]> git.sur5r.net Git - u-boot/blob - arch/arm/mach-omap2/emif-common.c
arm: add support for PDU001
[u-boot] / arch / arm / mach-omap2 / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/omap_sec_common.h>
18 #include <asm/utils.h>
19 #include <linux/compiler.h>
20 #include <asm/ti-common/ti-edma3.h>
21
22 static int emif1_enabled = -1, emif2_enabled = -1;
23
24 void set_lpmode_selfrefresh(u32 base)
25 {
26         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
27         u32 reg;
28
29         reg = readl(&emif->emif_pwr_mgmt_ctrl);
30         reg &= ~EMIF_REG_LP_MODE_MASK;
31         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
32         reg &= ~EMIF_REG_SR_TIM_MASK;
33         writel(reg, &emif->emif_pwr_mgmt_ctrl);
34
35         /* dummy read for the new SR_TIM to be loaded */
36         readl(&emif->emif_pwr_mgmt_ctrl);
37 }
38
39 void force_emif_self_refresh()
40 {
41         set_lpmode_selfrefresh(EMIF1_BASE);
42         if (!is_dra72x())
43                 set_lpmode_selfrefresh(EMIF2_BASE);
44 }
45
46 inline u32 emif_num(u32 base)
47 {
48         if (base == EMIF1_BASE)
49                 return 1;
50         else if (base == EMIF2_BASE)
51                 return 2;
52         else
53                 return 0;
54 }
55
56 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
57 {
58         u32 mr;
59         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
60
61         mr_addr |= cs << EMIF_REG_CS_SHIFT;
62         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
63         if (omap_revision() == OMAP4430_ES2_0)
64                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
65         else
66                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
67         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
68               cs, mr_addr, mr);
69         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
70             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
71             ((mr & 0xff000000) >> 24) == (mr & 0xff))
72                 return mr & 0xff;
73         else
74                 return mr;
75 }
76
77 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
78 {
79         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
80
81         mr_addr |= cs << EMIF_REG_CS_SHIFT;
82         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
83         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
84 }
85
86 void emif_reset_phy(u32 base)
87 {
88         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
89         u32 iodft;
90
91         iodft = readl(&emif->emif_iodft_tlgc);
92         iodft |= EMIF_REG_RESET_PHY_MASK;
93         writel(iodft, &emif->emif_iodft_tlgc);
94 }
95
96 static void do_lpddr2_init(u32 base, u32 cs)
97 {
98         u32 mr_addr;
99         const struct lpddr2_mr_regs *mr_regs;
100
101         get_lpddr2_mr_regs(&mr_regs);
102         /* Wait till device auto initialization is complete */
103         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
104                 ;
105         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
106         /*
107          * tZQINIT = 1 us
108          * Enough loops assuming a maximum of 2GHz
109          */
110
111         sdelay(2000);
112
113         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
114         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
115
116         /*
117          * Enable refresh along with writing MR2
118          * Encoding of RL in MR2 is (RL - 2)
119          */
120         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
121         set_mr(base, cs, mr_addr, mr_regs->mr2);
122
123         if (mr_regs->mr3 > 0)
124                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
125 }
126
127 static void lpddr2_init(u32 base, const struct emif_regs *regs)
128 {
129         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
130
131         /* Not NVM */
132         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
133
134         /*
135          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
136          * when EMIF_SDRAM_CONFIG register is written
137          */
138         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
139
140         /*
141          * Set the SDRAM_CONFIG and PHY_CTRL for the
142          * un-locked frequency & default RL
143          */
144         writel(regs->sdram_config_init, &emif->emif_sdram_config);
145         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
146
147         do_ext_phy_settings(base, regs);
148
149         do_lpddr2_init(base, CS0);
150         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
151                 do_lpddr2_init(base, CS1);
152
153         writel(regs->sdram_config, &emif->emif_sdram_config);
154         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
155
156         /* Enable refresh now */
157         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
158
159         }
160
161 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
162 {
163 }
164
165 void emif_update_timings(u32 base, const struct emif_regs *regs)
166 {
167         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
168
169         if (!is_dra7xx())
170                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
171         else
172                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
173
174         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
175         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
176         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
177         if (omap_revision() == OMAP4430_ES1_0) {
178                 /* ES1 bug EMIF should be in force idle during freq_update */
179                 writel(0, &emif->emif_pwr_mgmt_ctrl);
180         } else {
181                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
182                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
183         }
184         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
185         writel(regs->zq_config, &emif->emif_zq_config);
186         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
187         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
188
189         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
190                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
191                         &emif->emif_l3_config);
192         } else if (omap_revision() >= OMAP4460_ES1_0) {
193                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
194                         &emif->emif_l3_config);
195         } else {
196                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
197                         &emif->emif_l3_config);
198         }
199 }
200
201 #ifndef CONFIG_OMAP44XX
202 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
203 {
204         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
205
206         /* keep sdram in self-refresh */
207         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
208                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
209         __udelay(130);
210
211         /*
212          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
213          * Invert clock adds an additional half cycle delay on the
214          * command interface.  The additional half cycle, is usually
215          * meant to enable leveling in the situation that DQS is later
216          * than CK on the board.It also helps provide some additional
217          * margin for leveling.
218          */
219         writel(regs->emif_ddr_phy_ctlr_1,
220                &emif->emif_ddr_phy_ctrl_1);
221
222         writel(regs->emif_ddr_phy_ctlr_1,
223                &emif->emif_ddr_phy_ctrl_1_shdw);
224         __udelay(130);
225
226         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
227                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
228
229         /* Launch Full leveling */
230         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
231
232         /* Wait till full leveling is complete */
233         readl(&emif->emif_rd_wr_lvl_ctl);
234               __udelay(130);
235
236         /* Read data eye leveling no of samples */
237         config_data_eye_leveling_samples(base);
238
239         /*
240          * Launch 8 incremental WR_LVL- to compensate for
241          * PHY limitation.
242          */
243         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
244                &emif->emif_rd_wr_lvl_ctl);
245
246         __udelay(130);
247
248         /* Launch Incremental leveling */
249         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
250                __udelay(130);
251 }
252
253 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
254 {
255         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
256         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
257         u32 reg, i, phy;
258
259         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
260         phy = readl(&emif->emif_ddr_phy_ctrl_1);
261
262         /* Update PHY_REG_RDDQS_RATIO */
263         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
264         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
265                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
266                         reg = readl(emif_phy_status++);
267                         writel(reg, emif_ext_phy_ctrl_reg++);
268                         writel(reg, emif_ext_phy_ctrl_reg++);
269                 }
270
271         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
272         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
273         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
274         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
275                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
276                         reg = readl(emif_phy_status++);
277                         writel(reg, emif_ext_phy_ctrl_reg++);
278                         writel(reg, emif_ext_phy_ctrl_reg++);
279                 }
280
281         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
282         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
283         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
284         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
285                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
286                         reg = readl(emif_phy_status++);
287                         writel(reg, emif_ext_phy_ctrl_reg++);
288                         writel(reg, emif_ext_phy_ctrl_reg++);
289                 }
290
291         /* Disable Leveling */
292         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
293         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
294         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
295 }
296
297 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
298 {
299         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
300
301         /* Clear Error Status */
302         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
303                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
304                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
305
306         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
307                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
308                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
309
310         /* Disable refreshed before leveling */
311         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
312                         EMIF_REG_INITREF_DIS_MASK);
313
314         /* Start Full leveling */
315         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
316
317         __udelay(300);
318
319         /* Check for leveling timeout */
320         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
321                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
322                 return;
323         }
324
325         /* Enable refreshes after leveling */
326         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
327
328         debug("HW leveling success\n");
329         /*
330          * Update slave ratios in EXT_PHY_CTRLx registers
331          * as per HW leveling output
332          */
333         update_hwleveling_output(base, regs);
334 }
335
336 static void dra7_reset_ddr_data(u32 base, u32 size)
337 {
338 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
339         enable_edma3_clocks();
340
341         edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
342
343         disable_edma3_clocks();
344 #else
345         memset((void *)base, 0, size);
346 #endif
347 }
348
349 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
350 {
351         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
352         u32 rgn, size;
353
354         /* ECC available only on dra76x EMIF1 */
355         if ((base != EMIF1_BASE) || !is_dra76x())
356                 return;
357
358         if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
359                 writel(regs->emif_ecc_address_range_1,
360                        &emif->emif_ecc_address_range_1);
361                 writel(regs->emif_ecc_address_range_2,
362                        &emif->emif_ecc_address_range_2);
363                 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
364
365                 /* Set region1 memory with 0 */
366                 rgn = ((regs->emif_ecc_address_range_1 &
367                         EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
368                        CONFIG_SYS_SDRAM_BASE;
369                 size = (regs->emif_ecc_address_range_1 &
370                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
371
372                 if (regs->emif_ecc_ctrl_reg &
373                     EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
374                         dra7_reset_ddr_data(rgn, size);
375
376                 /* Set region2 memory with 0 */
377                 rgn = ((regs->emif_ecc_address_range_2 &
378                         EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16) +
379                        CONFIG_SYS_SDRAM_BASE;
380                 size = (regs->emif_ecc_address_range_2 &
381                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000;
382
383                 if (regs->emif_ecc_ctrl_reg &
384                     EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
385                         dra7_reset_ddr_data(rgn, size);
386
387 #ifdef CONFIG_DRA7XX
388                 /* Clear the status flags and other history */
389                 writel(readl(&emif->emif_1b_ecc_err_cnt),
390                        &emif->emif_1b_ecc_err_cnt);
391                 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
392                 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
393                 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
394                        EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
395                        EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
396                        &emif->emif_irqstatus_sys);
397 #endif
398         }
399 }
400
401 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
402 {
403         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
404
405         if (warm_reset()) {
406                 emif_reset_phy(base);
407                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
408         }
409         do_ext_phy_settings(base, regs);
410
411         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
412                &emif->emif_sdram_ref_ctrl);
413         /* Update timing registers */
414         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
415         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
416         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
417
418         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
419         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
420         writel(regs->zq_config, &emif->emif_zq_config);
421         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
422         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
423         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
424
425         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
426         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
427
428         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
429
430         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
431         writel(regs->sdram_config_init, &emif->emif_sdram_config);
432
433         __udelay(1000);
434
435         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
436
437         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
438                 /*
439                  * Perform Dummy ECC setup just to allow hardware
440                  * leveling of ECC memories
441                  */
442                 if (is_dra76x() && (base == EMIF1_BASE) &&
443                     (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
444                         writel(0, &emif->emif_ecc_address_range_1);
445                         writel(0, &emif->emif_ecc_address_range_2);
446                         writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
447                                EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
448                                &emif->emif_ecc_ctrl_reg);
449                 }
450
451                 dra7_ddr3_leveling(base, regs);
452
453                 /* Disable ECC */
454                 if (is_dra76x())
455                         writel(0, &emif->emif_ecc_ctrl_reg);
456         }
457
458         /* Enable ECC as necessary */
459         dra7_enable_ecc(base, regs);
460 }
461
462 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
463 {
464         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
465
466         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
467         writel(regs->sdram_config_init, &emif->emif_sdram_config);
468         /*
469          * Set SDRAM_CONFIG and PHY control registers to locked frequency
470          * and RL =7. As the default values of the Mode Registers are not
471          * defined, contents of mode Registers must be fully initialized.
472          * H/W takes care of this initialization
473          */
474         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
475
476         /* Update timing registers */
477         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
478         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
479         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
480
481         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
482
483         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
484         writel(regs->sdram_config_init, &emif->emif_sdram_config);
485         do_ext_phy_settings(base, regs);
486
487         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
488         omap5_ddr3_leveling(base, regs);
489 }
490
491 static void ddr3_init(u32 base, const struct emif_regs *regs)
492 {
493         if (is_omap54xx())
494                 omap5_ddr3_init(base, regs);
495         else
496                 dra7_ddr3_init(base, regs);
497 }
498 #endif
499
500 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
501 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
502
503 /*
504  * Organization and refresh requirements for LPDDR2 devices of different
505  * types and densities. Derived from JESD209-2 section 2.4
506  */
507 const struct lpddr2_addressing addressing_table[] = {
508         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
509         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
510         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
511         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
512         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
513         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
514         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
515         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
516         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
517         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
518         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
519 };
520
521 static const u32 lpddr2_density_2_size_in_mbytes[] = {
522         8,                      /* 64Mb */
523         16,                     /* 128Mb */
524         32,                     /* 256Mb */
525         64,                     /* 512Mb */
526         128,                    /* 1Gb   */
527         256,                    /* 2Gb   */
528         512,                    /* 4Gb   */
529         1024,                   /* 8Gb   */
530         2048,                   /* 16Gb  */
531         4096                    /* 32Gb  */
532 };
533
534 /*
535  * Calculate the period of DDR clock from frequency value and set the
536  * denominator and numerator in global variables for easy access later
537  */
538 static void set_ddr_clk_period(u32 freq)
539 {
540         /*
541          * period = 1/freq
542          * period_in_ns = 10^9/freq
543          */
544         *T_num = 1000000000;
545         *T_den = freq;
546         cancel_out(T_num, T_den, 200);
547
548 }
549
550 /*
551  * Convert time in nano seconds to number of cycles of DDR clock
552  */
553 static inline u32 ns_2_cycles(u32 ns)
554 {
555         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
556 }
557
558 /*
559  * ns_2_cycles with the difference that the time passed is 2 times the actual
560  * value(to avoid fractions). The cycles returned is for the original value of
561  * the timing parameter
562  */
563 static inline u32 ns_x2_2_cycles(u32 ns)
564 {
565         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
566 }
567
568 /*
569  * Find addressing table index based on the device's type(S2 or S4) and
570  * density
571  */
572 s8 addressing_table_index(u8 type, u8 density, u8 width)
573 {
574         u8 index;
575         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
576                 return -1;
577
578         /*
579          * Look at the way ADDR_TABLE_INDEX* values have been defined
580          * in emif.h compared to LPDDR2_DENSITY_* values
581          * The table is layed out in the increasing order of density
582          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
583          * at the end
584          */
585         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
586                 index = ADDR_TABLE_INDEX1GS2;
587         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
588                 index = ADDR_TABLE_INDEX2GS2;
589         else
590                 index = density;
591
592         debug("emif: addressing table index %d\n", index);
593
594         return index;
595 }
596
597 /*
598  * Find the the right timing table from the array of timing
599  * tables of the device using DDR clock frequency
600  */
601 static const struct lpddr2_ac_timings *get_timings_table(const struct
602                         lpddr2_ac_timings const *const *device_timings,
603                         u32 freq)
604 {
605         u32 i, temp, freq_nearest;
606         const struct lpddr2_ac_timings *timings = 0;
607
608         emif_assert(freq <= MAX_LPDDR2_FREQ);
609         emif_assert(device_timings);
610
611         /*
612          * Start with the maximum allowed frequency - that is always safe
613          */
614         freq_nearest = MAX_LPDDR2_FREQ;
615         /*
616          * Find the timings table that has the max frequency value:
617          *   i.  Above or equal to the DDR frequency - safe
618          *   ii. The lowest that satisfies condition (i) - optimal
619          */
620         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
621                 temp = device_timings[i]->max_freq;
622                 if ((temp >= freq) && (temp <= freq_nearest)) {
623                         freq_nearest = temp;
624                         timings = device_timings[i];
625                 }
626         }
627         debug("emif: timings table: %d\n", freq_nearest);
628         return timings;
629 }
630
631 /*
632  * Finds the value of emif_sdram_config_reg
633  * All parameters are programmed based on the device on CS0.
634  * If there is a device on CS1, it will be same as that on CS0 or
635  * it will be NVM. We don't support NVM yet.
636  * If cs1_device pointer is NULL it is assumed that there is no device
637  * on CS1
638  */
639 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
640                                 const struct lpddr2_device_details *cs1_device,
641                                 const struct lpddr2_addressing *addressing,
642                                 u8 RL)
643 {
644         u32 config_reg = 0;
645
646         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
647         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
648                         EMIF_REG_IBANK_POS_SHIFT;
649
650         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
651
652         config_reg |= RL << EMIF_REG_CL_SHIFT;
653
654         config_reg |= addressing->row_sz[cs0_device->io_width] <<
655                         EMIF_REG_ROWSIZE_SHIFT;
656
657         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
658
659         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
660                         EMIF_REG_EBANK_SHIFT;
661
662         config_reg |= addressing->col_sz[cs0_device->io_width] <<
663                         EMIF_REG_PAGESIZE_SHIFT;
664
665         return config_reg;
666 }
667
668 static u32 get_sdram_ref_ctrl(u32 freq,
669                               const struct lpddr2_addressing *addressing)
670 {
671         u32 ref_ctrl = 0, val = 0, freq_khz;
672         freq_khz = freq / 1000;
673         /*
674          * refresh rate to be set is 'tREFI * freq in MHz
675          * division by 10000 to account for khz and x10 in t_REFI_us_x10
676          */
677         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
678         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
679
680         return ref_ctrl;
681 }
682
683 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
684                                const struct lpddr2_min_tck *min_tck,
685                                const struct lpddr2_addressing *addressing)
686 {
687         u32 tim1 = 0, val = 0;
688         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
689         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
690
691         if (addressing->num_banks == BANKS8)
692                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
693                                                         (4 * (*T_num)) - 1;
694         else
695                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
696
697         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
698
699         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
700         tim1 |= val << EMIF_REG_T_RC_SHIFT;
701
702         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
703         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
704
705         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
706         tim1 |= val << EMIF_REG_T_WR_SHIFT;
707
708         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
709         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
710
711         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
712         tim1 |= val << EMIF_REG_T_RP_SHIFT;
713
714         return tim1;
715 }
716
717 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
718                                const struct lpddr2_min_tck *min_tck)
719 {
720         u32 tim2 = 0, val = 0;
721         val = max(min_tck->tCKE, timings->tCKE) - 1;
722         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
723
724         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
725         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
726
727         /*
728          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
729          * same value
730          */
731         val = ns_2_cycles(timings->tXSR) - 1;
732         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
733         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
734
735         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
736         tim2 |= val << EMIF_REG_T_XP_SHIFT;
737
738         return tim2;
739 }
740
741 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
742                                const struct lpddr2_min_tck *min_tck,
743                                const struct lpddr2_addressing *addressing)
744 {
745         u32 tim3 = 0, val = 0;
746         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
747         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
748
749         val = ns_2_cycles(timings->tRFCab) - 1;
750         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
751
752         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
753         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
754
755         val = ns_2_cycles(timings->tZQCS) - 1;
756         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
757
758         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
759         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
760
761         return tim3;
762 }
763
764 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
765                              const struct lpddr2_addressing *addressing,
766                              u8 volt_ramp)
767 {
768         u32 zq = 0, val = 0;
769         if (volt_ramp)
770                 val =
771                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
772                     addressing->t_REFI_us_x10;
773         else
774                 val =
775                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
776                     addressing->t_REFI_us_x10;
777         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
778
779         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
780
781         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
782
783         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
784
785         /*
786          * Assuming that two chipselects have a single calibration resistor
787          * If there are indeed two calibration resistors, then this flag should
788          * be enabled to take advantage of dual calibration feature.
789          * This data should ideally come from board files. But considering
790          * that none of the boards today have calibration resistors per CS,
791          * it would be an unnecessary overhead.
792          */
793         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
794
795         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
796
797         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
798
799         return zq;
800 }
801
802 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
803                                  const struct lpddr2_addressing *addressing,
804                                  u8 is_derated)
805 {
806         u32 alert = 0, interval;
807         interval =
808             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
809         if (is_derated)
810                 interval *= 4;
811         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
812
813         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
814
815         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
816
817         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
818
819         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
820
821         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
822
823         return alert;
824 }
825
826 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
827 {
828         u32 idle = 0, val = 0;
829         if (volt_ramp)
830                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
831         else
832                 /*Maximum value in normal conditions - suggested by hw team */
833                 val = 0x1FF;
834         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
835
836         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
837
838         return idle;
839 }
840
841 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
842 {
843         u32 phy = 0, val = 0;
844
845         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
846
847         if (freq <= 100000000)
848                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
849         else if (freq <= 200000000)
850                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
851         else
852                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
853         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
854
855         /* Other fields are constant magic values. Hardcode them together */
856         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
857                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
858
859         return phy;
860 }
861
862 static u32 get_emif_mem_size(u32 base)
863 {
864         u32 size_mbytes = 0, temp;
865         struct emif_device_details dev_details;
866         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
867         u32 emif_nr = emif_num(base);
868
869         emif_reset_phy(base);
870         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
871                                                 &cs0_dev_details);
872         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
873                                                 &cs1_dev_details);
874         emif_reset_phy(base);
875
876         if (dev_details.cs0_device_details) {
877                 temp = dev_details.cs0_device_details->density;
878                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
879         }
880
881         if (dev_details.cs1_device_details) {
882                 temp = dev_details.cs1_device_details->density;
883                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
884         }
885         /* convert to bytes */
886         return size_mbytes << 20;
887 }
888
889 /* Gets the encoding corresponding to a given DMM section size */
890 u32 get_dmm_section_size_map(u32 section_size)
891 {
892         /*
893          * Section size mapping:
894          * 0x0: 16-MiB section
895          * 0x1: 32-MiB section
896          * 0x2: 64-MiB section
897          * 0x3: 128-MiB section
898          * 0x4: 256-MiB section
899          * 0x5: 512-MiB section
900          * 0x6: 1-GiB section
901          * 0x7: 2-GiB section
902          */
903         section_size >>= 24; /* divide by 16 MB */
904         return log_2_n_round_down(section_size);
905 }
906
907 static void emif_calculate_regs(
908                 const struct emif_device_details *emif_dev_details,
909                 u32 freq, struct emif_regs *regs)
910 {
911         u32 temp, sys_freq;
912         const struct lpddr2_addressing *addressing;
913         const struct lpddr2_ac_timings *timings;
914         const struct lpddr2_min_tck *min_tck;
915         const struct lpddr2_device_details *cs0_dev_details =
916                                         emif_dev_details->cs0_device_details;
917         const struct lpddr2_device_details *cs1_dev_details =
918                                         emif_dev_details->cs1_device_details;
919         const struct lpddr2_device_timings *cs0_dev_timings =
920                                         emif_dev_details->cs0_device_timings;
921
922         emif_assert(emif_dev_details);
923         emif_assert(regs);
924         /*
925          * You can not have a device on CS1 without one on CS0
926          * So configuring EMIF without a device on CS0 doesn't
927          * make sense
928          */
929         emif_assert(cs0_dev_details);
930         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
931         /*
932          * If there is a device on CS1 it should be same type as CS0
933          * (or NVM. But NVM is not supported in this driver yet)
934          */
935         emif_assert((cs1_dev_details == NULL) ||
936                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
937                     (cs0_dev_details->type == cs1_dev_details->type));
938         emif_assert(freq <= MAX_LPDDR2_FREQ);
939
940         set_ddr_clk_period(freq);
941
942         /*
943          * The device on CS0 is used for all timing calculations
944          * There is only one set of registers for timings per EMIF. So, if the
945          * second CS(CS1) has a device, it should have the same timings as the
946          * device on CS0
947          */
948         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
949         emif_assert(timings);
950         min_tck = cs0_dev_timings->min_tck;
951
952         temp = addressing_table_index(cs0_dev_details->type,
953                                       cs0_dev_details->density,
954                                       cs0_dev_details->io_width);
955
956         emif_assert((temp >= 0));
957         addressing = &(addressing_table[temp]);
958         emif_assert(addressing);
959
960         sys_freq = get_sys_clk_freq();
961
962         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
963                                                         cs1_dev_details,
964                                                         addressing, RL_BOOT);
965
966         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
967                                                 cs1_dev_details,
968                                                 addressing, RL_FINAL);
969
970         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
971
972         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
973
974         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
975
976         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
977
978         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
979
980         regs->temp_alert_config =
981             get_temp_alert_config(cs1_dev_details, addressing, 0);
982
983         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
984                                             LPDDR2_VOLTAGE_STABLE);
985
986         regs->emif_ddr_phy_ctlr_1_init =
987                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
988
989         regs->emif_ddr_phy_ctlr_1 =
990                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
991
992         regs->freq = freq;
993
994         print_timing_reg(regs->sdram_config_init);
995         print_timing_reg(regs->sdram_config);
996         print_timing_reg(regs->ref_ctrl);
997         print_timing_reg(regs->sdram_tim1);
998         print_timing_reg(regs->sdram_tim2);
999         print_timing_reg(regs->sdram_tim3);
1000         print_timing_reg(regs->read_idle_ctrl);
1001         print_timing_reg(regs->temp_alert_config);
1002         print_timing_reg(regs->zq_config);
1003         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1004         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1005 }
1006 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1007
1008 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1009 const char *get_lpddr2_type(u8 type_id)
1010 {
1011         switch (type_id) {
1012         case LPDDR2_TYPE_S4:
1013                 return "LPDDR2-S4";
1014         case LPDDR2_TYPE_S2:
1015                 return "LPDDR2-S2";
1016         default:
1017                 return NULL;
1018         }
1019 }
1020
1021 const char *get_lpddr2_io_width(u8 width_id)
1022 {
1023         switch (width_id) {
1024         case LPDDR2_IO_WIDTH_8:
1025                 return "x8";
1026         case LPDDR2_IO_WIDTH_16:
1027                 return "x16";
1028         case LPDDR2_IO_WIDTH_32:
1029                 return "x32";
1030         default:
1031                 return NULL;
1032         }
1033 }
1034
1035 const char *get_lpddr2_manufacturer(u32 manufacturer)
1036 {
1037         switch (manufacturer) {
1038         case LPDDR2_MANUFACTURER_SAMSUNG:
1039                 return "Samsung";
1040         case LPDDR2_MANUFACTURER_QIMONDA:
1041                 return "Qimonda";
1042         case LPDDR2_MANUFACTURER_ELPIDA:
1043                 return "Elpida";
1044         case LPDDR2_MANUFACTURER_ETRON:
1045                 return "Etron";
1046         case LPDDR2_MANUFACTURER_NANYA:
1047                 return "Nanya";
1048         case LPDDR2_MANUFACTURER_HYNIX:
1049                 return "Hynix";
1050         case LPDDR2_MANUFACTURER_MOSEL:
1051                 return "Mosel";
1052         case LPDDR2_MANUFACTURER_WINBOND:
1053                 return "Winbond";
1054         case LPDDR2_MANUFACTURER_ESMT:
1055                 return "ESMT";
1056         case LPDDR2_MANUFACTURER_SPANSION:
1057                 return "Spansion";
1058         case LPDDR2_MANUFACTURER_SST:
1059                 return "SST";
1060         case LPDDR2_MANUFACTURER_ZMOS:
1061                 return "ZMOS";
1062         case LPDDR2_MANUFACTURER_INTEL:
1063                 return "Intel";
1064         case LPDDR2_MANUFACTURER_NUMONYX:
1065                 return "Numonyx";
1066         case LPDDR2_MANUFACTURER_MICRON:
1067                 return "Micron";
1068         default:
1069                 return NULL;
1070         }
1071 }
1072
1073 static void display_sdram_details(u32 emif_nr, u32 cs,
1074                                   struct lpddr2_device_details *device)
1075 {
1076         const char *mfg_str;
1077         const char *type_str;
1078         char density_str[10];
1079         u32 density;
1080
1081         debug("EMIF%d CS%d\t", emif_nr, cs);
1082
1083         if (!device) {
1084                 debug("None\n");
1085                 return;
1086         }
1087
1088         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1089         type_str = get_lpddr2_type(device->type);
1090
1091         density = lpddr2_density_2_size_in_mbytes[device->density];
1092         if ((density / 1024 * 1024) == density) {
1093                 density /= 1024;
1094                 sprintf(density_str, "%d GB", density);
1095         } else
1096                 sprintf(density_str, "%d MB", density);
1097         if (mfg_str && type_str)
1098                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1099 }
1100
1101 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1102                                   struct lpddr2_device_details *lpddr2_device)
1103 {
1104         u32 mr = 0, temp;
1105
1106         mr = get_mr(base, cs, LPDDR2_MR0);
1107         if (mr > 0xFF) {
1108                 /* Mode register value bigger than 8 bit */
1109                 return 0;
1110         }
1111
1112         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1113         if (temp) {
1114                 /* Not SDRAM */
1115                 return 0;
1116         }
1117         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1118
1119         if (temp) {
1120                 /* DNV supported - But DNV is only supported for NVM */
1121                 return 0;
1122         }
1123
1124         mr = get_mr(base, cs, LPDDR2_MR4);
1125         if (mr > 0xFF) {
1126                 /* Mode register value bigger than 8 bit */
1127                 return 0;
1128         }
1129
1130         mr = get_mr(base, cs, LPDDR2_MR5);
1131         if (mr > 0xFF) {
1132                 /* Mode register value bigger than 8 bit */
1133                 return 0;
1134         }
1135
1136         if (!get_lpddr2_manufacturer(mr)) {
1137                 /* Manufacturer not identified */
1138                 return 0;
1139         }
1140         lpddr2_device->manufacturer = mr;
1141
1142         mr = get_mr(base, cs, LPDDR2_MR6);
1143         if (mr >= 0xFF) {
1144                 /* Mode register value bigger than 8 bit */
1145                 return 0;
1146         }
1147
1148         mr = get_mr(base, cs, LPDDR2_MR7);
1149         if (mr >= 0xFF) {
1150                 /* Mode register value bigger than 8 bit */
1151                 return 0;
1152         }
1153
1154         mr = get_mr(base, cs, LPDDR2_MR8);
1155         if (mr >= 0xFF) {
1156                 /* Mode register value bigger than 8 bit */
1157                 return 0;
1158         }
1159
1160         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1161         if (!get_lpddr2_type(temp)) {
1162                 /* Not SDRAM */
1163                 return 0;
1164         }
1165         lpddr2_device->type = temp;
1166
1167         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1168         if (temp > LPDDR2_DENSITY_32Gb) {
1169                 /* Density not supported */
1170                 return 0;
1171         }
1172         lpddr2_device->density = temp;
1173
1174         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1175         if (!get_lpddr2_io_width(temp)) {
1176                 /* IO width unsupported value */
1177                 return 0;
1178         }
1179         lpddr2_device->io_width = temp;
1180
1181         /*
1182          * If all the above tests pass we should
1183          * have a device on this chip-select
1184          */
1185         return 1;
1186 }
1187
1188 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1189                         struct lpddr2_device_details *lpddr2_dev_details)
1190 {
1191         u32 phy;
1192         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1193
1194         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1195
1196         if (!lpddr2_dev_details)
1197                 return NULL;
1198
1199         /* Do the minimum init for mode register accesses */
1200         if (!(running_from_sdram() || warm_reset())) {
1201                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1202                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1203         }
1204
1205         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1206                 return NULL;
1207
1208         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1209
1210         return lpddr2_dev_details;
1211 }
1212 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1213
1214 static void do_sdram_init(u32 base)
1215 {
1216         const struct emif_regs *regs;
1217         u32 in_sdram, emif_nr;
1218
1219         debug(">>do_sdram_init() %x\n", base);
1220
1221         in_sdram = running_from_sdram();
1222         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1223
1224 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1225         emif_get_reg_dump(emif_nr, &regs);
1226         if (!regs) {
1227                 debug("EMIF: reg dump not provided\n");
1228                 return;
1229         }
1230 #else
1231         /*
1232          * The user has not provided the register values. We need to
1233          * calculate it based on the timings and the DDR frequency
1234          */
1235         struct emif_device_details dev_details;
1236         struct emif_regs calculated_regs;
1237
1238         /*
1239          * Get device details:
1240          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1241          * - Obtained from user otherwise
1242          */
1243         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1244         emif_reset_phy(base);
1245         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1246                                                 &cs0_dev_details);
1247         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1248                                                 &cs1_dev_details);
1249         emif_reset_phy(base);
1250
1251         /* Return if no devices on this EMIF */
1252         if (!dev_details.cs0_device_details &&
1253             !dev_details.cs1_device_details) {
1254                 return;
1255         }
1256
1257         /*
1258          * Get device timings:
1259          * - Default timings specified by JESD209-2 if
1260          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1261          * - Obtained from user otherwise
1262          */
1263         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1264                                 &dev_details.cs1_device_timings);
1265
1266         /* Calculate the register values */
1267         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1268         regs = &calculated_regs;
1269 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1270
1271         /*
1272          * Initializing the DDR device can not happen from SDRAM.
1273          * Changing the timing registers in EMIF can happen(going from one
1274          * OPP to another)
1275          */
1276         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1277                 if (emif_sdram_type(regs->sdram_config) ==
1278                     EMIF_SDRAM_TYPE_LPDDR2)
1279                         lpddr2_init(base, regs);
1280 #ifndef CONFIG_OMAP44XX
1281                 else
1282                         ddr3_init(base, regs);
1283 #endif
1284         }
1285 #ifdef CONFIG_OMAP54XX
1286         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1287             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1288                 set_lpmode_selfrefresh(base);
1289                 emif_reset_phy(base);
1290                 omap5_ddr3_leveling(base, regs);
1291         }
1292 #endif
1293
1294         /* Write to the shadow registers */
1295         emif_update_timings(base, regs);
1296
1297         debug("<<do_sdram_init() %x\n", base);
1298 }
1299
1300 void emif_post_init_config(u32 base)
1301 {
1302         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1303         u32 omap_rev = omap_revision();
1304
1305         /* reset phy on ES2.0 */
1306         if (omap_rev == OMAP4430_ES2_0)
1307                 emif_reset_phy(base);
1308
1309         /* Put EMIF back in smart idle on ES1.0 */
1310         if (omap_rev == OMAP4430_ES1_0)
1311                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1312 }
1313
1314 void dmm_init(u32 base)
1315 {
1316         const struct dmm_lisa_map_regs *lisa_map_regs;
1317         u32 i, section, valid;
1318
1319 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1320         emif_get_dmm_regs(&lisa_map_regs);
1321 #else
1322         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1323         u32 section_cnt, sys_addr;
1324         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1325
1326         mapped_size = 0;
1327         section_cnt = 3;
1328         sys_addr = CONFIG_SYS_SDRAM_BASE;
1329         emif1_size = get_emif_mem_size(EMIF1_BASE);
1330         emif2_size = get_emif_mem_size(EMIF2_BASE);
1331         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1332
1333         if (!emif1_size && !emif2_size)
1334                 return;
1335
1336         /* symmetric interleaved section */
1337         if (emif1_size && emif2_size) {
1338                 mapped_size = min(emif1_size, emif2_size);
1339                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1340                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1341                 /* only MSB */
1342                 section_map |= (sys_addr >> 24) <<
1343                                 EMIF_SYS_ADDR_SHIFT;
1344                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1345                                 << EMIF_SYS_SIZE_SHIFT;
1346                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1347                 emif1_size -= mapped_size;
1348                 emif2_size -= mapped_size;
1349                 sys_addr += (mapped_size * 2);
1350                 section_cnt--;
1351         }
1352
1353         /*
1354          * Single EMIF section(we can have a maximum of 1 single EMIF
1355          * section- either EMIF1 or EMIF2 or none, but not both)
1356          */
1357         if (emif1_size) {
1358                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1359                 section_map |= get_dmm_section_size_map(emif1_size)
1360                                 << EMIF_SYS_SIZE_SHIFT;
1361                 /* only MSB */
1362                 section_map |= (mapped_size >> 24) <<
1363                                 EMIF_SDRC_ADDR_SHIFT;
1364                 /* only MSB */
1365                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1366                 section_cnt--;
1367         }
1368         if (emif2_size) {
1369                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1370                 section_map |= get_dmm_section_size_map(emif2_size) <<
1371                                 EMIF_SYS_SIZE_SHIFT;
1372                 /* only MSB */
1373                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1374                 /* only MSB */
1375                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1376                 section_cnt--;
1377         }
1378
1379         if (section_cnt == 2) {
1380                 /* Only 1 section - either symmetric or single EMIF */
1381                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1382                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1383                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1384         } else {
1385                 /* 2 sections - 1 symmetric, 1 single EMIF */
1386                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1387                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1388         }
1389
1390         /* TRAP for invalid TILER mappings in section 0 */
1391         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1392
1393         if (omap_revision() >= OMAP4460_ES1_0)
1394                 lis_map_regs_calculated.is_ma_present = 1;
1395
1396         lisa_map_regs = &lis_map_regs_calculated;
1397 #endif
1398         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1399             (struct dmm_lisa_map_regs *)base;
1400
1401         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1402         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1403         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1404         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1405
1406         writel(lisa_map_regs->dmm_lisa_map_3,
1407                 &hw_lisa_map_regs->dmm_lisa_map_3);
1408         writel(lisa_map_regs->dmm_lisa_map_2,
1409                 &hw_lisa_map_regs->dmm_lisa_map_2);
1410         writel(lisa_map_regs->dmm_lisa_map_1,
1411                 &hw_lisa_map_regs->dmm_lisa_map_1);
1412         writel(lisa_map_regs->dmm_lisa_map_0,
1413                 &hw_lisa_map_regs->dmm_lisa_map_0);
1414
1415         if (lisa_map_regs->is_ma_present) {
1416                 hw_lisa_map_regs =
1417                     (struct dmm_lisa_map_regs *)MA_BASE;
1418
1419                 writel(lisa_map_regs->dmm_lisa_map_3,
1420                         &hw_lisa_map_regs->dmm_lisa_map_3);
1421                 writel(lisa_map_regs->dmm_lisa_map_2,
1422                         &hw_lisa_map_regs->dmm_lisa_map_2);
1423                 writel(lisa_map_regs->dmm_lisa_map_1,
1424                         &hw_lisa_map_regs->dmm_lisa_map_1);
1425                 writel(lisa_map_regs->dmm_lisa_map_0,
1426                         &hw_lisa_map_regs->dmm_lisa_map_0);
1427
1428                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1429         }
1430
1431         /*
1432          * EMIF should be configured only when
1433          * memory is mapped on it. Using emif1_enabled
1434          * and emif2_enabled variables for this.
1435          */
1436         emif1_enabled = 0;
1437         emif2_enabled = 0;
1438         for (i = 0; i < 4; i++) {
1439                 section = __raw_readl(DMM_BASE + i*4);
1440                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1441                         (EMIF_SDRC_MAP_SHIFT);
1442                 if (valid == 3) {
1443                         emif1_enabled = 1;
1444                         emif2_enabled = 1;
1445                         break;
1446                 }
1447
1448                 if (valid == 1)
1449                         emif1_enabled = 1;
1450
1451                 if (valid == 2)
1452                         emif2_enabled = 1;
1453         }
1454 }
1455
1456 static void do_bug0039_workaround(u32 base)
1457 {
1458         u32 val, i, clkctrl;
1459         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1460         const struct read_write_regs *bug_00339_regs;
1461         u32 iterations;
1462         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1463         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1464
1465         if (is_dra7xx())
1466                 phy_status_base++;
1467
1468         bug_00339_regs = get_bug_regs(&iterations);
1469
1470         /* Put EMIF in to idle */
1471         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1472         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1473
1474         /* Copy the phy status registers in to phy ctrl shadow registers */
1475         for (i = 0; i < iterations; i++) {
1476                 val = __raw_readl(phy_status_base +
1477                                   bug_00339_regs[i].read_reg - 1);
1478
1479                 __raw_writel(val, phy_ctrl_base +
1480                              ((bug_00339_regs[i].write_reg - 1) << 1));
1481
1482                 __raw_writel(val, phy_ctrl_base +
1483                              (bug_00339_regs[i].write_reg << 1) - 1);
1484         }
1485
1486         /* Disable leveling */
1487         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1488
1489         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1490 }
1491
1492 /*
1493  * SDRAM initialization:
1494  * SDRAM initialization has two parts:
1495  * 1. Configuring the SDRAM device
1496  * 2. Update the AC timings related parameters in the EMIF module
1497  * (1) should be done only once and should not be done while we are
1498  * running from SDRAM.
1499  * (2) can and should be done more than once if OPP changes.
1500  * Particularly, this may be needed when we boot without SPL and
1501  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1502  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1503  * the frequency. So,
1504  * Doing (1) and (2) makes sense - first time initialization
1505  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1506  * Doing (1) and not (2) doen't make sense
1507  * See do_sdram_init() for the details
1508  */
1509 void sdram_init(void)
1510 {
1511         u32 in_sdram, size_prog, size_detect;
1512         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1513         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1514
1515         debug(">>sdram_init()\n");
1516
1517         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1518                 return;
1519
1520         in_sdram = running_from_sdram();
1521         debug("in_sdram = %d\n", in_sdram);
1522
1523         if (!in_sdram) {
1524                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1525                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1526                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1527                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1528         }
1529
1530         if (!in_sdram)
1531                 dmm_init(DMM_BASE);
1532
1533         if (emif1_enabled)
1534                 do_sdram_init(EMIF1_BASE);
1535
1536         if (emif2_enabled)
1537                 do_sdram_init(EMIF2_BASE);
1538
1539         if (!(in_sdram || warm_reset())) {
1540                 if (emif1_enabled)
1541                         emif_post_init_config(EMIF1_BASE);
1542                 if (emif2_enabled)
1543                         emif_post_init_config(EMIF2_BASE);
1544         }
1545
1546         /* for the shadow registers to take effect */
1547         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1548                 freq_update_core();
1549
1550         /* Do some testing after the init */
1551         if (!in_sdram) {
1552                 size_prog = omap_sdram_size();
1553                 size_prog = log_2_n_round_down(size_prog);
1554                 size_prog = (1 << size_prog);
1555
1556                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1557                                                 size_prog);
1558                 /* Compare with the size programmed */
1559                 if (size_detect != size_prog) {
1560                         printf("SDRAM: identified size not same as expected"
1561                                 " size identified: %x expected: %x\n",
1562                                 size_detect,
1563                                 size_prog);
1564                 } else
1565                         debug("get_ram_size() successful");
1566         }
1567
1568 #if defined(CONFIG_TI_SECURE_DEVICE)
1569         /*
1570          * On HS devices, do static EMIF firewall configuration
1571          * but only do it if not already running in SDRAM
1572          */
1573         if (!in_sdram)
1574                 if (0 != secure_emif_reserve())
1575                         hang();
1576
1577         /* On HS devices, ensure static EMIF firewall APIs are locked */
1578         if (0 != secure_emif_firewall_lock())
1579                 hang();
1580 #endif
1581
1582         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1583             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1584                 if (emif1_enabled)
1585                         do_bug0039_workaround(EMIF1_BASE);
1586                 if (emif2_enabled)
1587                         do_bug0039_workaround(EMIF2_BASE);
1588         }
1589
1590         debug("<<sdram_init()\n");
1591 }