]> git.sur5r.net Git - u-boot/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
arm: omap-common: Guard some parts of the code with CONFIG_OMAP44XX/OMAP54XX
[u-boot] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19
20 static int emif1_enabled = -1, emif2_enabled = -1;
21
22 void set_lpmode_selfrefresh(u32 base)
23 {
24         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25         u32 reg;
26
27         reg = readl(&emif->emif_pwr_mgmt_ctrl);
28         reg &= ~EMIF_REG_LP_MODE_MASK;
29         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30         reg &= ~EMIF_REG_SR_TIM_MASK;
31         writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33         /* dummy read for the new SR_TIM to be loaded */
34         readl(&emif->emif_pwr_mgmt_ctrl);
35 }
36
37 void force_emif_self_refresh()
38 {
39         set_lpmode_selfrefresh(EMIF1_BASE);
40         set_lpmode_selfrefresh(EMIF2_BASE);
41 }
42
43 inline u32 emif_num(u32 base)
44 {
45         if (base == EMIF1_BASE)
46                 return 1;
47         else if (base == EMIF2_BASE)
48                 return 2;
49         else
50                 return 0;
51 }
52
53 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54 {
55         u32 mr;
56         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58         mr_addr |= cs << EMIF_REG_CS_SHIFT;
59         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60         if (omap_revision() == OMAP4430_ES2_0)
61                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62         else
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65               cs, mr_addr, mr);
66         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
67             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68             ((mr & 0xff000000) >> 24) == (mr & 0xff))
69                 return mr & 0xff;
70         else
71                 return mr;
72 }
73
74 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75 {
76         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78         mr_addr |= cs << EMIF_REG_CS_SHIFT;
79         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81 }
82
83 void emif_reset_phy(u32 base)
84 {
85         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86         u32 iodft;
87
88         iodft = readl(&emif->emif_iodft_tlgc);
89         iodft |= EMIF_REG_RESET_PHY_MASK;
90         writel(iodft, &emif->emif_iodft_tlgc);
91 }
92
93 static void do_lpddr2_init(u32 base, u32 cs)
94 {
95         u32 mr_addr;
96         const struct lpddr2_mr_regs *mr_regs;
97
98         get_lpddr2_mr_regs(&mr_regs);
99         /* Wait till device auto initialization is complete */
100         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101                 ;
102         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103         /*
104          * tZQINIT = 1 us
105          * Enough loops assuming a maximum of 2GHz
106          */
107
108         sdelay(2000);
109
110         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113         /*
114          * Enable refresh along with writing MR2
115          * Encoding of RL in MR2 is (RL - 2)
116          */
117         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118         set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120         if (mr_regs->mr3 > 0)
121                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122 }
123
124 static void lpddr2_init(u32 base, const struct emif_regs *regs)
125 {
126         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128         /* Not NVM */
129         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131         /*
132          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133          * when EMIF_SDRAM_CONFIG register is written
134          */
135         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137         /*
138          * Set the SDRAM_CONFIG and PHY_CTRL for the
139          * un-locked frequency & default RL
140          */
141         writel(regs->sdram_config_init, &emif->emif_sdram_config);
142         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144         do_ext_phy_settings(base, regs);
145
146         do_lpddr2_init(base, CS0);
147         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148                 do_lpddr2_init(base, CS1);
149
150         writel(regs->sdram_config, &emif->emif_sdram_config);
151         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153         /* Enable refresh now */
154         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156         }
157
158 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159 {
160 }
161
162 void emif_update_timings(u32 base, const struct emif_regs *regs)
163 {
164         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166         if (!is_dra7xx())
167                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
168         else
169                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
170
171         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
172         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
173         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
174         if (omap_revision() == OMAP4430_ES1_0) {
175                 /* ES1 bug EMIF should be in force idle during freq_update */
176                 writel(0, &emif->emif_pwr_mgmt_ctrl);
177         } else {
178                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
179                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
180         }
181         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
182         writel(regs->zq_config, &emif->emif_zq_config);
183         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
184         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
185
186         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
187                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
188                         &emif->emif_l3_config);
189         } else if (omap_revision() >= OMAP4460_ES1_0) {
190                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
191                         &emif->emif_l3_config);
192         } else {
193                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
194                         &emif->emif_l3_config);
195         }
196 }
197
198 #ifndef CONFIG_OMAP44XX
199 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
200 {
201         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
202
203         /* keep sdram in self-refresh */
204         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
205                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
206         __udelay(130);
207
208         /*
209          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
210          * Invert clock adds an additional half cycle delay on the
211          * command interface.  The additional half cycle, is usually
212          * meant to enable leveling in the situation that DQS is later
213          * than CK on the board.It also helps provide some additional
214          * margin for leveling.
215          */
216         writel(regs->emif_ddr_phy_ctlr_1,
217                &emif->emif_ddr_phy_ctrl_1);
218
219         writel(regs->emif_ddr_phy_ctlr_1,
220                &emif->emif_ddr_phy_ctrl_1_shdw);
221         __udelay(130);
222
223         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
224                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
225
226         /* Launch Full leveling */
227         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
228
229         /* Wait till full leveling is complete */
230         readl(&emif->emif_rd_wr_lvl_ctl);
231               __udelay(130);
232
233         /* Read data eye leveling no of samples */
234         config_data_eye_leveling_samples(base);
235
236         /*
237          * Launch 8 incremental WR_LVL- to compensate for
238          * PHY limitation.
239          */
240         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
241                &emif->emif_rd_wr_lvl_ctl);
242
243         __udelay(130);
244
245         /* Launch Incremental leveling */
246         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
247                __udelay(130);
248 }
249
250 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
251 {
252         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
253         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
254         u32 reg, i, phy;
255
256         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
257         phy = readl(&emif->emif_ddr_phy_ctrl_1);
258
259         /* Update PHY_REG_RDDQS_RATIO */
260         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
261         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
262                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
263                         reg = readl(emif_phy_status++);
264                         writel(reg, emif_ext_phy_ctrl_reg++);
265                         writel(reg, emif_ext_phy_ctrl_reg++);
266                 }
267
268         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
269         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
270         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[12];
271         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
272                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
273                         reg = readl(emif_phy_status++);
274                         writel(reg, emif_ext_phy_ctrl_reg++);
275                         writel(reg, emif_ext_phy_ctrl_reg++);
276                 }
277
278         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
279         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
280         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[17];
281         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
282                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
283                         reg = readl(emif_phy_status++);
284                         writel(reg, emif_ext_phy_ctrl_reg++);
285                         writel(reg, emif_ext_phy_ctrl_reg++);
286                 }
287
288         /* Disable Leveling */
289         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
290         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
291         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
292 }
293
294 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
295 {
296         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
297
298         /* Clear Error Status */
299         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
300                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
301                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
302
303         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
304                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
305                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
306
307         /* Disable refreshed before leveling */
308         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
309                         EMIF_REG_INITREF_DIS_MASK);
310
311         /* Start Full leveling */
312         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
313
314         __udelay(300);
315
316         /* Check for leveling timeout */
317         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
318                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
319                 return;
320         }
321
322         /* Enable refreshes after leveling */
323         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
324
325         debug("HW leveling success\n");
326         /*
327          * Update slave ratios in EXT_PHY_CTRLx registers
328          * as per HW leveling output
329          */
330         update_hwleveling_output(base, regs);
331 }
332
333 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
334 {
335         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
336
337         if (warm_reset()) {
338                 emif_reset_phy(base);
339                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
340         }
341         do_ext_phy_settings(base, regs);
342
343         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
344                &emif->emif_sdram_ref_ctrl);
345         /* Update timing registers */
346         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
347         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
348         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
349
350         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
351         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
352         writel(regs->zq_config, &emif->emif_zq_config);
353         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
354         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
355         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
356
357         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
358         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
359
360         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
361
362         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
363         writel(regs->sdram_config_init, &emif->emif_sdram_config);
364
365         __udelay(1000);
366
367         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
368
369         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
370                 dra7_ddr3_leveling(base, regs);
371 }
372
373 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
374 {
375         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
376
377         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
378         writel(regs->sdram_config_init, &emif->emif_sdram_config);
379         /*
380          * Set SDRAM_CONFIG and PHY control registers to locked frequency
381          * and RL =7. As the default values of the Mode Registers are not
382          * defined, contents of mode Registers must be fully initialized.
383          * H/W takes care of this initialization
384          */
385         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
386
387         /* Update timing registers */
388         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
389         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
390         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
391
392         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
393
394         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
395         writel(regs->sdram_config_init, &emif->emif_sdram_config);
396         do_ext_phy_settings(base, regs);
397
398         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
399         omap5_ddr3_leveling(base, regs);
400 }
401
402 static void ddr3_init(u32 base, const struct emif_regs *regs)
403 {
404         if (is_omap54xx())
405                 omap5_ddr3_init(base, regs);
406         else
407                 dra7_ddr3_init(base, regs);
408 }
409 #endif
410
411 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
412 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
413
414 /*
415  * Organization and refresh requirements for LPDDR2 devices of different
416  * types and densities. Derived from JESD209-2 section 2.4
417  */
418 const struct lpddr2_addressing addressing_table[] = {
419         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
420         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
421         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
422         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
423         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
424         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
425         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
426         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
427         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
428         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
429         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
430 };
431
432 static const u32 lpddr2_density_2_size_in_mbytes[] = {
433         8,                      /* 64Mb */
434         16,                     /* 128Mb */
435         32,                     /* 256Mb */
436         64,                     /* 512Mb */
437         128,                    /* 1Gb   */
438         256,                    /* 2Gb   */
439         512,                    /* 4Gb   */
440         1024,                   /* 8Gb   */
441         2048,                   /* 16Gb  */
442         4096                    /* 32Gb  */
443 };
444
445 /*
446  * Calculate the period of DDR clock from frequency value and set the
447  * denominator and numerator in global variables for easy access later
448  */
449 static void set_ddr_clk_period(u32 freq)
450 {
451         /*
452          * period = 1/freq
453          * period_in_ns = 10^9/freq
454          */
455         *T_num = 1000000000;
456         *T_den = freq;
457         cancel_out(T_num, T_den, 200);
458
459 }
460
461 /*
462  * Convert time in nano seconds to number of cycles of DDR clock
463  */
464 static inline u32 ns_2_cycles(u32 ns)
465 {
466         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
467 }
468
469 /*
470  * ns_2_cycles with the difference that the time passed is 2 times the actual
471  * value(to avoid fractions). The cycles returned is for the original value of
472  * the timing parameter
473  */
474 static inline u32 ns_x2_2_cycles(u32 ns)
475 {
476         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
477 }
478
479 /*
480  * Find addressing table index based on the device's type(S2 or S4) and
481  * density
482  */
483 s8 addressing_table_index(u8 type, u8 density, u8 width)
484 {
485         u8 index;
486         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
487                 return -1;
488
489         /*
490          * Look at the way ADDR_TABLE_INDEX* values have been defined
491          * in emif.h compared to LPDDR2_DENSITY_* values
492          * The table is layed out in the increasing order of density
493          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
494          * at the end
495          */
496         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
497                 index = ADDR_TABLE_INDEX1GS2;
498         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
499                 index = ADDR_TABLE_INDEX2GS2;
500         else
501                 index = density;
502
503         debug("emif: addressing table index %d\n", index);
504
505         return index;
506 }
507
508 /*
509  * Find the the right timing table from the array of timing
510  * tables of the device using DDR clock frequency
511  */
512 static const struct lpddr2_ac_timings *get_timings_table(const struct
513                         lpddr2_ac_timings const *const *device_timings,
514                         u32 freq)
515 {
516         u32 i, temp, freq_nearest;
517         const struct lpddr2_ac_timings *timings = 0;
518
519         emif_assert(freq <= MAX_LPDDR2_FREQ);
520         emif_assert(device_timings);
521
522         /*
523          * Start with the maximum allowed frequency - that is always safe
524          */
525         freq_nearest = MAX_LPDDR2_FREQ;
526         /*
527          * Find the timings table that has the max frequency value:
528          *   i.  Above or equal to the DDR frequency - safe
529          *   ii. The lowest that satisfies condition (i) - optimal
530          */
531         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
532                 temp = device_timings[i]->max_freq;
533                 if ((temp >= freq) && (temp <= freq_nearest)) {
534                         freq_nearest = temp;
535                         timings = device_timings[i];
536                 }
537         }
538         debug("emif: timings table: %d\n", freq_nearest);
539         return timings;
540 }
541
542 /*
543  * Finds the value of emif_sdram_config_reg
544  * All parameters are programmed based on the device on CS0.
545  * If there is a device on CS1, it will be same as that on CS0 or
546  * it will be NVM. We don't support NVM yet.
547  * If cs1_device pointer is NULL it is assumed that there is no device
548  * on CS1
549  */
550 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
551                                 const struct lpddr2_device_details *cs1_device,
552                                 const struct lpddr2_addressing *addressing,
553                                 u8 RL)
554 {
555         u32 config_reg = 0;
556
557         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
558         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
559                         EMIF_REG_IBANK_POS_SHIFT;
560
561         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
562
563         config_reg |= RL << EMIF_REG_CL_SHIFT;
564
565         config_reg |= addressing->row_sz[cs0_device->io_width] <<
566                         EMIF_REG_ROWSIZE_SHIFT;
567
568         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
569
570         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
571                         EMIF_REG_EBANK_SHIFT;
572
573         config_reg |= addressing->col_sz[cs0_device->io_width] <<
574                         EMIF_REG_PAGESIZE_SHIFT;
575
576         return config_reg;
577 }
578
579 static u32 get_sdram_ref_ctrl(u32 freq,
580                               const struct lpddr2_addressing *addressing)
581 {
582         u32 ref_ctrl = 0, val = 0, freq_khz;
583         freq_khz = freq / 1000;
584         /*
585          * refresh rate to be set is 'tREFI * freq in MHz
586          * division by 10000 to account for khz and x10 in t_REFI_us_x10
587          */
588         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
589         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
590
591         return ref_ctrl;
592 }
593
594 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
595                                const struct lpddr2_min_tck *min_tck,
596                                const struct lpddr2_addressing *addressing)
597 {
598         u32 tim1 = 0, val = 0;
599         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
600         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
601
602         if (addressing->num_banks == BANKS8)
603                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
604                                                         (4 * (*T_num)) - 1;
605         else
606                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
607
608         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
609
610         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
611         tim1 |= val << EMIF_REG_T_RC_SHIFT;
612
613         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
614         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
615
616         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
617         tim1 |= val << EMIF_REG_T_WR_SHIFT;
618
619         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
620         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
621
622         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
623         tim1 |= val << EMIF_REG_T_RP_SHIFT;
624
625         return tim1;
626 }
627
628 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
629                                const struct lpddr2_min_tck *min_tck)
630 {
631         u32 tim2 = 0, val = 0;
632         val = max(min_tck->tCKE, timings->tCKE) - 1;
633         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
634
635         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
636         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
637
638         /*
639          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
640          * same value
641          */
642         val = ns_2_cycles(timings->tXSR) - 1;
643         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
644         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
645
646         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
647         tim2 |= val << EMIF_REG_T_XP_SHIFT;
648
649         return tim2;
650 }
651
652 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
653                                const struct lpddr2_min_tck *min_tck,
654                                const struct lpddr2_addressing *addressing)
655 {
656         u32 tim3 = 0, val = 0;
657         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
658         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
659
660         val = ns_2_cycles(timings->tRFCab) - 1;
661         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
662
663         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
664         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
665
666         val = ns_2_cycles(timings->tZQCS) - 1;
667         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
668
669         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
670         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
671
672         return tim3;
673 }
674
675 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
676                              const struct lpddr2_addressing *addressing,
677                              u8 volt_ramp)
678 {
679         u32 zq = 0, val = 0;
680         if (volt_ramp)
681                 val =
682                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
683                     addressing->t_REFI_us_x10;
684         else
685                 val =
686                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
687                     addressing->t_REFI_us_x10;
688         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
689
690         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
691
692         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
693
694         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
695
696         /*
697          * Assuming that two chipselects have a single calibration resistor
698          * If there are indeed two calibration resistors, then this flag should
699          * be enabled to take advantage of dual calibration feature.
700          * This data should ideally come from board files. But considering
701          * that none of the boards today have calibration resistors per CS,
702          * it would be an unnecessary overhead.
703          */
704         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
705
706         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
707
708         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
709
710         return zq;
711 }
712
713 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
714                                  const struct lpddr2_addressing *addressing,
715                                  u8 is_derated)
716 {
717         u32 alert = 0, interval;
718         interval =
719             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
720         if (is_derated)
721                 interval *= 4;
722         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
723
724         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
725
726         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
727
728         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
729
730         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
731
732         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
733
734         return alert;
735 }
736
737 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
738 {
739         u32 idle = 0, val = 0;
740         if (volt_ramp)
741                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
742         else
743                 /*Maximum value in normal conditions - suggested by hw team */
744                 val = 0x1FF;
745         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
746
747         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
748
749         return idle;
750 }
751
752 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
753 {
754         u32 phy = 0, val = 0;
755
756         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
757
758         if (freq <= 100000000)
759                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
760         else if (freq <= 200000000)
761                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
762         else
763                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
764         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
765
766         /* Other fields are constant magic values. Hardcode them together */
767         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
768                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
769
770         return phy;
771 }
772
773 static u32 get_emif_mem_size(u32 base)
774 {
775         u32 size_mbytes = 0, temp;
776         struct emif_device_details dev_details;
777         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
778         u32 emif_nr = emif_num(base);
779
780         emif_reset_phy(base);
781         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
782                                                 &cs0_dev_details);
783         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
784                                                 &cs1_dev_details);
785         emif_reset_phy(base);
786
787         if (dev_details.cs0_device_details) {
788                 temp = dev_details.cs0_device_details->density;
789                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
790         }
791
792         if (dev_details.cs1_device_details) {
793                 temp = dev_details.cs1_device_details->density;
794                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
795         }
796         /* convert to bytes */
797         return size_mbytes << 20;
798 }
799
800 /* Gets the encoding corresponding to a given DMM section size */
801 u32 get_dmm_section_size_map(u32 section_size)
802 {
803         /*
804          * Section size mapping:
805          * 0x0: 16-MiB section
806          * 0x1: 32-MiB section
807          * 0x2: 64-MiB section
808          * 0x3: 128-MiB section
809          * 0x4: 256-MiB section
810          * 0x5: 512-MiB section
811          * 0x6: 1-GiB section
812          * 0x7: 2-GiB section
813          */
814         section_size >>= 24; /* divide by 16 MB */
815         return log_2_n_round_down(section_size);
816 }
817
818 static void emif_calculate_regs(
819                 const struct emif_device_details *emif_dev_details,
820                 u32 freq, struct emif_regs *regs)
821 {
822         u32 temp, sys_freq;
823         const struct lpddr2_addressing *addressing;
824         const struct lpddr2_ac_timings *timings;
825         const struct lpddr2_min_tck *min_tck;
826         const struct lpddr2_device_details *cs0_dev_details =
827                                         emif_dev_details->cs0_device_details;
828         const struct lpddr2_device_details *cs1_dev_details =
829                                         emif_dev_details->cs1_device_details;
830         const struct lpddr2_device_timings *cs0_dev_timings =
831                                         emif_dev_details->cs0_device_timings;
832
833         emif_assert(emif_dev_details);
834         emif_assert(regs);
835         /*
836          * You can not have a device on CS1 without one on CS0
837          * So configuring EMIF without a device on CS0 doesn't
838          * make sense
839          */
840         emif_assert(cs0_dev_details);
841         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
842         /*
843          * If there is a device on CS1 it should be same type as CS0
844          * (or NVM. But NVM is not supported in this driver yet)
845          */
846         emif_assert((cs1_dev_details == NULL) ||
847                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
848                     (cs0_dev_details->type == cs1_dev_details->type));
849         emif_assert(freq <= MAX_LPDDR2_FREQ);
850
851         set_ddr_clk_period(freq);
852
853         /*
854          * The device on CS0 is used for all timing calculations
855          * There is only one set of registers for timings per EMIF. So, if the
856          * second CS(CS1) has a device, it should have the same timings as the
857          * device on CS0
858          */
859         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
860         emif_assert(timings);
861         min_tck = cs0_dev_timings->min_tck;
862
863         temp = addressing_table_index(cs0_dev_details->type,
864                                       cs0_dev_details->density,
865                                       cs0_dev_details->io_width);
866
867         emif_assert((temp >= 0));
868         addressing = &(addressing_table[temp]);
869         emif_assert(addressing);
870
871         sys_freq = get_sys_clk_freq();
872
873         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
874                                                         cs1_dev_details,
875                                                         addressing, RL_BOOT);
876
877         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
878                                                 cs1_dev_details,
879                                                 addressing, RL_FINAL);
880
881         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
882
883         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
884
885         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
886
887         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
888
889         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
890
891         regs->temp_alert_config =
892             get_temp_alert_config(cs1_dev_details, addressing, 0);
893
894         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
895                                             LPDDR2_VOLTAGE_STABLE);
896
897         regs->emif_ddr_phy_ctlr_1_init =
898                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
899
900         regs->emif_ddr_phy_ctlr_1 =
901                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
902
903         regs->freq = freq;
904
905         print_timing_reg(regs->sdram_config_init);
906         print_timing_reg(regs->sdram_config);
907         print_timing_reg(regs->ref_ctrl);
908         print_timing_reg(regs->sdram_tim1);
909         print_timing_reg(regs->sdram_tim2);
910         print_timing_reg(regs->sdram_tim3);
911         print_timing_reg(regs->read_idle_ctrl);
912         print_timing_reg(regs->temp_alert_config);
913         print_timing_reg(regs->zq_config);
914         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
915         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
916 }
917 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
918
919 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
920 const char *get_lpddr2_type(u8 type_id)
921 {
922         switch (type_id) {
923         case LPDDR2_TYPE_S4:
924                 return "LPDDR2-S4";
925         case LPDDR2_TYPE_S2:
926                 return "LPDDR2-S2";
927         default:
928                 return NULL;
929         }
930 }
931
932 const char *get_lpddr2_io_width(u8 width_id)
933 {
934         switch (width_id) {
935         case LPDDR2_IO_WIDTH_8:
936                 return "x8";
937         case LPDDR2_IO_WIDTH_16:
938                 return "x16";
939         case LPDDR2_IO_WIDTH_32:
940                 return "x32";
941         default:
942                 return NULL;
943         }
944 }
945
946 const char *get_lpddr2_manufacturer(u32 manufacturer)
947 {
948         switch (manufacturer) {
949         case LPDDR2_MANUFACTURER_SAMSUNG:
950                 return "Samsung";
951         case LPDDR2_MANUFACTURER_QIMONDA:
952                 return "Qimonda";
953         case LPDDR2_MANUFACTURER_ELPIDA:
954                 return "Elpida";
955         case LPDDR2_MANUFACTURER_ETRON:
956                 return "Etron";
957         case LPDDR2_MANUFACTURER_NANYA:
958                 return "Nanya";
959         case LPDDR2_MANUFACTURER_HYNIX:
960                 return "Hynix";
961         case LPDDR2_MANUFACTURER_MOSEL:
962                 return "Mosel";
963         case LPDDR2_MANUFACTURER_WINBOND:
964                 return "Winbond";
965         case LPDDR2_MANUFACTURER_ESMT:
966                 return "ESMT";
967         case LPDDR2_MANUFACTURER_SPANSION:
968                 return "Spansion";
969         case LPDDR2_MANUFACTURER_SST:
970                 return "SST";
971         case LPDDR2_MANUFACTURER_ZMOS:
972                 return "ZMOS";
973         case LPDDR2_MANUFACTURER_INTEL:
974                 return "Intel";
975         case LPDDR2_MANUFACTURER_NUMONYX:
976                 return "Numonyx";
977         case LPDDR2_MANUFACTURER_MICRON:
978                 return "Micron";
979         default:
980                 return NULL;
981         }
982 }
983
984 static void display_sdram_details(u32 emif_nr, u32 cs,
985                                   struct lpddr2_device_details *device)
986 {
987         const char *mfg_str;
988         const char *type_str;
989         char density_str[10];
990         u32 density;
991
992         debug("EMIF%d CS%d\t", emif_nr, cs);
993
994         if (!device) {
995                 debug("None\n");
996                 return;
997         }
998
999         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1000         type_str = get_lpddr2_type(device->type);
1001
1002         density = lpddr2_density_2_size_in_mbytes[device->density];
1003         if ((density / 1024 * 1024) == density) {
1004                 density /= 1024;
1005                 sprintf(density_str, "%d GB", density);
1006         } else
1007                 sprintf(density_str, "%d MB", density);
1008         if (mfg_str && type_str)
1009                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1010 }
1011
1012 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1013                                   struct lpddr2_device_details *lpddr2_device)
1014 {
1015         u32 mr = 0, temp;
1016
1017         mr = get_mr(base, cs, LPDDR2_MR0);
1018         if (mr > 0xFF) {
1019                 /* Mode register value bigger than 8 bit */
1020                 return 0;
1021         }
1022
1023         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1024         if (temp) {
1025                 /* Not SDRAM */
1026                 return 0;
1027         }
1028         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1029
1030         if (temp) {
1031                 /* DNV supported - But DNV is only supported for NVM */
1032                 return 0;
1033         }
1034
1035         mr = get_mr(base, cs, LPDDR2_MR4);
1036         if (mr > 0xFF) {
1037                 /* Mode register value bigger than 8 bit */
1038                 return 0;
1039         }
1040
1041         mr = get_mr(base, cs, LPDDR2_MR5);
1042         if (mr > 0xFF) {
1043                 /* Mode register value bigger than 8 bit */
1044                 return 0;
1045         }
1046
1047         if (!get_lpddr2_manufacturer(mr)) {
1048                 /* Manufacturer not identified */
1049                 return 0;
1050         }
1051         lpddr2_device->manufacturer = mr;
1052
1053         mr = get_mr(base, cs, LPDDR2_MR6);
1054         if (mr >= 0xFF) {
1055                 /* Mode register value bigger than 8 bit */
1056                 return 0;
1057         }
1058
1059         mr = get_mr(base, cs, LPDDR2_MR7);
1060         if (mr >= 0xFF) {
1061                 /* Mode register value bigger than 8 bit */
1062                 return 0;
1063         }
1064
1065         mr = get_mr(base, cs, LPDDR2_MR8);
1066         if (mr >= 0xFF) {
1067                 /* Mode register value bigger than 8 bit */
1068                 return 0;
1069         }
1070
1071         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1072         if (!get_lpddr2_type(temp)) {
1073                 /* Not SDRAM */
1074                 return 0;
1075         }
1076         lpddr2_device->type = temp;
1077
1078         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1079         if (temp > LPDDR2_DENSITY_32Gb) {
1080                 /* Density not supported */
1081                 return 0;
1082         }
1083         lpddr2_device->density = temp;
1084
1085         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1086         if (!get_lpddr2_io_width(temp)) {
1087                 /* IO width unsupported value */
1088                 return 0;
1089         }
1090         lpddr2_device->io_width = temp;
1091
1092         /*
1093          * If all the above tests pass we should
1094          * have a device on this chip-select
1095          */
1096         return 1;
1097 }
1098
1099 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1100                         struct lpddr2_device_details *lpddr2_dev_details)
1101 {
1102         u32 phy;
1103         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1104
1105         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1106
1107         if (!lpddr2_dev_details)
1108                 return NULL;
1109
1110         /* Do the minimum init for mode register accesses */
1111         if (!(running_from_sdram() || warm_reset())) {
1112                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1113                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1114         }
1115
1116         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1117                 return NULL;
1118
1119         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1120
1121         return lpddr2_dev_details;
1122 }
1123 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1124
1125 static void do_sdram_init(u32 base)
1126 {
1127         const struct emif_regs *regs;
1128         u32 in_sdram, emif_nr;
1129
1130         debug(">>do_sdram_init() %x\n", base);
1131
1132         in_sdram = running_from_sdram();
1133         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1134
1135 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1136         emif_get_reg_dump(emif_nr, &regs);
1137         if (!regs) {
1138                 debug("EMIF: reg dump not provided\n");
1139                 return;
1140         }
1141 #else
1142         /*
1143          * The user has not provided the register values. We need to
1144          * calculate it based on the timings and the DDR frequency
1145          */
1146         struct emif_device_details dev_details;
1147         struct emif_regs calculated_regs;
1148
1149         /*
1150          * Get device details:
1151          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1152          * - Obtained from user otherwise
1153          */
1154         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1155         emif_reset_phy(base);
1156         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1157                                                 &cs0_dev_details);
1158         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1159                                                 &cs1_dev_details);
1160         emif_reset_phy(base);
1161
1162         /* Return if no devices on this EMIF */
1163         if (!dev_details.cs0_device_details &&
1164             !dev_details.cs1_device_details) {
1165                 return;
1166         }
1167
1168         /*
1169          * Get device timings:
1170          * - Default timings specified by JESD209-2 if
1171          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1172          * - Obtained from user otherwise
1173          */
1174         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1175                                 &dev_details.cs1_device_timings);
1176
1177         /* Calculate the register values */
1178         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1179         regs = &calculated_regs;
1180 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1181
1182         /*
1183          * Initializing the DDR device can not happen from SDRAM.
1184          * Changing the timing registers in EMIF can happen(going from one
1185          * OPP to another)
1186          */
1187         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1188                 if (emif_sdram_type(regs->sdram_config) ==
1189                     EMIF_SDRAM_TYPE_LPDDR2)
1190                         lpddr2_init(base, regs);
1191 #ifndef CONFIG_OMAP44XX
1192                 else
1193                         ddr3_init(base, regs);
1194 #endif
1195         }
1196 #ifdef CONFIG_OMAP54X
1197         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1198             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1199                 set_lpmode_selfrefresh(base);
1200                 emif_reset_phy(base);
1201                 omap5_ddr3_leveling(base, regs);
1202         }
1203 #endif
1204
1205         /* Write to the shadow registers */
1206         emif_update_timings(base, regs);
1207
1208         debug("<<do_sdram_init() %x\n", base);
1209 }
1210
1211 void emif_post_init_config(u32 base)
1212 {
1213         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1214         u32 omap_rev = omap_revision();
1215
1216         /* reset phy on ES2.0 */
1217         if (omap_rev == OMAP4430_ES2_0)
1218                 emif_reset_phy(base);
1219
1220         /* Put EMIF back in smart idle on ES1.0 */
1221         if (omap_rev == OMAP4430_ES1_0)
1222                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1223 }
1224
1225 void dmm_init(u32 base)
1226 {
1227         const struct dmm_lisa_map_regs *lisa_map_regs;
1228         u32 i, section, valid;
1229
1230 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1231         emif_get_dmm_regs(&lisa_map_regs);
1232 #else
1233         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1234         u32 section_cnt, sys_addr;
1235         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1236
1237         mapped_size = 0;
1238         section_cnt = 3;
1239         sys_addr = CONFIG_SYS_SDRAM_BASE;
1240         emif1_size = get_emif_mem_size(EMIF1_BASE);
1241         emif2_size = get_emif_mem_size(EMIF2_BASE);
1242         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1243
1244         if (!emif1_size && !emif2_size)
1245                 return;
1246
1247         /* symmetric interleaved section */
1248         if (emif1_size && emif2_size) {
1249                 mapped_size = min(emif1_size, emif2_size);
1250                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1251                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1252                 /* only MSB */
1253                 section_map |= (sys_addr >> 24) <<
1254                                 EMIF_SYS_ADDR_SHIFT;
1255                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1256                                 << EMIF_SYS_SIZE_SHIFT;
1257                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1258                 emif1_size -= mapped_size;
1259                 emif2_size -= mapped_size;
1260                 sys_addr += (mapped_size * 2);
1261                 section_cnt--;
1262         }
1263
1264         /*
1265          * Single EMIF section(we can have a maximum of 1 single EMIF
1266          * section- either EMIF1 or EMIF2 or none, but not both)
1267          */
1268         if (emif1_size) {
1269                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1270                 section_map |= get_dmm_section_size_map(emif1_size)
1271                                 << EMIF_SYS_SIZE_SHIFT;
1272                 /* only MSB */
1273                 section_map |= (mapped_size >> 24) <<
1274                                 EMIF_SDRC_ADDR_SHIFT;
1275                 /* only MSB */
1276                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1277                 section_cnt--;
1278         }
1279         if (emif2_size) {
1280                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1281                 section_map |= get_dmm_section_size_map(emif2_size) <<
1282                                 EMIF_SYS_SIZE_SHIFT;
1283                 /* only MSB */
1284                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1285                 /* only MSB */
1286                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1287                 section_cnt--;
1288         }
1289
1290         if (section_cnt == 2) {
1291                 /* Only 1 section - either symmetric or single EMIF */
1292                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1293                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1294                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1295         } else {
1296                 /* 2 sections - 1 symmetric, 1 single EMIF */
1297                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1298                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1299         }
1300
1301         /* TRAP for invalid TILER mappings in section 0 */
1302         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1303
1304         if (omap_revision() >= OMAP4460_ES1_0)
1305                 lis_map_regs_calculated.is_ma_present = 1;
1306
1307         lisa_map_regs = &lis_map_regs_calculated;
1308 #endif
1309         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1310             (struct dmm_lisa_map_regs *)base;
1311
1312         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1313         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1314         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1315         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1316
1317         writel(lisa_map_regs->dmm_lisa_map_3,
1318                 &hw_lisa_map_regs->dmm_lisa_map_3);
1319         writel(lisa_map_regs->dmm_lisa_map_2,
1320                 &hw_lisa_map_regs->dmm_lisa_map_2);
1321         writel(lisa_map_regs->dmm_lisa_map_1,
1322                 &hw_lisa_map_regs->dmm_lisa_map_1);
1323         writel(lisa_map_regs->dmm_lisa_map_0,
1324                 &hw_lisa_map_regs->dmm_lisa_map_0);
1325
1326         if (lisa_map_regs->is_ma_present) {
1327                 hw_lisa_map_regs =
1328                     (struct dmm_lisa_map_regs *)MA_BASE;
1329
1330                 writel(lisa_map_regs->dmm_lisa_map_3,
1331                         &hw_lisa_map_regs->dmm_lisa_map_3);
1332                 writel(lisa_map_regs->dmm_lisa_map_2,
1333                         &hw_lisa_map_regs->dmm_lisa_map_2);
1334                 writel(lisa_map_regs->dmm_lisa_map_1,
1335                         &hw_lisa_map_regs->dmm_lisa_map_1);
1336                 writel(lisa_map_regs->dmm_lisa_map_0,
1337                         &hw_lisa_map_regs->dmm_lisa_map_0);
1338
1339                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1340         }
1341
1342         /*
1343          * EMIF should be configured only when
1344          * memory is mapped on it. Using emif1_enabled
1345          * and emif2_enabled variables for this.
1346          */
1347         emif1_enabled = 0;
1348         emif2_enabled = 0;
1349         for (i = 0; i < 4; i++) {
1350                 section = __raw_readl(DMM_BASE + i*4);
1351                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1352                         (EMIF_SDRC_MAP_SHIFT);
1353                 if (valid == 3) {
1354                         emif1_enabled = 1;
1355                         emif2_enabled = 1;
1356                         break;
1357                 }
1358
1359                 if (valid == 1)
1360                         emif1_enabled = 1;
1361
1362                 if (valid == 2)
1363                         emif2_enabled = 1;
1364         }
1365 }
1366
1367 static void do_bug0039_workaround(u32 base)
1368 {
1369         u32 val, i, clkctrl;
1370         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1371         const struct read_write_regs *bug_00339_regs;
1372         u32 iterations;
1373         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1374         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1375
1376         if (is_dra7xx())
1377                 phy_status_base++;
1378
1379         bug_00339_regs = get_bug_regs(&iterations);
1380
1381         /* Put EMIF in to idle */
1382         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1383         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1384
1385         /* Copy the phy status registers in to phy ctrl shadow registers */
1386         for (i = 0; i < iterations; i++) {
1387                 val = __raw_readl(phy_status_base +
1388                                   bug_00339_regs[i].read_reg - 1);
1389
1390                 __raw_writel(val, phy_ctrl_base +
1391                              ((bug_00339_regs[i].write_reg - 1) << 1));
1392
1393                 __raw_writel(val, phy_ctrl_base +
1394                              (bug_00339_regs[i].write_reg << 1) - 1);
1395         }
1396
1397         /* Disable leveling */
1398         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1399
1400         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1401 }
1402
1403 /*
1404  * SDRAM initialization:
1405  * SDRAM initialization has two parts:
1406  * 1. Configuring the SDRAM device
1407  * 2. Update the AC timings related parameters in the EMIF module
1408  * (1) should be done only once and should not be done while we are
1409  * running from SDRAM.
1410  * (2) can and should be done more than once if OPP changes.
1411  * Particularly, this may be needed when we boot without SPL and
1412  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1413  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1414  * the frequency. So,
1415  * Doing (1) and (2) makes sense - first time initialization
1416  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1417  * Doing (1) and not (2) doen't make sense
1418  * See do_sdram_init() for the details
1419  */
1420 void sdram_init(void)
1421 {
1422         u32 in_sdram, size_prog, size_detect;
1423         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1424         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1425
1426         debug(">>sdram_init()\n");
1427
1428         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1429                 return;
1430
1431         in_sdram = running_from_sdram();
1432         debug("in_sdram = %d\n", in_sdram);
1433
1434         if (!in_sdram) {
1435                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1436                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1437                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1438                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1439         }
1440
1441         if (!in_sdram)
1442                 dmm_init(DMM_BASE);
1443
1444         if (emif1_enabled)
1445                 do_sdram_init(EMIF1_BASE);
1446
1447         if (emif2_enabled)
1448                 do_sdram_init(EMIF2_BASE);
1449
1450         if (!(in_sdram || warm_reset())) {
1451                 if (emif1_enabled)
1452                         emif_post_init_config(EMIF1_BASE);
1453                 if (emif2_enabled)
1454                         emif_post_init_config(EMIF2_BASE);
1455         }
1456
1457         /* for the shadow registers to take effect */
1458         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1459                 freq_update_core();
1460
1461         /* Do some testing after the init */
1462         if (!in_sdram) {
1463                 size_prog = omap_sdram_size();
1464                 size_prog = log_2_n_round_down(size_prog);
1465                 size_prog = (1 << size_prog);
1466
1467                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1468                                                 size_prog);
1469                 /* Compare with the size programmed */
1470                 if (size_detect != size_prog) {
1471                         printf("SDRAM: identified size not same as expected"
1472                                 " size identified: %x expected: %x\n",
1473                                 size_detect,
1474                                 size_prog);
1475                 } else
1476                         debug("get_ram_size() successful");
1477         }
1478
1479         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1480             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1481                 if (emif1_enabled)
1482                         do_bug0039_workaround(EMIF1_BASE);
1483                 if (emif2_enabled)
1484                         do_bug0039_workaround(EMIF2_BASE);
1485         }
1486
1487         debug("<<sdram_init()\n");
1488 }