2 * Copyright (c) 2016, NVIDIA CORPORATION.
4 * SPDX-License-Identifier: GPL-2.0
9 #include <asm/arch-tegra/ivc.h>
11 #define TEGRA_IVC_ALIGN 64
14 * IVC channel reset protocol.
16 * Each end uses its tx_channel.state to indicate its synchronization state.
20 * This value is zero for backwards compatibility with services that
21 * assume channels to be initially zeroed. Such channels are in an
22 * initially valid state, but cannot be asynchronously reset, and must
23 * maintain a valid state at all times.
25 * The transmitting end can enter the established state from the sync or
26 * ack state when it observes the receiving endpoint in the ack or
27 * established state, indicating that has cleared the counters in our
30 ivc_state_established = 0,
33 * If an endpoint is observed in the sync state, the remote endpoint is
34 * allowed to clear the counters it owns asynchronously with respect to
35 * the current endpoint. Therefore, the current endpoint is no longer
36 * allowed to communicate.
41 * When the transmitting end observes the receiving end in the sync
42 * state, it can clear the w_count and r_count and transition to the ack
43 * state. If the remote endpoint observes us in the ack state, it can
44 * return to the established state once it has cleared its counters.
50 * This structure is divided into two-cache aligned parts, the first is only
51 * written through the tx_channel pointer, while the second is only written
52 * through the rx_channel pointer. This delineates ownership of the cache lines,
53 * which is critical to performance and necessary in non-cache coherent
56 struct tegra_ivc_channel_header {
58 /* fields owned by the transmitting end */
63 uint8_t w_align[TEGRA_IVC_ALIGN];
66 /* fields owned by the receiving end */
68 uint8_t r_align[TEGRA_IVC_ALIGN];
72 static inline void tegra_ivc_invalidate_counter(struct tegra_ivc *ivc,
73 struct tegra_ivc_channel_header *h,
76 ulong base = ((ulong)h) + offset;
77 invalidate_dcache_range(base, base + TEGRA_IVC_ALIGN);
80 static inline void tegra_ivc_flush_counter(struct tegra_ivc *ivc,
81 struct tegra_ivc_channel_header *h,
84 ulong base = ((ulong)h) + offset;
85 flush_dcache_range(base, base + TEGRA_IVC_ALIGN);
88 static inline ulong tegra_ivc_frame_addr(struct tegra_ivc *ivc,
89 struct tegra_ivc_channel_header *h,
92 BUG_ON(frame >= ivc->nframes);
94 return ((ulong)h) + sizeof(struct tegra_ivc_channel_header) +
95 (ivc->frame_size * frame);
98 static inline void *tegra_ivc_frame_pointer(struct tegra_ivc *ivc,
99 struct tegra_ivc_channel_header *ch,
102 return (void *)tegra_ivc_frame_addr(ivc, ch, frame);
105 static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
106 struct tegra_ivc_channel_header *h,
109 ulong base = tegra_ivc_frame_addr(ivc, h, frame);
110 invalidate_dcache_range(base, base + ivc->frame_size);
113 static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
114 struct tegra_ivc_channel_header *h,
117 ulong base = tegra_ivc_frame_addr(ivc, h, frame);
118 flush_dcache_range(base, base + ivc->frame_size);
121 static inline int tegra_ivc_channel_empty(struct tegra_ivc *ivc,
122 struct tegra_ivc_channel_header *ch)
125 * This function performs multiple checks on the same values with
126 * security implications, so create snapshots with ACCESS_ONCE() to
127 * ensure that these checks use the same values.
129 uint32_t w_count = ACCESS_ONCE(ch->w_count);
130 uint32_t r_count = ACCESS_ONCE(ch->r_count);
133 * Perform an over-full check to prevent denial of service attacks where
134 * a server could be easily fooled into believing that there's an
135 * extremely large number of frames ready, since receivers are not
136 * expected to check for full or over-full conditions.
138 * Although the channel isn't empty, this is an invalid case caused by
139 * a potentially malicious peer, so returning empty is safer, because it
140 * gives the impression that the channel has gone silent.
142 if (w_count - r_count > ivc->nframes)
145 return w_count == r_count;
148 static inline int tegra_ivc_channel_full(struct tegra_ivc *ivc,
149 struct tegra_ivc_channel_header *ch)
152 * Invalid cases where the counters indicate that the queue is over
153 * capacity also appear full.
155 return (ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)) >=
159 static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
161 ACCESS_ONCE(ivc->rx_channel->r_count) =
162 ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
164 if (ivc->r_pos == ivc->nframes - 1)
170 static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
172 ACCESS_ONCE(ivc->tx_channel->w_count) =
173 ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
175 if (ivc->w_pos == ivc->nframes - 1)
181 static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
186 * tx_channel->state is set locally, so it is not synchronized with
187 * state from the remote peer. The remote peer cannot reset its
188 * transmit counters until we've acknowledged its synchronization
189 * request, so no additional synchronization is required because an
190 * asynchronous transition of rx_channel->state to ivc_state_ack is not
193 if (ivc->tx_channel->state != ivc_state_established)
197 * Avoid unnecessary invalidations when performing repeated accesses to
198 * an IVC channel by checking the old queue pointers first.
199 * Synchronization is only necessary when these pointers indicate empty
202 if (!tegra_ivc_channel_empty(ivc, ivc->rx_channel))
205 offset = offsetof(struct tegra_ivc_channel_header, w_count);
206 tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
207 return tegra_ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
210 static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
214 if (ivc->tx_channel->state != ivc_state_established)
217 if (!tegra_ivc_channel_full(ivc, ivc->tx_channel))
220 offset = offsetof(struct tegra_ivc_channel_header, r_count);
221 tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
222 return tegra_ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
225 static inline uint32_t tegra_ivc_channel_avail_count(struct tegra_ivc *ivc,
226 struct tegra_ivc_channel_header *ch)
229 * This function isn't expected to be used in scenarios where an
230 * over-full situation can lead to denial of service attacks. See the
231 * comment in tegra_ivc_channel_empty() for an explanation about
232 * special over-full considerations.
234 return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
237 int tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc, void **frame)
239 int result = tegra_ivc_check_read(ivc);
244 * Order observation of w_pos potentially indicating new data before
249 tegra_ivc_invalidate_frame(ivc, ivc->rx_channel, ivc->r_pos);
250 *frame = tegra_ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
255 int tegra_ivc_read_advance(struct tegra_ivc *ivc)
261 * No read barriers or synchronization here: the caller is expected to
262 * have already observed the channel non-empty. This check is just to
263 * catch programming errors.
265 result = tegra_ivc_check_read(ivc);
269 tegra_ivc_advance_rx(ivc);
270 offset = offsetof(struct tegra_ivc_channel_header, r_count);
271 tegra_ivc_flush_counter(ivc, ivc->rx_channel, offset);
274 * Ensure our write to r_pos occurs before our read from w_pos.
278 offset = offsetof(struct tegra_ivc_channel_header, w_count);
279 tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
281 if (tegra_ivc_channel_avail_count(ivc, ivc->rx_channel) ==
288 int tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc, void **frame)
290 int result = tegra_ivc_check_write(ivc);
294 *frame = tegra_ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
299 int tegra_ivc_write_advance(struct tegra_ivc *ivc)
304 result = tegra_ivc_check_write(ivc);
308 tegra_ivc_flush_frame(ivc, ivc->tx_channel, ivc->w_pos);
311 * Order any possible stores to the frame before update of w_pos.
315 tegra_ivc_advance_tx(ivc);
316 offset = offsetof(struct tegra_ivc_channel_header, w_count);
317 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
320 * Ensure our write to w_pos occurs before our read from r_pos.
324 offset = offsetof(struct tegra_ivc_channel_header, r_count);
325 tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
327 if (tegra_ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
334 * ===============================================================
335 * IVC State Transition Table - see tegra_ivc_channel_notified()
336 * ===============================================================
338 * local remote action
339 * ----- ------ -----------------------------------
341 * SYNC ACK reset counters; move to EST; notify
342 * SYNC SYNC reset counters; move to ACK; notify
343 * ACK EST move to EST; notify
344 * ACK ACK move to EST; notify
345 * ACK SYNC reset counters; move to ACK; notify
348 * EST SYNC reset counters; move to ACK; notify
350 * ===============================================================
352 int tegra_ivc_channel_notified(struct tegra_ivc *ivc)
355 enum ivc_state peer_state;
357 /* Copy the receiver's state out of shared memory. */
358 offset = offsetof(struct tegra_ivc_channel_header, w_count);
359 tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
360 peer_state = ACCESS_ONCE(ivc->rx_channel->state);
362 if (peer_state == ivc_state_sync) {
364 * Order observation of ivc_state_sync before stores clearing
370 * Reset tx_channel counters. The remote end is in the SYNC
371 * state and won't make progress until we change our state,
372 * so the counters are not in use at this time.
374 ivc->tx_channel->w_count = 0;
375 ivc->rx_channel->r_count = 0;
381 * Ensure that counters appear cleared before new state can be
387 * Move to ACK state. We have just cleared our counters, so it
388 * is now safe for the remote end to start using these values.
390 ivc->tx_channel->state = ivc_state_ack;
391 offset = offsetof(struct tegra_ivc_channel_header, w_count);
392 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
395 * Notify remote end to observe state transition.
398 } else if (ivc->tx_channel->state == ivc_state_sync &&
399 peer_state == ivc_state_ack) {
401 * Order observation of ivc_state_sync before stores clearing
407 * Reset tx_channel counters. The remote end is in the ACK
408 * state and won't make progress until we change our state,
409 * so the counters are not in use at this time.
411 ivc->tx_channel->w_count = 0;
412 ivc->rx_channel->r_count = 0;
418 * Ensure that counters appear cleared before new state can be
424 * Move to ESTABLISHED state. We know that the remote end has
425 * already cleared its counters, so it is safe to start
426 * writing/reading on this channel.
428 ivc->tx_channel->state = ivc_state_established;
429 offset = offsetof(struct tegra_ivc_channel_header, w_count);
430 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
433 * Notify remote end to observe state transition.
436 } else if (ivc->tx_channel->state == ivc_state_ack) {
438 * At this point, we have observed the peer to be in either
439 * the ACK or ESTABLISHED state. Next, order observation of
440 * peer state before storing to tx_channel.
445 * Move to ESTABLISHED state. We know that we have previously
446 * cleared our counters, and we know that the remote end has
447 * cleared its counters, so it is safe to start writing/reading
450 ivc->tx_channel->state = ivc_state_established;
451 offset = offsetof(struct tegra_ivc_channel_header, w_count);
452 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
455 * Notify remote end to observe state transition.
460 * There is no need to handle any further action. Either the
461 * channel is already fully established, or we are waiting for
462 * the remote end to catch up with our current state. Refer
463 * to the diagram in "IVC State Transition Table" above.
467 if (ivc->tx_channel->state != ivc_state_established)
473 void tegra_ivc_channel_reset(struct tegra_ivc *ivc)
477 ivc->tx_channel->state = ivc_state_sync;
478 offset = offsetof(struct tegra_ivc_channel_header, w_count);
479 tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
483 static int check_ivc_params(ulong qbase1, ulong qbase2, uint32_t nframes,
488 BUG_ON(offsetof(struct tegra_ivc_channel_header, w_count) &
489 (TEGRA_IVC_ALIGN - 1));
490 BUG_ON(offsetof(struct tegra_ivc_channel_header, r_count) &
491 (TEGRA_IVC_ALIGN - 1));
492 BUG_ON(sizeof(struct tegra_ivc_channel_header) &
493 (TEGRA_IVC_ALIGN - 1));
495 if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
496 error("tegra_ivc: nframes * frame_size overflows\n");
501 * The headers must at least be aligned enough for counters
502 * to be accessed atomically.
504 if ((qbase1 & (TEGRA_IVC_ALIGN - 1)) ||
505 (qbase2 & (TEGRA_IVC_ALIGN - 1))) {
506 error("tegra_ivc: channel start not aligned\n");
510 if (frame_size & (TEGRA_IVC_ALIGN - 1)) {
511 error("tegra_ivc: frame size not adequately aligned\n");
515 if (qbase1 < qbase2) {
516 if (qbase1 + frame_size * nframes > qbase2)
519 if (qbase2 + frame_size * nframes > qbase1)
524 error("tegra_ivc: queue regions overlap\n");
531 int tegra_ivc_init(struct tegra_ivc *ivc, ulong rx_base, ulong tx_base,
532 uint32_t nframes, uint32_t frame_size,
533 void (*notify)(struct tegra_ivc *))
540 ret = check_ivc_params(rx_base, tx_base, nframes, frame_size);
544 ivc->rx_channel = (struct tegra_ivc_channel_header *)rx_base;
545 ivc->tx_channel = (struct tegra_ivc_channel_header *)tx_base;
548 ivc->nframes = nframes;
549 ivc->frame_size = frame_size;
550 ivc->notify = notify;