_mr(base, cs, LPDDR2_MR5);
1040         if (mr > 0xFF) {
1041                 /* Mode register value bigger than 8 bit */
1042                 return 0;
1043         }
1044
1045         if (!get_lpddr2_manufacturer(mr)) {
1046                 /* Manufacturer not identified */
1047                 return 0;
1048         }
1049         lpddr2_device->manufacturer = mr;
1050
1051         mr = get_mr(base, cs, LPDDR2_MR6);
1052         if (mr >= 0xFF) {
1053                 /* Mode register value bigger than 8 bit */
1054                 return 0;
1055         }
1056
1057         mr = get_mr(base, cs, LPDDR2_MR7);
1058         if (mr >= 0xFF) {
1059                 /* Mode register value bigger than 8 bit */
1060                 return 0;
1061         }
1062
1063         mr = get_mr(base, cs, LPDDR2_MR8);
1064         if (mr >= 0xFF) {
1065                 /* Mode register value bigger than 8 bit */
1066                 return 0;
1067         }
1068
1069         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1070         if (!get_lpddr2_type(temp)) {
1071                 /* Not SDRAM */
1072                 return 0;
1073         }
1074         lpddr2_device->type = temp;
1075
1076         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1077         if (temp > LPDDR2_DENSITY_32Gb) {
1078                 /* Density not supported */
1079                 return 0;
1080         }
1081         lpddr2_device->density = temp;
1082
1083         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1084         if (!get_lpddr2_io_width(temp)) {
1085                 /* IO width unsupported value */
1086                 return 0;
1087         }
1088         lpddr2_device->io_width = temp;
1089
1090         /*
1091          * If all the above tests pass we should
1092          * have a device on this chip-select
1093          */
1094         return 1;
1095 }
1096
1097 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1098                         struct lpddr2_device_details *lpddr2_dev_details)
1099 {
1100         u32 phy;
1101         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1102
1103         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1104
1105         if (!lpddr2_dev_details)
1106                 return NULL;
1107
1108         /* Do the minimum init for mode register accesses */
1109         if (!(running_from_sdram() || warm_reset())) {
1110                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1111                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1112         }
1113
1114         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1115                 return NULL;
1116
1117         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1118
1119         return lpddr2_dev_details;
1120 }
1121 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1122
1123 static void do_sdram_init(u32 base)
1124 {
1125         const struct emif_regs *regs;
1126         u32 in_sdram, emif_nr;
1127
1128         debug(">>do_sdram_init() %x\n", base);
1129
1130         in_sdram = running_from_sdram();
1131         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1132
1133 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1134         emif_get_reg_dump(emif_nr, &regs);
1135         if (!regs) {
1136                 debug("EMIF: reg dump not provided\n");
1137                 return;
1138         }
1139 #else
1140         /*
1141          * The user has not provided the register values. We need to
1142          * calculate it based on the timings and the DDR frequency
1143          */
1144         struct emif_device_details dev_details;
1145         struct emif_regs calculated_regs;
1146
1147         /*
1148          * Get device details:
1149          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1150          * - Obtained from user otherwise
1151          */
1152         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1153         emif_reset_phy(base);
1154         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1155                                                 &cs0_dev_details);
1156         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1157                                                 &cs1_dev_details);
1158         emif_reset_phy(base);
1159
1160         /* Return if no devices on this EMIF */
1161         if (!dev_details.cs0_device_details &&
1162             !dev_details.cs1_device_details) {
1163                 return;
1164         }
1165
1166         /*
1167          * Get device timings:
1168          * - Default timings specified by JESD209-2 if
1169          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1170          * - Obtained from user otherwise
1171          */
1172         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1173                                 &dev_details.cs1_device_timings);
1174
1175         /* Calculate the register values */
1176         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1177         regs = &calculated_regs;
1178 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1179
1180         /*
1181          * Initializing the LPDDR2 device can not happen from SDRAM.
1182          * Changing the timing registers in EMIF can happen(going from one
1183          * OPP to another)
1184          */
1185         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1186                 if (emif_sdram_type(regs->sdram_config) ==
1187                     EMIF_SDRAM_TYPE_LPDDR2)
1188                         lpddr2_init(base, regs);
1189                 else
1190                         ddr3_init(base, regs);
1191         }
1192         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1193             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1194                 set_lpmode_selfrefresh(base);
1195                 emif_reset_phy(base);
1196                 omap5_ddr3_leveling(base, regs);
1197         }
1198
1199         /* Write to the shadow registers */
1200         emif_update_timings(base, regs);
1201
1202         debug("<<do_sdram_init() %x\n", base);
1203 }
1204
1205 void emif_post_init_config(u32 base)
1206 {
1207         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1208         u32 omap_rev = omap_revision();
1209
1210         /* reset phy on ES2.0 */
1211         if (omap_rev == OMAP4430_ES2_0)
1212                 emif_reset_phy(base);
1213
1214         /* Put EMIF back in smart idle on ES1.0 */
1215         if (omap_rev == OMAP4430_ES1_0)
1216                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1217 }
1218
1219 void dmm_init(u32 base)
1220 {
1221         const struct dmm_lisa_map_regs *lisa_map_regs;
1222         u32 i, section, valid;
1223
1224 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1225         emif_get_dmm_regs(&lisa_map_regs);
1226 #else
1227         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1228         u32 section_cnt, sys_addr;
1229         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1230
1231         mapped_size = 0;
1232         section_cnt = 3;
1233         sys_addr = CONFIG_SYS_SDRAM_BASE;
1234         emif1_size = get_emif_mem_size(EMIF1_BASE);
1235         emif2_size = get_emif_mem_size(EMIF2_BASE);
1236         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1237
1238         if (!emif1_size && !emif2_size)
1239                 return;
1240
1241         /* symmetric interleaved section */
1242         if (emif1_size && emif2_size) {
1243                 mapped_size = min(emif1_size, emif2_size);
1244                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1245                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1246                 /* only MSB */
1247                 section_map |= (sys_addr >> 24) <<
1248                                 EMIF_SYS_ADDR_SHIFT;
1249                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1250                                 << EMIF_SYS_SIZE_SHIFT;
1251                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1252                 emif1_size -= mapped_size;
1253                 emif2_size -= mapped_size;
1254                 sys_addr += (mapped_size * 2);
1255                 section_cnt--;
1256         }
1257
1258         /*
1259          * Single EMIF section(we can have a maximum of 1 single EMIF
1260          * section- either EMIF1 or EMIF2 or none, but not both)
1261          */
1262         if (emif1_size) {
1263                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1264                 section_map |= get_dmm_section_size_map(emif1_size)
1265                                 << EMIF_SYS_SIZE_SHIFT;
1266                 /* only MSB */
1267                 section_map |= (mapped_size >> 24) <<
1268                                 EMIF_SDRC_ADDR_SHIFT;
1269                 /* only MSB */
1270                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1271                 section_cnt--;
1272         }
1273         if (emif2_size) {
1274                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1275                 section_map |= get_dmm_section_size_map(emif2_size) <<
1276                                 EMIF_SYS_SIZE_SHIFT;
1277                 /* only MSB */
1278                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1279                 /* only MSB */
1280                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1281                 section_cnt--;
1282         }
1283
1284         if (section_cnt == 2) {
1285                 /* Only 1 section - either symmetric or single EMIF */
1286                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1287                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1288                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1289         } else {
1290                 /* 2 sections - 1 symmetric, 1 single EMIF */
1291                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1292                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1293         }
1294
1295         /* TRAP for invalid TILER mappings in section 0 */
1296         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1297
1298         if (omap_revision() >= OMAP4460_ES1_0)
1299                 lis_map_regs_calculated.is_ma_present = 1;
1300
1301         lisa_map_regs = &lis_map_regs_calculated;
1302 #endif
1303         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1304             (struct dmm_lisa_map_regs *)base;
1305
1306         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1307         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1308         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1309         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1310
1311         writel(lisa_map_regs->dmm_lisa_map_3,
1312                 &hw_lisa_map_regs->dmm_lisa_map_3);
1313         writel(lisa_map_regs->dmm_lisa_map_2,
1314                 &hw_lisa_map_regs->dmm_lisa_map_2);
1315         writel(lisa_map_regs->dmm_lisa_map_1,
1316                 &hw_lisa_map_regs->dmm_lisa_map_1);
1317         writel(lisa_map_regs->dmm_lisa_map_0,
1318                 &hw_lisa_map_regs->dmm_lisa_map_0);
1319
1320         if (lisa_map_regs->is_ma_present) {
1321                 hw_lisa_map_regs =
1322                     (struct dmm_lisa_map_regs *)MA_BASE;
1323
1324                 writel(lisa_map_regs->dmm_lisa_map_3,
1325                         &hw_lisa_map_regs->dmm_lisa_map_3);
1326                 writel(lisa_map_regs->dmm_lisa_map_2,
1327                         &hw_lisa_map_regs->dmm_lisa_map_2);
1328                 writel(lisa_map_regs->dmm_lisa_map_1,
1329                         &hw_lisa_map_regs->dmm_lisa_map_1);
1330                 writel(lisa_map_regs->dmm_lisa_map_0,
1331                         &hw_lisa_map_regs->dmm_lisa_map_0);
1332
1333                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1334         }
1335
1336         /*
1337          * EMIF should be configured only when
1338          * memory is mapped on it. Using emif1_enabled
1339          * and emif2_enabled variables for this.
1340          */
1341         emif1_enabled = 0;
1342         emif2_enabled = 0;
1343         for (i = 0; i < 4; i++) {
1344                 section = __raw_readl(DMM_BASE + i*4);
1345                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1346                         (EMIF_SDRC_MAP_SHIFT);
1347                 if (valid == 3) {
1348                         emif1_enabled = 1;
1349                         emif2_enabled = 1;
1350                         break;
1351                 }
1352
1353                 if (valid == 1)
1354                         emif1_enabled = 1;
1355
1356                 if (valid == 2)
1357                         emif2_enabled = 1;
1358         }
1359 }
1360
1361 static void do_bug0039_workaround(u32 base)
1362 {
1363         u32 val, i, clkctrl;
1364         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1365         const struct read_write_regs *bug_00339_regs;
1366         u32 iterations;
1367         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1368         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1369
1370         if (is_dra7xx())
1371                 phy_status_base++;
1372
1373         bug_00339_regs = get_bug_regs(&iterations);
1374
1375         /* Put EMIF in to idle */
1376         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1377         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1378
1379         /* Copy the phy status registers in to phy ctrl shadow registers */
1380         for (i = 0; i < iterations; i++) {
1381                 val = __raw_readl(phy_status_base +
1382                                   bug_00339_regs[i].read_reg - 1);
1383
1384                 __raw_writel(val, phy_ctrl_base +
1385                              ((bug_00339_regs[i].write_reg - 1) << 1));
1386
1387                 __raw_writel(val, phy_ctrl_base +
1388                              (bug_00339_regs[i].write_reg << 1) - 1);
1389         }
1390
1391         /* Disable leveling */
1392         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1393
1394         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1395 }
1396
1397 /*
1398  * SDRAM initialization:
1399  * SDRAM initialization has two parts:
1400  * 1. Configuring the SDRAM device
1401  * 2. Update the AC timings related parameters in the EMIF module
1402  * (1) should be done only once and should not be done while we are
1403  * running from SDRAM.
1404  * (2) can and should be done more than once if OPP changes.
1405  * Particularly, this may be needed when we boot without SPL and
1406  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1407  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1408  * the frequency. So,
1409  * Doing (1) and (2) makes sense - first time initialization
1410  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1411  * Doing (1) and not (2) doen't make sense
1412  * See do_sdram_init() for the details
1413  */
1414 void sdram_init(void)
1415 {
1416         u32 in_sdram, size_prog, size_detect;
1417         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1418         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1419
1420         debug(">>sdram_init()\n");
1421
1422         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1423                 return;
1424
1425         in_sdram = running_from_sdram();
1426         debug("in_sdram = %d\n", in_sdram);
1427
1428         if (!in_sdram) {
1429                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1430                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1431                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1432                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1433         }
1434
1435         if (!in_sdram)
1436                 dmm_init(DMM_BASE);
1437
1438         if (emif1_enabled)
1439                 do_sdram_init(EMIF1_BASE);
1440
1441         if (emif2_enabled)
1442                 do_sdram_init(EMIF2_BASE);
1443
1444         if (!(in_sdram || warm_reset())) {
1445                 if (emif1_enabled)
1446                         emif_post_init_config(EMIF1_BASE);
1447                 if (emif2_enabled)
1448                         emif_post_init_config(EMIF2_BASE);
1449         }
1450
1451         /* for the shadow registers to take effect */
1452         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1453                 freq_update_core();
1454
1455         /* Do some testing after the init */
1456         if (!in_sdram) {
1457                 size_prog = omap_sdram_size();
1458                 size_prog = log_2_n_round_down(size_prog);
1459                 size_prog = (1 << size_prog);
1460
1461                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1462                                                 size_prog);
1463                 /* Compare with the size programmed */
1464                 if (size_detect != size_prog) {
1465                         printf("SDRAM: identified size not same as expected"
1466                                 " size identified: %x expected: %x\n",
1467                                 size_detect,
1468                                 size_prog);
1469                 } else
1470                         debug("get_ram_size() successful");
1471         }
1472
1473         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1474             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1475                 if (emif1_enabled)
1476                         do_bug0039_workaround(EMIF1_BASE);
1477                 if (emif2_enabled)
1478                         do_bug0039_workaround(EMIF2_BASE);
1479         }
1480
1481         debug("<<sdram_init()\n");
1482 }