]> git.sur5r.net Git - u-boot/blob - arch/arm/mach-sunxi/clock_sun9i.c
Merge branch 'master' of git://git.denx.de/u-boot-sunxi
[u-boot] / arch / arm / mach-sunxi / clock_sun9i.c
1
2 /*
3  * sun9i specific clock code
4  *
5  * (C) Copyright 2015 Hans de Goede <hdegoede@redhat.com>
6  *
7  * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
8  *                    Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
9  *
10  * SPDX-License-Identifier:     GPL-2.0+
11  */
12
13 #include <common.h>
14 #include <asm/io.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/prcm.h>
17 #include <asm/arch/sys_proto.h>
18
19
20 #ifdef CONFIG_SPL_BUILD
21
22 void clock_init_safe(void)
23 {
24         struct sunxi_ccm_reg * const ccm =
25                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
26
27         /* Set up PLL12 (peripheral 1) */
28         clock_set_pll12(1200000000);
29
30         /* Set up PLL1 (cluster 0) and PLL2 (cluster 1) */
31         clock_set_pll1(408000000);
32         clock_set_pll2(408000000);
33
34         /* Set up PLL4 (peripheral 0) */
35         clock_set_pll4(960000000);
36
37         /* Set up dividers for AXI0 and APB0 on cluster 0: PLL1 / 2 = 204MHz */
38         writel(C0_CFG_AXI0_CLK_DIV_RATIO(2) |
39                C0_CFG_APB0_CLK_DIV_RATIO(2), &ccm->c0_cfg);
40
41         /* AHB0: 120 MHz (PLL_PERIPH0 / 8) */
42         writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
43                &ccm->ahb0_cfg);
44         /* AHB1: 240 MHz (PLL_PERIPH0 / 4) */
45         writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(4),
46                &ccm->ahb1_cfg);
47         /* AHB2: 120 MHz (PLL_PERIPH0 / 8) */
48         writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
49                &ccm->ahb2_cfg);
50         /* APB0: 120 MHz (PLL_PERIPH0 / 8) */
51         writel(APB0_SRC_PLL_PERIPH0 | APB0_CLK_DIV_RATIO(8),
52                &ccm->apb0_cfg);
53
54         /* GTBUS: 400MHz (PERIPH0 div 3) */
55         writel(GTBUS_SRC_PLL_PERIPH1 | GTBUS_CLK_DIV_RATIO(3),
56                &ccm->gtbus_cfg);
57         /* CCI400: 480MHz (PERIPH1 div 2) */
58         writel(CCI400_SRC_PLL_PERIPH0 | CCI400_CLK_DIV_RATIO(2),
59                &ccm->cci400_cfg);
60
61         /* Deassert DMA reset and open clock gating for DMA */
62         setbits_le32(&ccm->ahb_reset1_cfg, (1 << 24));
63         setbits_le32(&ccm->apb1_gate, (1 << 24));
64
65         /* set enable-bit in TSTAMP_CTRL_REG */
66         writel(1, 0x01720000);
67 }
68 #endif
69
70 void clock_init_uart(void)
71 {
72         struct sunxi_ccm_reg *const ccm =
73                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
74
75         /* open the clock for uart */
76         setbits_le32(&ccm->apb1_gate,
77                      CLK_GATE_OPEN << (APB1_GATE_UART_SHIFT +
78                                        CONFIG_CONS_INDEX - 1));
79         /* deassert uart reset */
80         setbits_le32(&ccm->apb1_reset_cfg,
81                      1 << (APB1_RESET_UART_SHIFT +
82                            CONFIG_CONS_INDEX - 1));
83 }
84
85 #ifdef CONFIG_SPL_BUILD
86 void clock_set_pll1(unsigned int clk)
87 {
88         struct sunxi_ccm_reg * const ccm =
89                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
90         const int p = 0;
91
92         /* Switch cluster 0 to 24MHz clock while changing PLL1 */
93         clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
94                         C0_CPUX_CLK_SRC_OSC24M);
95
96         writel(CCM_PLL1_CTRL_EN | CCM_PLL1_CTRL_P(p) |
97                CCM_PLL1_CLOCK_TIME_2 |
98                CCM_PLL1_CTRL_N(clk / 24000000),
99                &ccm->pll1_c0_cfg);
100         /*
101          * Don't bother with the stable-time registers, as it doesn't
102          * wait until the PLL is stable.  Note, that even Allwinner
103          * just uses a delay loop (or rather the AVS timer) for this
104          * instead of the PLL_STABLE_STATUS register.
105          */
106         sdelay(2000);
107
108         /* Switch cluster 0 back to PLL1 */
109         clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
110                         C0_CPUX_CLK_SRC_PLL1);
111 }
112
113 void clock_set_pll2(unsigned int clk)
114 {
115         struct sunxi_ccm_reg * const ccm =
116                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
117         const int p = 0;
118
119         /* Switch cluster 1 to 24MHz clock while changing PLL2 */
120         clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
121                         C1_CPUX_CLK_SRC_OSC24M);
122
123         writel(CCM_PLL2_CTRL_EN | CCM_PLL2_CTRL_P(p) |
124                CCM_PLL2_CLOCK_TIME_2 | CCM_PLL2_CTRL_N(clk / 24000000),
125                &ccm->pll2_c1_cfg);
126
127         sdelay(2000);
128
129         /* Switch cluster 1 back to PLL2 */
130         clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
131                         C1_CPUX_CLK_SRC_PLL2);
132 }
133
134 void clock_set_pll6(unsigned int clk)
135 {
136         struct sunxi_ccm_reg * const ccm =
137                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
138         const int p = 0;
139
140         writel(CCM_PLL6_CTRL_EN | CCM_PLL6_CFG_UPDATE | CCM_PLL6_CTRL_P(p)
141                | CCM_PLL6_CTRL_N(clk / 24000000),
142                &ccm->pll6_ddr_cfg);
143         do { } while (!(readl(&ccm->pll_stable_status) & PLL_DDR_STATUS));
144
145         sdelay(2000);
146 }
147
148 void clock_set_pll12(unsigned int clk)
149 {
150         struct sunxi_ccm_reg * const ccm =
151                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
152
153         if (readl(&ccm->pll12_periph1_cfg) & CCM_PLL12_CTRL_EN)
154                 return;
155
156         writel(CCM_PLL12_CTRL_EN | CCM_PLL12_CTRL_N(clk / 24000000),
157                &ccm->pll12_periph1_cfg);
158
159         sdelay(2000);
160 }
161
162
163 void clock_set_pll4(unsigned int clk)
164 {
165         struct sunxi_ccm_reg * const ccm =
166                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
167
168         writel(CCM_PLL4_CTRL_EN | CCM_PLL4_CTRL_N(clk / 24000000),
169                &ccm->pll4_periph0_cfg);
170
171         sdelay(2000);
172 }
173 #endif
174
175 int clock_twi_onoff(int port, int state)
176 {
177         struct sunxi_ccm_reg *const ccm =
178                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
179
180         if (port > 4)
181                 return -1;
182
183         /* set the apb reset and clock gate for twi */
184         if (state) {
185                 setbits_le32(&ccm->apb1_gate,
186                              CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
187                 setbits_le32(&ccm->apb1_reset_cfg,
188                              1 << (APB1_RESET_TWI_SHIFT + port));
189         } else {
190                 clrbits_le32(&ccm->apb1_reset_cfg,
191                              1 << (APB1_RESET_TWI_SHIFT + port));
192                 clrbits_le32(&ccm->apb1_gate,
193                              CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
194         }
195
196         return 0;
197 }
198
199 unsigned int clock_get_pll4_periph0(void)
200 {
201         struct sunxi_ccm_reg *const ccm =
202                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
203         uint32_t rval = readl(&ccm->pll4_periph0_cfg);
204         int n = ((rval & CCM_PLL4_CTRL_N_MASK) >> CCM_PLL4_CTRL_N_SHIFT);
205         int p = ((rval & CCM_PLL4_CTRL_P_MASK) >> CCM_PLL4_CTRL_P_SHIFT);
206         int m = ((rval & CCM_PLL4_CTRL_M_MASK) >> CCM_PLL4_CTRL_M_SHIFT) + 1;
207         const int k = 1;
208
209         return ((24000000 * n * k) >> p) / m;
210 }