]> git.sur5r.net Git - u-boot/blob - arch/arm/cpu/armv8/fsl-layerscape/mp.c
armv8: fsl-layerscape: SMP support for loading 32-bit OS
[u-boot] / arch / arm / cpu / armv8 / fsl-layerscape / mp.c
1 /*
2  * Copyright 2014-2015 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/system.h>
10 #include <asm/arch/mp.h>
11 #include <asm/arch/soc.h>
12 #include "cpu.h"
13 #include <asm/arch-fsl-layerscape/soc.h>
14
15 DECLARE_GLOBAL_DATA_PTR;
16
17 void *get_spin_tbl_addr(void)
18 {
19         return &__spin_table;
20 }
21
22 phys_addr_t determine_mp_bootpg(void)
23 {
24         return (phys_addr_t)&secondary_boot_code;
25 }
26
27 void update_os_arch_secondary_cores(uint8_t os_arch)
28 {
29         u64 *table = get_spin_tbl_addr();
30         int i;
31
32         for (i = 1; i < CONFIG_MAX_CPUS; i++)
33                 table[i * WORDS_PER_SPIN_TABLE_ENTRY +
34                         SPIN_TABLE_ELEM_OS_ARCH_IDX] = os_arch;
35 }
36
37 #ifdef CONFIG_FSL_LSCH3
38 void wake_secondary_core_n(int cluster, int core, int cluster_cores)
39 {
40         struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
41         struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
42         u32 mpidr = 0;
43
44         mpidr = ((cluster << 8) | core);
45         /*
46          * mpidr_el1 register value of core which needs to be released
47          * is written to scratchrw[6] register
48          */
49         gur_out32(&gur->scratchrw[6], mpidr);
50         asm volatile("dsb st" : : : "memory");
51         rst->brrl |= 1 << ((cluster * cluster_cores) + core);
52         asm volatile("dsb st" : : : "memory");
53         /*
54          * scratchrw[6] register value is polled
55          * when the value becomes zero, this means that this core is up
56          * and running, next core can be released now
57          */
58         while (gur_in32(&gur->scratchrw[6]) != 0)
59                 ;
60 }
61 #endif
62
63 int fsl_layerscape_wake_seconday_cores(void)
64 {
65         struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
66 #ifdef CONFIG_FSL_LSCH3
67         struct ccsr_reset __iomem *rst = (void *)(CONFIG_SYS_FSL_RST_ADDR);
68         u32 svr, ver, cluster, type;
69         int j = 0, cluster_cores = 0;
70 #elif defined(CONFIG_FSL_LSCH2)
71         struct ccsr_scfg __iomem *scfg = (void *)(CONFIG_SYS_FSL_SCFG_ADDR);
72 #endif
73         u32 cores, cpu_up_mask = 1;
74         int i, timeout = 10;
75         u64 *table = get_spin_tbl_addr();
76
77 #ifdef COUNTER_FREQUENCY_REAL
78         /* update for secondary cores */
79         __real_cntfrq = COUNTER_FREQUENCY_REAL;
80         flush_dcache_range((unsigned long)&__real_cntfrq,
81                            (unsigned long)&__real_cntfrq + 8);
82 #endif
83
84         cores = cpu_mask();
85         /* Clear spin table so that secondary processors
86          * observe the correct value after waking up from wfe.
87          */
88         memset(table, 0, CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE);
89         flush_dcache_range((unsigned long)table,
90                            (unsigned long)table +
91                            (CONFIG_MAX_CPUS*SPIN_TABLE_ELEM_SIZE));
92
93         printf("Waking secondary cores to start from %lx\n", gd->relocaddr);
94
95 #ifdef CONFIG_FSL_LSCH3
96         gur_out32(&gur->bootlocptrh, (u32)(gd->relocaddr >> 32));
97         gur_out32(&gur->bootlocptrl, (u32)gd->relocaddr);
98
99         svr = gur_in32(&gur->svr);
100         ver = SVR_SOC_VER(svr);
101         if (ver == SVR_LS2080A || ver == SVR_LS2085A) {
102                 gur_out32(&gur->scratchrw[6], 1);
103                 asm volatile("dsb st" : : : "memory");
104                 rst->brrl = cores;
105                 asm volatile("dsb st" : : : "memory");
106         } else {
107                 /*
108                  * Release the cores out of reset one-at-a-time to avoid
109                  * power spikes
110                  */
111                 i = 0;
112                 cluster = in_le32(&gur->tp_cluster[i].lower);
113                 for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
114                         type = initiator_type(cluster, j);
115                         if (type &&
116                             TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
117                                 cluster_cores++;
118                 }
119
120                 do {
121                         cluster = in_le32(&gur->tp_cluster[i].lower);
122                         for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
123                                 type = initiator_type(cluster, j);
124                                 if (type &&
125                                     TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
126                                         wake_secondary_core_n(i, j,
127                                                               cluster_cores);
128                         }
129                 i++;
130                 } while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
131         }
132 #elif defined(CONFIG_FSL_LSCH2)
133         scfg_out32(&scfg->scratchrw[0], (u32)(gd->relocaddr >> 32));
134         scfg_out32(&scfg->scratchrw[1], (u32)gd->relocaddr);
135         asm volatile("dsb st" : : : "memory");
136         gur_out32(&gur->brrl, cores);
137         asm volatile("dsb st" : : : "memory");
138
139         /* Bootup online cores */
140         scfg_out32(&scfg->corebcr, cores);
141 #endif
142         /* This is needed as a precautionary measure.
143          * If some code before this has accidentally  released the secondary
144          * cores then the pre-bootloader code will trap them in a "wfe" unless
145          * the scratchrw[6] is set. In this case we need a sev here to get these
146          * cores moving again.
147          */
148         asm volatile("sev");
149
150         while (timeout--) {
151                 flush_dcache_range((unsigned long)table, (unsigned long)table +
152                                    CONFIG_MAX_CPUS * 64);
153                 for (i = 1; i < CONFIG_MAX_CPUS; i++) {
154                         if (table[i * WORDS_PER_SPIN_TABLE_ENTRY +
155                                         SPIN_TABLE_ELEM_STATUS_IDX])
156                                 cpu_up_mask |= 1 << i;
157                 }
158                 if (hweight32(cpu_up_mask) == hweight32(cores))
159                         break;
160                 udelay(10);
161         }
162         if (timeout <= 0) {
163                 printf("Not all cores (0x%x) are up (0x%x)\n",
164                        cores, cpu_up_mask);
165                 return 1;
166         }
167         printf("All (%d) cores are up.\n", hweight32(cores));
168
169         return 0;
170 }
171
172 int is_core_valid(unsigned int core)
173 {
174         return !!((1 << core) & cpu_mask());
175 }
176
177 static int is_pos_valid(unsigned int pos)
178 {
179         return !!((1 << pos) & cpu_pos_mask());
180 }
181
182 int is_core_online(u64 cpu_id)
183 {
184         u64 *table;
185         int pos = id_to_core(cpu_id);
186         table = (u64 *)get_spin_tbl_addr() + pos * WORDS_PER_SPIN_TABLE_ENTRY;
187         return table[SPIN_TABLE_ELEM_STATUS_IDX] == 1;
188 }
189
190 int cpu_reset(int nr)
191 {
192         puts("Feature is not implemented.\n");
193
194         return 0;
195 }
196
197 int cpu_disable(int nr)
198 {
199         puts("Feature is not implemented.\n");
200
201         return 0;
202 }
203
204 static int core_to_pos(int nr)
205 {
206         u32 cores = cpu_pos_mask();
207         int i, count = 0;
208
209         if (nr == 0) {
210                 return 0;
211         } else if (nr >= hweight32(cores)) {
212                 puts("Not a valid core number.\n");
213                 return -1;
214         }
215
216         for (i = 1; i < 32; i++) {
217                 if (is_pos_valid(i)) {
218                         count++;
219                         if (count == nr)
220                                 break;
221                 }
222         }
223
224         if (count != nr)
225                 return -1;
226
227         return i;
228 }
229
230 int cpu_status(int nr)
231 {
232         u64 *table;
233         int pos;
234
235         if (nr == 0) {
236                 table = (u64 *)get_spin_tbl_addr();
237                 printf("table base @ 0x%p\n", table);
238         } else {
239                 pos = core_to_pos(nr);
240                 if (pos < 0)
241                         return -1;
242                 table = (u64 *)get_spin_tbl_addr() + pos *
243                         WORDS_PER_SPIN_TABLE_ENTRY;
244                 printf("table @ 0x%p\n", table);
245                 printf("   addr - 0x%016llx\n",
246                        table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX]);
247                 printf("   status   - 0x%016llx\n",
248                        table[SPIN_TABLE_ELEM_STATUS_IDX]);
249                 printf("   lpid  - 0x%016llx\n",
250                        table[SPIN_TABLE_ELEM_LPID_IDX]);
251         }
252
253         return 0;
254 }
255
256 int cpu_release(int nr, int argc, char * const argv[])
257 {
258         u64 boot_addr;
259         u64 *table = (u64 *)get_spin_tbl_addr();
260         int pos;
261
262         pos = core_to_pos(nr);
263         if (pos <= 0)
264                 return -1;
265
266         table += pos * WORDS_PER_SPIN_TABLE_ENTRY;
267         boot_addr = simple_strtoull(argv[0], NULL, 16);
268         table[SPIN_TABLE_ELEM_ENTRY_ADDR_IDX] = boot_addr;
269         flush_dcache_range((unsigned long)table,
270                            (unsigned long)table + SPIN_TABLE_ELEM_SIZE);
271         asm volatile("dsb st");
272         smp_kick_all_cpus();    /* only those with entry addr set will run */
273         /*
274          * When the first release command runs, all cores are set to go. Those
275          * without a valid entry address will be trapped by "wfe". "sev" kicks
276          * them off to check the address again. When set, they continue to run.
277          */
278         asm volatile("sev");
279
280         return 0;
281 }